JPH0239022B2 - - Google Patents
Info
- Publication number
- JPH0239022B2 JPH0239022B2 JP61281751A JP28175186A JPH0239022B2 JP H0239022 B2 JPH0239022 B2 JP H0239022B2 JP 61281751 A JP61281751 A JP 61281751A JP 28175186 A JP28175186 A JP 28175186A JP H0239022 B2 JPH0239022 B2 JP H0239022B2
- Authority
- JP
- Japan
- Prior art keywords
- information
- pits
- information track
- track
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Landscapes
- Optical Head (AREA)
- Optical Recording Or Reproduction (AREA)
Description
【発明の詳細な説明】
本発明は、半導体レーザを光源として用いた、
光ビデオデイスク装置等の情報再生装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention uses a semiconductor laser as a light source.
The present invention relates to an information reproducing device such as an optical video disc device.
従来の光ビデオデイスク装置では、光源として
もつぱらHe―Neガスレーザが用いられていた。
しかしHe―Neガスレーザは形状も大きく、さら
にコストも高いなどの点から、光ビデオデイスク
再生装置の構造を複雑にし、さらにコストを高く
していた。これに対して、半導体レーザを光源に
用いて、上記問題点を解決する開発が行なわれて
きた。しかし、従来の半導体レーザは、一般に発
光形状が、完全に等方ではなく、したがつて、デ
イスク等の情報記録媒体上にレーザ光束を絞り込
んだ際に、MHz以上の高周波数で通常記録してあ
るビデオ情報のピツトをトラツク上の配列方向に
数個分同時に照射してしまい、再生信号波形に歪
を与えさらに信号の変調度を低くしてしまうとい
う欠点を有していた。 In conventional optical video disk devices, a He--Ne gas laser was used primarily as a light source.
However, He-Ne gas lasers are large in size and expensive, making the structure of optical video disc playback devices complex and increasing costs. In response, development efforts have been made to solve the above problems by using semiconductor lasers as light sources. However, conventional semiconductor lasers generally have a light emission shape that is not completely isotropic, and therefore, when the laser beam is focused onto an information recording medium such as a disk, it is usually recorded at a high frequency of MHz or higher. This method has the disadvantage that several pits of video information are simultaneously irradiated in the direction of arrangement on the track, distorting the reproduced signal waveform and lowering the degree of modulation of the signal.
本発明は、上記欠点を解決するためになされた
ものであり、波形歪が少なく、かつ変調度が高い
再生信号を得ることができる、半導体レーザを用
いた簡単な構成で小型かつ低価格の情報再生装置
を得ることを目的とするものである。 The present invention has been made in order to solve the above-mentioned drawbacks, and is a compact, low-cost information processing device with a simple configuration using a semiconductor laser, which can obtain a reproduced signal with little waveform distortion and a high degree of modulation. The purpose is to obtain a playback device.
かかる目的を達成するため、本発明の情報再生
装置は、情報が情報トラツク上に複数のピツトと
して設けられ、これらピツトの情報トラツクの方
向の長さは該ピツトの上記情報トラツクに垂直な
方向の長さよりも大きい情報記録媒体を用い、こ
の情報記録媒体に半導体レーザから出射した楕円
ビームが光学手段により絞り込まれることによつ
て得られる楕円スポツトであつて、その短軸方向
が上記情報トラツクの方向とほぼ一致する楕円ス
ポツトを用いて上記複数のピツトを再生すること
を特徴とする。 In order to achieve this object, the information reproducing apparatus of the present invention provides information as a plurality of pits on an information track, and the length of these pits in the direction of the information track is equal to the length of the pit in the direction perpendicular to the information track. An elliptical spot obtained by using an information recording medium that is larger than the length of the information recording medium and focusing an elliptical beam emitted from a semiconductor laser onto the information recording medium by optical means, and whose short axis direction is the direction of the information track. The invention is characterized in that the plurality of pits are reproduced using elliptical spots that substantially match the pits.
以下、本発明を実施例とともに詳しく説明す
る。第1図は本発明の第1の実施例である。半導
体レーザ1から出たレーザ光束2はレンズ3、ミ
ラー偏向器4、絞り込みレンズ5を通過して、情
報記録媒体(例えばデイスク、テープ)6上の情
報トラツク7上に絞り込まれる。このとき、半導
体レーザは接合面がx方向となつており、このx
方向が情報トラツクの方向y′に直交するように配
置されている。このような配置をとる場合の効果
が第2図によつて説明される。第2図で、情報記
録媒体6上の情報トラツク7に対して、絞り込ま
れたレーザスポツト8は、その長円方向が直交す
るようになつている。このように、絞り込まれた
楕円スポツトの長軸方向を情報トラツクの方向と
ほぼ直交させ、その短軸方向が情報トラツクの方
向と一致するようにすると、トラツク方向のスポ
ツト径が小さいために各ピツトで回折される光量
の比率が大きく、したがつて、ピツトの中心位置
で光量が十分に減少すると同時にピツト間の中間
位置では、ピツトにスポツトがかからないため十
分に光量が増加して、波形歪が少なく、変調度の
大きい再生信号が得られる。例えば、情報ピツト
の大きさは軸0.8μm、長さは1.5μm、ピツト間隔
1.5μm程度であり、ピツトはトラツク方向に長く
なつている。又レーザスポツトの大きさは、通常
のダブルヘテロ構造半導体レーザを発振しきい値
ぎりぎりで用いた場合、長軸方向の幅が3μm、短
軸方向の幅が、1.5μm程度となる。埋め込みヘテ
ロ構造半導体レーザ(埋込みヘテロレーザについ
ては、文献Journal of Applied Physics
Volume45November1974Number11 4899〜4906
頁に示されている。)を用いた場合のレーザスポ
ツトの大きさは、通常1.5μm×2μm程度となる。
したがつて、接合面方向を情報トラツク方向と平
行にすると、同時に2個以上の情報ピツトを照射
してしまうことになる。しかし、上述したように
本発明では接合面方向は、情報トラツク方向と直
交しているため2個の情報ピツトを照明すること
はなく、あるいはあつてもその影響度は小さく、
波形歪の少ないしかも変調度の高い再生ビデオ信
号を得ることができる。一方情報トラツクの間隔
は通常2〜2.5μmであり、この方向ではレーザト
ラツクは、3.2〜4.2μm程度の幅があつてもクロス
トークは生じることなく、問題ない。 Hereinafter, the present invention will be explained in detail along with examples. FIG. 1 shows a first embodiment of the invention. A laser beam 2 emitted from a semiconductor laser 1 passes through a lens 3, a mirror deflector 4, and a focusing lens 5, and is focused onto an information track 7 on an information recording medium 6 (for example, a disk or tape). At this time, the junction surface of the semiconductor laser is in the x direction, and this x
The direction is orthogonal to the direction y' of the information track. The effects of such an arrangement will be explained with reference to FIG. In FIG. 2, the oval direction of the focused laser spot 8 is perpendicular to the information track 7 on the information recording medium 6. In this way, if the major axis direction of the narrowed-down elliptical spot is made almost orthogonal to the direction of the information track, and the minor axis direction is made to match the direction of the information track, each pit will be Therefore, the amount of light is sufficiently reduced at the center of the pits, and at the same time at intermediate positions between the pits, the amount of light increases sufficiently because the spots are not covered by the pits, causing waveform distortion. Therefore, a reproduced signal with a large modulation degree can be obtained. For example, the size of the information pit is 0.8 μm on the axis, 1.5 μm in length, and the pitch between the pits is 0.8 μm.
The pits are approximately 1.5 μm long in the track direction. Further, the size of the laser spot is approximately 3 μm in the long axis direction and 1.5 μm in the short axis direction when a normal double heterostructure semiconductor laser is used at the very edge of the oscillation threshold. Buried heterostructure semiconductor lasers (For buried heterostructure lasers, see the Journal of Applied Physics
Volume45November1974Number11 4899〜4906
Shown on page. ), the size of the laser spot is usually about 1.5 μm x 2 μm.
Therefore, if the bonding surface direction is made parallel to the information track direction, two or more information pits will be irradiated at the same time. However, as described above, in the present invention, since the joint surface direction is orthogonal to the information track direction, the two information pits are not illuminated, or even if it is, the influence is small;
A reproduced video signal with little waveform distortion and a high degree of modulation can be obtained. On the other hand, the interval between information tracks is usually 2 to 2.5 .mu.m, and in this direction, even if the laser track has a width of about 3.2 to 4.2 .mu.m, crosstalk will not occur and there will be no problem.
なお、半導体レーザ1から出射した楕円ビーム
2は、接合面に平行な方向に偏光しており、垂直
成分はほとんどない直線偏光であり、この光がレ
ンズ5によつて絞り込まれて得られる楕円スポツ
ト8の長軸方向は、接合面に平行な方向と一致す
るので、半導体レーザ1の偏光方向は絞り込まれ
た楕円スポツト8の長軸方向と一致することにな
る。つまり、半導体レーザの出射端面上の楕円発
光パターン(ニアフイールドパターン)は、まず
回折によつて長軸方向が90゜回転した楕円形状の
発散ビーム(フアーフイールドパターン)にな
り、これを光学手段によつて絞り込むと、その絞
り込み面上では再度長軸方向が元に戻り、出射面
上にニアフイールドパターンを長軸方向の一致し
た楕円形状の絞り込みスポツトとなるのである。
このような方向に直線偏光した光スポツトによる
ピツトの読み出しは、再生信号の変調度を高める
効果をもつ。これは光を電磁波として考えた場
合、その電磁ベクトルの振動方向(光の偏光方
向)によつて反射の大きさが変わつてくることに
起因する。記録媒体表面での反射光は、入射光電
場による自由電子の振動によつて生じる。ピツト
エツジに沿つた方向には電子は動きやすいので、
電場がこの方向の入射光は反射し易く、逆に、ピ
ツトエツジに直交する方向には電子は動きずらい
ので、電場がこの方向の入射光は反射しずらい。
したがつて、情報トラツク方向に細長い形状のピ
ツトを、情報トラツクと直交する方向に偏光され
たスポツトで照射すると、反射しずらいエツジ部
分(トラツク方向のエツジ)が反射し易いエツジ
部分(トラツクと直交する方向のエツジ)よりも
大きいので、情報トラツクの方向に偏光されたス
ポツトで照射する場合(この場合、トラツク方向
のエツジ部分では反射し易い)と比較して、本来
のピツトによる光の回折に加えてピツトのエツジ
の部分の反射率が大きく下がり、その効果、より
大きな再生信号が得られることになる。 Note that the elliptical beam 2 emitted from the semiconductor laser 1 is polarized in a direction parallel to the cemented surface, and is linearly polarized light with almost no vertical component.This light is focused by the lens 5 to form an elliptical spot. Since the long axis direction of the laser beam 8 coincides with the direction parallel to the bonding surface, the polarization direction of the semiconductor laser 1 coincides with the long axis direction of the focused elliptical spot 8. In other words, the elliptical emission pattern (near-field pattern) on the emission end facet of a semiconductor laser first becomes an elliptical-shaped divergent beam (far-field pattern) with its major axis rotated by 90 degrees due to diffraction, and this is then converted into an elliptical divergent beam (far-field pattern) by optical means. When the light is narrowed down, the long axis direction returns to its original state on the focusing surface, and the near field pattern becomes an elliptical focusing spot with the same long axis direction on the exit surface.
Reading out pits using a light spot linearly polarized in such a direction has the effect of increasing the degree of modulation of the reproduced signal. This is because when considering light as an electromagnetic wave, the magnitude of reflection changes depending on the vibration direction of the electromagnetic vector (the polarization direction of the light). Reflected light on the surface of the recording medium is caused by vibration of free electrons due to the electric field of the incident light. Electrons move easily in the direction along the pit edge, so
Incident light with an electric field in this direction is easily reflected, and conversely, electrons have difficulty moving in a direction perpendicular to the pit edge, so incident light with an electric field in this direction is difficult to reflect.
Therefore, when a pit that is elongated in the direction of the information track is irradiated with a spot polarized in the direction perpendicular to the information track, the edge portions that are difficult to reflect (edges in the track direction) will be divided into the edge portions that are easy to reflect (edges in the track direction). (edges in the orthogonal direction), the diffraction of light by the original pit is greater than when irradiating with a spot polarized in the direction of the information track (in this case, the edges in the track direction are more likely to reflect). In addition, the reflectance at the edge of the pit is greatly reduced, and as a result, a larger reproduced signal can be obtained.
なお、第1図では、半導体レーザからのレーザ
光をレンズ2個、及びミラー偏向器を用いて情報
記録媒体に導びく構成を示したが、もち論、この
構成に限定されることはないことを付記してお
く。さらに本発明は、上述した埋め込みヘテロ構
造半導体レーザを用いる際にその効果を発揮する
ことを付記しておく。 Although FIG. 1 shows a configuration in which laser light from a semiconductor laser is guided to an information recording medium using two lenses and a mirror deflector, it is of course not limited to this configuration. I would like to add this. Furthermore, it should be noted that the present invention exhibits its effects when using the above-mentioned buried heterostructure semiconductor laser.
以上示したように本発明の情報再生装置を用い
ることによつて、
従来のHe―Ne等のガスレーザに代つて半導
体レーザを使用できるため、装置の構成が簡単
になると同時に装置を小型化・低価格化でき
る。特に、本願発明では、半導体レーザから出
射した楕円ビームが光学手段により絞り込まれ
ることによつて得られる楕円スポツトを用いる
ので、楕円スポツトを得るために円筒レンズや
プリズム等のアナモフイツクな光学手段は不要
であり、光学手段の構成も簡単である。 As shown above, by using the information reproducing device of the present invention, a semiconductor laser can be used in place of the conventional gas laser such as He-Ne, which simplifies the configuration of the device and at the same time reduces the size and cost of the device. It can be priced. In particular, the present invention uses an elliptical spot obtained by focusing an elliptical beam emitted from a semiconductor laser by an optical means, so there is no need for anamorphic optical means such as a cylindrical lens or prism to obtain an elliptical spot. The structure of the optical means is also simple.
半導体レーザを、その絞り込み楕円スポツト
の長軸方向が情報トラツクの方向と一致するよ
うに配置した場合に比較して、大幅に再生信号
波形の歪を低減し、再生信号の変調度を高くす
ることができる。 To significantly reduce the distortion of the reproduced signal waveform and to increase the degree of modulation of the reproduced signal, compared to the case where the semiconductor laser is arranged so that the major axis direction of the focused elliptical spot coincides with the direction of the information track. Can be done.
このようなスポツト形状による信号変調度の
増加に加えて、更に、偏光の効果による信号変
調度の増加が生じる。すなわち、本発明は、情
報が情報トラツク上に複数のピツトとして設け
られ、これらピツトの情報トラツク方向の長さ
が情報トラツクに垂直な方向の長さよりも大き
い情報記録媒体と、半導体レーザから出射した
楕円ビームを絞り込んで得られる楕円スポツト
とを組み合わせることにより、スポツト形状か
ら推定される程度を遥かに超えて、再生信号の
変調度を向上するものである。 In addition to the increase in the degree of signal modulation due to the spot shape, the degree of signal modulation also increases due to the effect of polarization. That is, the present invention provides an information recording medium in which information is provided as a plurality of pits on an information track, and the length of these pits in the information track direction is larger than the length in the direction perpendicular to the information track, and an information recording medium in which information is provided as a plurality of pits on an information track, and a semiconductor laser emitted from the information recording medium. By combining this with an elliptical spot obtained by narrowing down the elliptical beam, the degree of modulation of the reproduced signal is improved far beyond what can be estimated from the spot shape.
第1図は本発明の一実施例であり、第2図はそ
の補足図である。
FIG. 1 shows one embodiment of the present invention, and FIG. 2 is a supplementary diagram thereof.
Claims (1)
設けられ、該ピツトの上記情報トラツクの方向の
長さは該ピツトの上記情報トラツクに直交する方
向の長さよりも大きい情報記録媒体を用い、該情
報記録媒体に半導体レーザから出射した楕円ビー
ムが光学手段により絞り込まれることによつて得
られる楕円スポツトの短軸方向が上記情報トラツ
クの方向とほぼ一致するように上記半導体レーザ
の接合面を上記情報トラツクに直交する方向と一
致させて配置し、上記楕円スポツトを用いて上記
複数のピツトを再生することを特徴とする情報再
生装置。1 Information is provided as a plurality of pits on an information track, and the length of the pits in the direction of the information track is larger than the length of the pits in the direction orthogonal to the information track, and the information recording medium is The junction surface of the semiconductor laser is aligned with the information track so that the short axis direction of the ellipse spot obtained by focusing the ellipse beam emitted from the semiconductor laser onto the medium substantially coincides with the direction of the information track. An information reproducing apparatus characterized in that the plurality of pits are reproduced using the elliptical spots arranged in alignment with orthogonal directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61281751A JPS62157339A (en) | 1986-11-28 | 1986-11-28 | Information reproducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61281751A JPS62157339A (en) | 1986-11-28 | 1986-11-28 | Information reproducing device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50142054A Division JPS5265406A (en) | 1975-11-27 | 1975-11-27 | Inforamtion reproduction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62157339A JPS62157339A (en) | 1987-07-13 |
JPH0239022B2 true JPH0239022B2 (en) | 1990-09-03 |
Family
ID=17643468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61281751A Granted JPS62157339A (en) | 1986-11-28 | 1986-11-28 | Information reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62157339A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4893348A (en) * | 1972-03-10 | 1973-12-03 | ||
JPS4894378A (en) * | 1972-03-13 | 1973-12-05 | ||
JPS502569A (en) * | 1973-03-02 | 1975-01-11 | ||
JPS5059102A (en) * | 1973-09-28 | 1975-05-22 | ||
JPS50112056A (en) * | 1974-02-12 | 1975-09-03 | ||
JPS50123351A (en) * | 1974-03-14 | 1975-09-27 | ||
JPS5184206A (en) * | 1974-12-09 | 1976-07-23 | Teletype Corp | |
JPS5265406A (en) * | 1975-11-27 | 1977-05-30 | Hitachi Ltd | Inforamtion reproduction device |
JPS5693348A (en) * | 1979-12-26 | 1981-07-28 | Shinko Electric Ind Co Ltd | Stem |
JPS618496A (en) * | 1984-12-24 | 1986-01-16 | Hitachi Ltd | Electric fan |
-
1986
- 1986-11-28 JP JP61281751A patent/JPS62157339A/en active Granted
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4893348A (en) * | 1972-03-10 | 1973-12-03 | ||
JPS4894378A (en) * | 1972-03-13 | 1973-12-05 | ||
JPS502569A (en) * | 1973-03-02 | 1975-01-11 | ||
JPS5059102A (en) * | 1973-09-28 | 1975-05-22 | ||
JPS50112056A (en) * | 1974-02-12 | 1975-09-03 | ||
JPS50123351A (en) * | 1974-03-14 | 1975-09-27 | ||
JPS5184206A (en) * | 1974-12-09 | 1976-07-23 | Teletype Corp | |
JPS5265406A (en) * | 1975-11-27 | 1977-05-30 | Hitachi Ltd | Inforamtion reproduction device |
JPS5693348A (en) * | 1979-12-26 | 1981-07-28 | Shinko Electric Ind Co Ltd | Stem |
JPS618496A (en) * | 1984-12-24 | 1986-01-16 | Hitachi Ltd | Electric fan |
Also Published As
Publication number | Publication date |
---|---|
JPS62157339A (en) | 1987-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4520472A (en) | Beam expansion and relay optics for laser diode array | |
EP0405742B1 (en) | Method for increasing linear bit density in magneto-optical storage media | |
US5329517A (en) | Optical information recording and reproducing apparatus utilizing a plurality of recording light spots | |
JPH03259423A (en) | Optical waveguide storage medium and optical reproducing device | |
JPS6376117A (en) | Optical disc access apparatus | |
JPH0239022B2 (en) | ||
US5706263A (en) | Method and apparatus for high-density reproduction | |
JPH04176025A (en) | Optical head | |
JPH01204220A (en) | Recording and reproducing system | |
JP3099318B2 (en) | Method of reproducing signal from optical recording medium | |
JPS6233648B2 (en) | ||
JP2805064B2 (en) | Optical recording / reproducing device | |
JPH04368647A (en) | Optical magnetic head device and optical magnetic recording method | |
HU208587B (en) | Method for tracking an optical scanner on the track of a data carrier and optical scanner performing said method | |
JP2613921B2 (en) | Magneto-optical memory device | |
JPS6025003A (en) | Opto-magnetic recording device | |
JPH08338904A (en) | Optical element and optical information recording and reproducing device | |
JPH03273545A (en) | Magneto-optical recording and reproducing device | |
JPS62157338A (en) | Semiconductor laser optical device | |
JPS63117324A (en) | Optical information device | |
JPH0246544A (en) | Light memory device | |
JPH08339551A (en) | Optical information recording and reproducing device | |
JPH0573983A (en) | Magneto-optical recording method and magneto-optical recording and reproducing device | |
JPS59125A (en) | Optical system | |
JPH08124232A (en) | Optical head and optical disc |