JPH0238300B2 - - Google Patents
Info
- Publication number
- JPH0238300B2 JPH0238300B2 JP56042442A JP4244281A JPH0238300B2 JP H0238300 B2 JPH0238300 B2 JP H0238300B2 JP 56042442 A JP56042442 A JP 56042442A JP 4244281 A JP4244281 A JP 4244281A JP H0238300 B2 JPH0238300 B2 JP H0238300B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- sand
- model
- cavity
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004576 sand Substances 0.000 claims description 50
- 239000011248 coating agent Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 9
- 235000019353 potassium silicate Nutrition 0.000 claims description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 8
- 239000007849 furan resin Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 57
- 238000005266 casting Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000000465 moulding Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、流動性を有する充填砂を用い、主と
して中子を造型する鋳型の造型方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for molding a mold, mainly for molding a core, using filler sand having fluidity.
従来、マイクロ波硬化性鋳砂を用いて鋳型を造
型する方法においては、一般に塗型剤及び充填砂
のバインダにフエノール系の樹脂を使用している
ため、得られた鋳型が高価になると共に、マイク
ロ波による硬化温度が200〜250℃と高いため、硬
化に要する時間が長かつたり、消費電力も多い。
また高い硬化温度を必要とするため、造型に用い
る模型の寿命が短いと共に、充填砂の流動性が低
いため、上向き凹部などに鋳砂が詰り難く不良が
発生しやすい。しかも上記鋳型を用いて低合金鋳
鋼などを鋳造した場合、モールドリアクシヨンに
より鋳肌のきれいな鋳物が得難いなどの欠点があ
つた。
Conventionally, in the method of making a mold using microwave-curable casting sand, a phenolic resin is generally used as a coating agent and a binder for the filler sand, which makes the resulting mold expensive and Since the curing temperature using microwaves is as high as 200 to 250°C, curing takes a long time and consumes a lot of power.
Furthermore, since a high curing temperature is required, the life of the model used for molding is short, and the fluidity of the filling sand is low, making it difficult for casting sand to clog upwardly facing recesses and the like, making it more likely to cause defects. Moreover, when casting low-alloy cast steel or the like using the above-mentioned mold, there were drawbacks such as difficulty in obtaining a casting with a clean casting surface due to mold reaction.
一方、特開昭55−73440号公報には、ゴム質模
型の表面に有機又は無機の粘結剤と骨材とを混合
した水溶性塗型剤を塗布した後に、無機塩、水を
含む鋳型砂を充填し、その後にマイクロ波加熱し
て硬化した後にゴム質模型により外して水溶性鋳
型とする、鋳造後水に浸すだけで崩壊するように
砂抜き性を良くした水溶性鋳型造型法が開示され
ている。 On the other hand, JP-A No. 55-73440 discloses that after applying a water-soluble coating agent containing an organic or inorganic binder and aggregate to the surface of a rubber model, a mold containing an inorganic salt and water is applied. A water-soluble mold manufacturing method that is filled with sand, then heated with microwaves to harden, and then removed using a rubber model to create a water-soluble mold, which has improved sand removal properties and disintegrates just by soaking it in water after casting. Disclosed.
前記特開昭55−73440号公報記載のように、一
般に充填砂の水分含有を多くすれば充填砂の流動
性は向上する。しかし水分含有が多ければ、それ
だけ硬化スピードが遅く、マイクロ波加熱硬化に
要する時間が長くなり、またマイクロ波加熱硬化
の際に水分が沸騰し、鋳肌外観が悪くなり、さら
に鋳型強度、表面安定度等の鋳型特性も充分に満
足すべきものは得られ難い。
As described in JP-A-55-73440, the fluidity of the filled sand is generally improved by increasing the water content of the filled sand. However, the higher the water content, the slower the curing speed and the longer the time required for microwave heating curing.Moreover, the water boils during microwave heating curing, worsening the appearance of the casting surface, and further reducing mold strength and surface stability. It is also difficult to obtain fully satisfactory mold properties such as strength.
従つて、本発明の目的は、前記したような欠点
を改善し、充填砂の流動性を良くして充填不良を
解消し不良品の発生率を低減し、しかも鋳肌外
観、表面安定度等の鋳型特性に優れた高寿命の鋳
型が得られる鋳型造型方法を提供することにあ
る。 Therefore, the purpose of the present invention is to improve the above-mentioned drawbacks, improve the fluidity of the filling sand, eliminate filling defects, reduce the incidence of defective products, and improve casting surface appearance, surface stability, etc. An object of the present invention is to provide a mold making method that allows a long-life mold with excellent mold characteristics to be obtained.
本発明の鋳型造型方法は、前記目的を達成する
ため、液状バインダ(水ガラス又は液状フラン樹
脂)を用いることによつて低水分でしかも流動性
を有するようにした充填砂を使用し、これによつ
て前記充填不良等の不具合を解消し、さらに充填
砂に用いたのと同じ液状のバインダを塗型剤にも
添加することによつて、充填砂と塗型剤の接着性
を良くして鋳肌外観、表面安定度等の鋳型特性を
向上させようとするものである。
In order to achieve the above object, the mold making method of the present invention uses filling sand that has low moisture content and has fluidity by using a liquid binder (water glass or liquid furan resin). Therefore, the above-mentioned problems such as poor filling can be solved, and by adding the same liquid binder used for the filling sand to the mold coating agent, the adhesion between the filling sand and the mold coating agent can be improved. The aim is to improve mold properties such as cast surface appearance and surface stability.
すなわち、本発明の鋳造型方法は、模型のキヤ
ビテイ内面に塗型剤を塗布して塗膜を形成した
後、上記キヤビテイ内に流体圧または振動を利用
して流動性を有する充填砂を充填し、かつ模型ご
と上記充填砂にマイクロ波を照射してこれを硬化
させると共に硬化後模型内より取出す鋳型造方法
において、上記充填砂として、低水分の水ガラス
又は液状フラン樹脂の液状バインダを含有し、流
動性を有する充填砂を用いると共に、上記塗型剤
として、上記充填砂で用いた液状バインダと同じ
バインダを含有する塗型剤を用いることを特徴と
するものである。 That is, the casting mold method of the present invention applies a coating agent to the inner surface of the cavity of the model to form a coating film, and then fills the cavity with fluid filling sand using fluid pressure or vibration. , and in a mold making method in which the filling sand is irradiated with microwaves along with the model to harden it and taken out from the model after hardening, the filling sand contains a liquid binder such as low moisture water glass or liquid furan resin. The present invention is characterized in that filler sand having fluidity is used and, as the mold coating agent, a mold coating agent containing the same binder as the liquid binder used in the filler sand is used.
以下、本発明を図示の一実施例により詳述す
る。本発明の方法に用いる模型1は、図面に示す
ように金枠2内に補強層3により周囲を強化され
た造型層4を設けたもので、補強槽3は硅砂にエ
ポキシ樹脂などを混入して加熱硬化させることに
より成形したものである。また造型層4は、耐熱
シリコンゴムやテフロン(商品名)などにより形
成されていて、造型すべき鋳型と同一形状のキヤ
ビテイ5を有している。
Hereinafter, the present invention will be explained in detail with reference to an illustrated embodiment. As shown in the drawing, the model 1 used in the method of the present invention has a molding layer 4 surrounded by a reinforcing layer 3 in a metal frame 2, and the reinforcing tank 3 is made by mixing silica sand with epoxy resin or the like. It is molded by heating and curing. The molding layer 4 is made of heat-resistant silicone rubber, Teflon (trade name), or the like, and has a cavity 5 having the same shape as the mold to be molded.
次に、上記模型1を用いた造型法を説明する
と、まず上記模型1のキヤビテイ5内面に水ガラ
ス又は液状フラン樹脂の液状バインダと骨材及び
必要に応じて水等から成る液状塗型剤を霧状に吹
付けて塗膜6を形成する。塗膜6の形成方法とし
ては、キヤビテイ5内に塗型剤を充填して、キヤ
ビテイ5の内面に均一に付着させた後、模型1を
反転させて不用な塗型剤を排出するようにしても
よい。次に、塗膜6を形成したキヤビテイ5内に
流動性のある充填砂7を投入した後、模型1上の
開口1aにゴムシート9を介して加圧筒8を接続
し、この加圧筒8内に空気圧などを供給して、こ
の圧力を利用してキヤビテイ5内へ投入した充填
砂7を押圧し、キヤビテイ5内へ充填する。充填
砂7としては、例えば硅砂または炭化砂に水ガラ
スを3重量%、水を1.5重量%、発泡剤を0.1重量
%添加してよく攪拌したものを用いる。充填砂の
バインダとしては、液状フラン樹脂も使用でき
る。なお、充填砂7をキヤビテイ5内へ充填する
方法としては、キヤビテイ5の形状が単純な場合
は振動などを利用して充填するようにしてもよ
い。 Next, to explain the molding method using the above model 1, first, a liquid mold coating agent consisting of a liquid binder such as water glass or liquid furan resin, aggregate, and water etc. as necessary is applied to the inner surface of the cavity 5 of the above model 1. A coating film 6 is formed by spraying in the form of a mist. The method for forming the coating film 6 is to fill the cavity 5 with a coating agent, make it adhere uniformly to the inner surface of the cavity 5, and then turn the model 1 over and discharge the unnecessary coating agent. Good too. Next, after pouring fluid filling sand 7 into the cavity 5 in which the coating film 6 has been formed, a pressurizing cylinder 8 is connected to the opening 1a on the model 1 via a rubber sheet 9, and this pressurizing cylinder Air pressure or the like is supplied into the cavity 8, and this pressure is used to press the filling sand 7 introduced into the cavity 5 and fill it into the cavity 5. The filling sand 7 is, for example, silica sand or carbonized sand, to which 3% by weight of water glass, 1.5% by weight of water, and 0.1% by weight of a foaming agent are added and stirred thoroughly. Liquid furan resin can also be used as a binder for the filling sand. Note that, as a method of filling the filling sand 7 into the cavity 5, if the shape of the cavity 5 is simple, it may be filled using vibration or the like.
キヤビテイ5内に充填砂7が充満されたら、こ
の状態で加熱炉(図示せず)内へ投入して、金枠
2の開口部2a側からマイクロ波を照射しキヤビ
テイ5内の充填砂7をマイクロ波により100〜120
℃の温度で加熱硬化させる。 Once the cavity 5 is filled with the filling sand 7, it is placed into a heating furnace (not shown) in this state, and microwaves are irradiated from the opening 2a side of the metal frame 2 to fill the filling sand 7 in the cavity 5. 100-120 depending on microwave
Heat and cure at a temperature of ℃.
キヤビテイ5内の充填砂7が硬化したら、金枠
2を分割してキヤビテイ5内より取出すことによ
り、所望形状の鋳型(中子)が得られるようにな
る。上記方法により得られた鋳型(中子)を利用
して例えばエンジンのシリンダヘツドを鋳造した
ところ、鋳型(中子)と接する面の鋳肌がきわめ
て良好な鋳物が得られた。また上記鋳物の鋳肌の
面粗さを測定したところ、第2図に示す通りであ
つた。 Once the filling sand 7 in the cavity 5 has hardened, the metal frame 2 is divided and taken out from the cavity 5 to obtain a mold (core) of a desired shape. When the mold (core) obtained by the above method was used to cast, for example, a cylinder head for an engine, a casting with an extremely good casting surface on the surface in contact with the mold (core) was obtained. Furthermore, when the surface roughness of the casting surface of the above casting was measured, it was as shown in FIG.
ちなみに従来の鋳型法で得られた鋳型(中子)
を使用してシリンダヘツドを鋳造したところ、得
られた鋳物の鋳肌は第3図に示すように面粗さの
粗いものとなり、本方法のものに比べて鋳肌の面
粗さは格段に悪いものであつた。 By the way, the mold (core) obtained by the conventional mold method
When a cylinder head was cast using this method, the surface roughness of the resulting casting was rough, as shown in Figure 3, and the surface roughness of the casting surface was much rougher than that of the casting made using this method. It was bad.
実施例 1
#300の硅石粉100重量部に水ガラス30重量部、
水10重量部を添加し、さらに塗型剤の粘性をもた
せるためにベントナイト3重量部を添加してよく
攪拌した液状の塗型剤を、模型に充満した後反転
して除き、模型内面に塗膜を形成した。Example 1 100 parts by weight of #300 silica powder, 30 parts by weight of water glass,
Fill the model with a liquid coating agent made by adding 10 parts by weight of water and 3 parts by weight of bentonite to increase the viscosity of the coating agent. A film was formed.
次に6号硅砂100重量部に水ガラス2.5重量部、
水1重量部、発泡剤0.05重量部を添加して、ミキ
サーで混合し発泡させることにより流動性ある充
填砂を得、次にこれを塗型された模型内にパイブ
レータをかけながら充填し、中子を造型した。こ
の中子を用いて、SC46材を鋳造したところ、モ
ールドリアクシヨンもなくきれいな鋳肌の鋳物を
得ることができた。 Next, add 2.5 parts by weight of water glass to 100 parts by weight of No. 6 silica sand.
Add 1 part by weight of water and 0.05 part by weight of a foaming agent, mix with a mixer, and foam to obtain fluid filling sand.Next, this is filled into the coated model while passing a pibrator, and the inside Modeled a child. When we cast SC46 material using this core, we were able to obtain a casting with a clean casting surface without any mold reaction.
実施例 2
ジルコン粉100重量部にフランレジン25重量部、
硬化剤1.5重量部、酸化鉄7重量部を混合し、液
状の塗型剤をつくり、これを模型に塗布した後、
6・7号硅砂にフランレジン1重量部、硬化剤
0.1重量部、発泡剤0.1重量部を添加し、ミキサー
で混合し発泡させることにより流動性のある充填
砂を得た。この流動砂を充填し、以下実施例1と
同様な工程を経て良好な中子を得ることができ
た。Example 2 100 parts by weight of zircon powder, 25 parts by weight of furan resin,
Mix 1.5 parts by weight of hardening agent and 7 parts by weight of iron oxide to make a liquid mold coating agent, and after applying this to the model,
1 part by weight of furan resin and hardening agent in No. 6 and 7 silica sand
0.1 part by weight and 0.1 part by weight of a foaming agent were added, mixed with a mixer, and foamed to obtain fluid filled sand. This fluidized sand was filled and the same steps as in Example 1 were carried out to obtain a good core.
試験例
実施例1と同様の塗型剤及び充填砂の配合比で
鋳型試験片φ50×50Hを作成した(サンプルA)。
また、比較のために、特開昭55−73440号の実施
例に従つて、#325のジルコン粉100重量部、水ガ
ラス10重量部、水5重量部、表面活性剤0.5重量
部を混合して塗型剤を得、また6号硅砂100重量
部、塩化ナトリウム10重量部、水5重量部を混合
して充填砂を得る以外は同様にして同一サイズの
鋳型試験片を作成した(サンプルB)。Test Example A mold test piece φ50×50 H was prepared using the same mixing ratio of coating agent and filler sand as in Example 1 (Sample A).
For comparison, 100 parts by weight of #325 zircon powder, 10 parts by weight of water glass, 5 parts by weight of water, and 0.5 parts by weight of a surfactant were mixed according to the example of JP-A-55-73440. A mold test piece of the same size was prepared in the same manner except that filler sand was obtained by mixing 100 parts by weight of No. 6 silica sand, 10 parts by weight of sodium chloride, and 5 parts by weight of water (Sample B). ).
各サンプルについて、圧縮試験(抗圧力)及び
表面安定度(NIK法)を試験したところ、抗圧
力はサンプルAでは86Kg/cm2であつたのに対しサ
ンプルBでは2.5Kg/cm2であり、また表面安定度
はサンプルAでは92%であつたのに対しサンプル
Bでは17%であつた。また、塗膜の性質を比較す
るため、試験片上端面の塗型ポロツキ度を測定し
た。測定方法は、30゜に傾けた試験片の60cm上方
の上部じようごに直径約1.5mmのシヨツト玉1Kg
を入れ、下部にセツトした試験片に当て、塗型の
ポロツキ状態を評価した。サンプルBでは全体が
ポロつき、測定不可能であつたのに対し、サンプ
ルAではコーナー部に17%、中央部に30%のポロ
ツキが見られただけであつた。サンプルAについ
て良い結果が得られたのは、塗型剤と充填砂に同
系統の液状バインダを使用しているためと考えら
れる。 When each sample was tested for compression test (coercive pressure) and surface stability (NIK method), the coercive pressure was 86 kg/cm 2 for sample A, while it was 2.5 kg/cm 2 for sample B. Moreover, the surface stability of Sample A was 92%, while that of Sample B was 17%. In addition, in order to compare the properties of the coating film, the degree of roughness of the coating pattern on the upper end surface of the test piece was measured. The measurement method is to place a 1 kg shot ball with a diameter of approximately 1.5 mm in the upper funnel 60 cm above the test piece tilted at 30 degrees.
was applied to the test piece set at the bottom to evaluate the roughness of the coating mold. In Sample B, the entire surface was uneven and measurement was impossible, whereas in Sample A, only 17% of the unevenness was observed in the corners and 30% in the center. The good results obtained for Sample A are thought to be due to the use of the same type of liquid binder for the mold coating agent and filler sand.
なお、マイクロ波加熱硬化は8KW出力で、A
については1分30秒照射、Bについては3分で硬
化した。硬化スピードの差は充填砂中の水分の差
によるもので、Aの方が早い。 In addition, microwave heating curing is 8KW output, and A
For example, it was irradiated for 1 minute and 30 seconds, and for B, it was cured in 3 minutes. The difference in hardening speed is due to the difference in moisture content in the filling sand, and A is faster.
以上のように、本発明の鋳型造型方法は、低水
分でしかも流動性を有する充填砂を用い、また塗
型剤及び充填砂に同系統の液状バインダを添加し
たことにより、得られる鋳型の特性が優れ、ま
た、硬化温度が100〜120℃と低く、硬化に要する
時間や消費電力が半減すると共に、模型の寿命が
従来の約600回に比べて2000回と格段に向上する。
しかも、充填砂に流動砂を使用したことにより、
上向き凹部のキヤビテイ内でも容易に充填できる
ため、不良品の発生率が少なく、かつ複雑な形状
の鋳型の造型も可能になると共に、塗型に無機質
のバインダが使用できるため、低合金鋳鋼でもモ
ールドリアクシヨンに生じることがなく、これに
よつて鋳肌のきれいな鋳物が得られるようにな
る。
As described above, the mold making method of the present invention uses a filling sand that has low moisture content and fluidity, and also adds a liquid binder of the same type to the mold coating agent and the filling sand, thereby obtaining the characteristics of the mold. In addition, the curing temperature is low at 100-120°C, which reduces the time and power consumption required for curing by half, and significantly increases the lifespan of the model to 2,000 times compared to about 600 times with conventional models.
Moreover, by using fluid sand as the filling sand,
Since it is easy to fill even the upwardly facing concave cavity, the incidence of defective products is low, and molds with complex shapes can be made.In addition, since an inorganic binder can be used in the coating mold, even low-alloy cast steel can be molded. No reactions occur, and as a result, castings with clean casting surfaces can be obtained.
さらに本発明の方法によれば、塗型剤や充填砂
のバインダに安価な水ガラスや液状フラン樹脂が
使用できるため、従来のフエノール系のバインダ
を使用するものに比べて、材料費が半減し、これ
により安価な鋳型が得られるようになる。 Furthermore, according to the method of the present invention, inexpensive water glass or liquid furan resin can be used as the binder for the mold coating agent and filler sand, so the material cost is halved compared to the conventional method using a phenolic binder. , this makes it possible to obtain inexpensive molds.
第1図は本発明の方法に使用した模型の一実施
例を示す断面図、第2図は得られた鋳物の鋳肌面
粗さを示す線図、第3図は従来法により得られた
鋳物の鋳肌面粗さを示す線図である。
1は模型、5はキヤビテイ、6は塗膜、7は充
填砂。
Fig. 1 is a cross-sectional view showing an example of the model used in the method of the present invention, Fig. 2 is a diagram showing the surface roughness of the casting surface of the obtained casting, and Fig. 3 is a cross-sectional view showing an example of the model used in the method of the present invention. FIG. 2 is a diagram showing the roughness of the casting surface of a casting. 1 is a model, 5 is a cavity, 6 is a coating film, and 7 is a filling sand.
Claims (1)
て塗膜6を形成した後、上記キヤビテイ5内に流
体圧または振動を利用して流動性を有する充填砂
7を充填し、かつ模型1ごと上記充填砂7にマイ
クロ波を照射してこれを硬化させると共に硬化後
模型1内より取出す鋳型造型方法において、上記
充填砂として、低水分の水ガラス、又は液状フラ
ン樹脂、の液状バインダを含有し、流動性を有す
る充填砂を用いると共に、上記塗型剤として、上
記充填砂で用いた液状バインダと同じバインダを
含有する塗型剤を用いることを特徴とする鋳型造
型方法。1 After applying a coating agent to the inner surface of the cavity 5 of the model 1 to form a coating film 6, the cavity 5 is filled with fluid filling sand 7 using fluid pressure or vibration, and the model 1 is In a mold making method in which the filling sand 7 is irradiated with microwaves to harden it and taken out from the model 1 after hardening, the filling sand contains a liquid binder such as low moisture water glass or liquid furan resin. A method for mold making, characterized in that filler sand having fluidity is used and, as the mold coating agent, a mold coating agent containing the same binder as the liquid binder used in the filling sand is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4244281A JPS57156860A (en) | 1981-03-25 | 1981-03-25 | Molding method for casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4244281A JPS57156860A (en) | 1981-03-25 | 1981-03-25 | Molding method for casting mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57156860A JPS57156860A (en) | 1982-09-28 |
JPH0238300B2 true JPH0238300B2 (en) | 1990-08-29 |
Family
ID=12636186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4244281A Granted JPS57156860A (en) | 1981-03-25 | 1981-03-25 | Molding method for casting mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57156860A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6171152A (en) * | 1984-09-13 | 1986-04-12 | Komatsu Ltd | Molding method of casting mold |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5573440A (en) * | 1978-11-27 | 1980-06-03 | Komatsu Ltd | Manufacturing method of water soluble mold |
-
1981
- 1981-03-25 JP JP4244281A patent/JPS57156860A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5573440A (en) * | 1978-11-27 | 1980-06-03 | Komatsu Ltd | Manufacturing method of water soluble mold |
Also Published As
Publication number | Publication date |
---|---|
JPS57156860A (en) | 1982-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900001344B1 (en) | Making method for the casting mold | |
CN101391453A (en) | Microwave heating method for water glass sand mold or sand core | |
JPH0238300B2 (en) | ||
CN106670390A (en) | Forming method for soluble sand core of winding shell with end socket | |
JPS6236779B2 (en) | ||
JPS6317020B2 (en) | ||
JPS63242439A (en) | Production of mold for investment casting | |
CN105081214A (en) | Casting method | |
JPS6349579B2 (en) | ||
JPS63115649A (en) | Molding method for hollow core | |
US3692085A (en) | Process for producing cores by microwave heating | |
KR20230112675A (en) | Production methods, casting molds, cores or feeders and kits, and methods for producing metal castings | |
JPS6358082B2 (en) | ||
JPS5835858B2 (en) | porous mold | |
JPH01130843A (en) | Manufacture of core for high pressure casting | |
JPS584652Y2 (en) | Formwork that does not require mold release agent | |
US3814626A (en) | Core box | |
JPH0339774B2 (en) | ||
JPS611445A (en) | Production of casting mold for precision casting | |
JPS6147619B2 (en) | ||
CN107716867B (en) | A kind of casting method of the swage for iron die sand casting process | |
JPH01215433A (en) | Manufacture of core for high pressure casting | |
JPS5691957A (en) | Production of self-hardening mold | |
JPS612507A (en) | Porous durable mold and manufacture thereof | |
JPS6049065B2 (en) | Mold molding method |