JPH0238948A - Analysis equipment - Google Patents
Analysis equipmentInfo
- Publication number
- JPH0238948A JPH0238948A JP19123088A JP19123088A JPH0238948A JP H0238948 A JPH0238948 A JP H0238948A JP 19123088 A JP19123088 A JP 19123088A JP 19123088 A JP19123088 A JP 19123088A JP H0238948 A JPH0238948 A JP H0238948A
- Authority
- JP
- Japan
- Prior art keywords
- light
- sample
- ultracentrifuge
- diffraction grating
- concave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims description 10
- 102000004190 Enzymes Human genes 0.000 claims 1
- 108090000790 Enzymes Proteins 0.000 claims 1
- 239000010419 fine particle Substances 0.000 claims 1
- 239000011859 microparticle Substances 0.000 claims 1
- 239000002244 precipitate Substances 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 239000000523 sample Substances 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000012488 sample solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Centrifugal Separators (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1分析装置、特に遠心力により沈降する試料の
濃度分布を光学的に測定する分析装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an analytical device, and particularly to an analytical device that optically measures the concentration distribution of a sample sedimented by centrifugal force.
光学式分析装置では試料の溶液に光を投射し透過する光
を解析して分析することが行なわれているが、投射光に
用いる單色光を得るにはフィルタを用いて單色光を形成
する方式と平面回折格子を用いて形成する方式等があり
、それぞれ用途に応じて用いられている。また受光側は
主として光電子増倍管で受光する方式が用いられている
。Optical analyzers project light onto a sample solution and analyze the transmitted light, but in order to obtain the hypochromic light used for the projected light, a filter is used to form the hypochromic light. There are two methods, one using a flat diffraction grating and the other using a planar diffraction grating, each of which is used depending on the purpose. On the light receiving side, a method is mainly used in which light is received by a photomultiplier tube.
上述したように試料の溶液に投射する單色光を得るには
フィルタ方式と凹面回折格子による方式とが用いられる
が、前者の方式は連続的に波長を変換することが困難で
あり後者の方式は多数の光学部品が必要となる。また受
光側は光電子増倍管とスリットとを走査させて信号を取
出す方式が用いられ、装置が複雑が大型になる嫌いがあ
る。As mentioned above, a filter method and a method using a concave diffraction grating are used to obtain the dichromatic light projected onto the sample solution, but it is difficult to convert the wavelength continuously with the former method, and the latter method is difficult. requires a large number of optical components. Furthermore, on the light receiving side, a method is used to extract signals by scanning a photomultiplier tube and a slit, which tends to make the device complicated and large.
本発明の目的は、凹面回折格子を用いて單色光を形成し
、受光器にはリニアホトセンサを用いて光学系を簡素化
した分析装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an analysis device that uses a concave diffraction grating to form hypochromic light and uses a linear photosensor as a light receiver to simplify the optical system.
本発明は、超遠心分離機を用いて溶液中に沈降する蛋白
質、酵素等試料の微細粒子の濃度分析を光学的に測定す
る分析装置において、紫外光より可視光に至る光を生ず
る光源と凹面回折格子とにより形成される單色光を前記
超遠心分離機により回転する試料容器に投射し、この容
器内に収納された前記溶液を透過する光をリニアホトセ
ンサで受光して前記試料の微細粒子濃度を電気信号に変
換して計測するもので、光学系をffi素化するように
して目的の達成を計っている。The present invention uses a light source that produces light ranging from ultraviolet light to visible light and a concave The ultracentrifuge emits the dichromatic light formed by the diffraction grating onto the sample container rotated by the ultracentrifuge. It measures particle concentration by converting it into an electrical signal, and aims to achieve its purpose by converting the optical system to an FFI element.
本発明の分析装置では試料の溶解液に投射する光として
凹面回折格子を通して得られる單色光を用い、溶解液を
透過した光はレンズ系を通さず直接リニアホトセンサで
受光するようにしであるので、投射光側および受光側と
もレンズ、ミラー等の光学部品を少なくして光学系を簡
素化することができ、装置全体を小型化することができ
る。The analyzer of the present invention uses dichromatic light obtained through a concave diffraction grating as the light projected onto the sample solution, and the light transmitted through the solution is directly received by a linear photo sensor without passing through a lens system. Therefore, the optical system can be simplified by reducing the number of optical parts such as lenses and mirrors on both the projection light side and the light reception side, and the entire apparatus can be made smaller.
以下1本発明の一実施例について図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の分析装置の一実施例を示す構成図であ
る。FIG. 1 is a configuration diagram showing an embodiment of the analysis device of the present invention.
同図において1は分析用ロータで中心軸の回りを高速に
回転する。2は試料室で試料容器がセントされる。3は
真空室、4A、4Bは反転ミラー、5は底抜、6はスリ
ット、7は真空室3を遮断するドア、8はシールドガラ
ス、9は光学ユニット、10は光学ユニット9を支持す
るベース、11は遮光板、12は光源、13は凹面鏡、
14はスリット、15は凹面回折格子、16はスリット
、17は凹面鏡、18はリニアホトセンサ、19はマイ
クロコンピュータ、20は表示器。In the figure, reference numeral 1 denotes an analysis rotor that rotates around a central axis at high speed. 2, the sample container is placed in the sample chamber. 3 is a vacuum chamber, 4A and 4B are reversing mirrors, 5 is a bottom, 6 is a slit, 7 is a door that blocks the vacuum chamber 3, 8 is a shield glass, 9 is an optical unit, and 10 is a base that supports the optical unit 9 , 11 is a light shielding plate, 12 is a light source, 13 is a concave mirror,
14 is a slit, 15 is a concave diffraction grating, 16 is a slit, 17 is a concave mirror, 18 is a linear photosensor, 19 is a microcomputer, and 20 is a display.
21はプリンタを示す。21 indicates a printer.
この装置では、光源12には紫外線を発光するキセノン
ランプまたは水銀ランプが用いられ、この光源12より
生じた光は凹面fi13で集光され、スリット14を通
って凹面回折格子15に入射される。凹面回折格子15
は回転して特定波長の光線だけを取出せるように構成さ
れており、分光された光はスlfット16を通過して凹
面鏡17に至り、ここで反射してシールドガラス8を通
って試料室2の試料容器内を透過する。試料室2を透過
した光は反転ミラー4Aおよび4Bを経て反転しリニア
ホトセンサ18に入射される。リニアホトセンサ18は
マイクロコンピュータ19により制御され遠心力方向に
走査される。マイクロコンピュータ19はこのとき得ら
れるリニアホトセンサ18の出力信号を入力して解析し
、表示器20およびプリンタ21に出力する。In this device, a xenon lamp or a mercury lamp that emits ultraviolet light is used as the light source 12, and the light generated by the light source 12 is collected by a concave surface fi13, passes through a slit 14, and enters a concave diffraction grating 15. Concave diffraction grating 15
is configured so that it can be rotated to extract only light beams of a specific wavelength, and the separated light passes through a slit 16 and reaches a concave mirror 17, where it is reflected and passes through a shield glass 8 to the sample. It passes through the sample container in chamber 2. The light transmitted through the sample chamber 2 is reversed through the reversing mirrors 4A and 4B, and then enters the linear photosensor 18. The linear photo sensor 18 is controlled by a microcomputer 19 and scanned in the direction of centrifugal force. The microcomputer 19 inputs the output signal of the linear photosensor 18 obtained at this time, analyzes it, and outputs it to the display 20 and printer 21.
第2図は試料室2の内部構造と試料室2を透過する光の
径路を示すものである。同図において22はカウンタウ
ェイト、23.24は基準穴。FIG. 2 shows the internal structure of the sample chamber 2 and the path of light passing through the sample chamber 2. In the figure, 22 is a counterweight, and 23 and 24 are reference holes.
25は試料容器、26は溶媒、27は試料を示す、Fは
遠心力を表わし遠心力Fにより溶媒26を沈降する試料
27を透過して光りがスリット6を通ってリニアホトセ
ンサ18に入力される。Reference numeral 25 indicates a sample container, 26 indicates a solvent, and 27 indicates a sample.F indicates centrifugal force, and the light passes through the sample 27 which sediments the solvent 26 due to the centrifugal force F, and enters the linear photo sensor 18 through the slit 6. Ru.
第3図は分析結果の一例を示すもので、横軸は試料の幅
r、縦軸はリニアホトセンサの出力信号Eoとこの出力
を基にマイクロコンピュータ19により解析された沈降
データAを示す、同図に示すように試料の各部分につい
て分析することができ1分析結果は表示器20により表
示されるとともにプリンタ21により記録することがで
きる。FIG. 3 shows an example of the analysis results, where the horizontal axis shows the width r of the sample, and the vertical axis shows the output signal Eo of the linear photosensor and the sedimentation data A analyzed by the microcomputer 19 based on this output. As shown in the figure, each part of the sample can be analyzed, and the analysis results can be displayed on a display 20 and recorded on a printer 21.
以上述べたように本発明によれば次のような結果が得ら
れる。As described above, according to the present invention, the following results can be obtained.
(1)光学系を簡素化して装置全体を小型化することが
できる。(1) The optical system can be simplified and the entire device can be downsized.
(2)部品点数の減少、操作機端の簡略化により製作コ
ストを低減することができる。(2) Manufacturing costs can be reduced by reducing the number of parts and simplifying the operating device.
第1図は本発明の分析装置の一実施例を示す構成図、第
2図は試料容器を通過する透過光の経路説明図、第3回
は分析結果の説明図である。
1は分析用ロータ、4A、4Bは反転ミラー6はスリッ
ト、9は光学ユニット、12は光源、13.17は凹面
鏡、14.16はスリット、ISは凹面回折格子、18
はリニアホトセンサ、19はマイクロコンピュータ、2
0は表示器、21はプリンタ、25は試料容器、26は
溶媒。
27は試料。
特許出顕人の名称 日立工機株式会社
羊
f
口
:JPz図
昭≠什18
茅3nFIG. 1 is a configuration diagram showing an embodiment of the analysis device of the present invention, FIG. 2 is an explanatory diagram of the path of transmitted light passing through a sample container, and the third diagram is an explanatory diagram of analysis results. 1 is an analysis rotor, 4A and 4B are reversing mirrors 6 and slits, 9 is an optical unit, 12 is a light source, 13.17 is a concave mirror, 14.16 is a slit, IS is a concave diffraction grating, 18
is a linear photo sensor, 19 is a microcomputer, 2
0 is a display, 21 is a printer, 25 is a sample container, and 26 is a solvent. 27 is a sample. Name of patent author Hitachi Koki Co., Ltd.Hitsuji f Mouth: JPzzusho≠18 茅3n
Claims (1)
素等試料の微細粒子の濃度分布を光学的に測定する分析
装置において、紫外光より可視光に至る光と生ずる光源
と凹面回折格子とにより形成される單色光を前記超遠心
分離機により回転する試料容器に投射し、該容器内に収
納された前記溶液を透過する光をリニアホトセンサで受
光して前記試料の微細粒子濃度を電気信号に変換して計
測することを特徴とする分析装置。1. In an analyzer that optically measures the concentration distribution of microparticles of samples such as proteins and enzymes that precipitate in a solution using an ultracentrifuge, light ranging from ultraviolet light to visible light, the resulting light source, and a concave diffraction grating are used. The hypochromic light formed by the ultracentrifuge is projected onto a sample container rotated by the ultracentrifuge, and the light transmitted through the solution contained in the container is received by a linear photosensor to determine the fine particle concentration of the sample. An analysis device that converts and measures electrical signals into electrical signals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19123088A JPH0238948A (en) | 1988-07-29 | 1988-07-29 | Analysis equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19123088A JPH0238948A (en) | 1988-07-29 | 1988-07-29 | Analysis equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0238948A true JPH0238948A (en) | 1990-02-08 |
Family
ID=16271065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19123088A Pending JPH0238948A (en) | 1988-07-29 | 1988-07-29 | Analysis equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0238948A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04223252A (en) * | 1990-12-26 | 1992-08-13 | Hitachi Koki Co Ltd | Optical device of centrifugal analyzer |
JP2008543535A (en) * | 2005-06-08 | 2008-12-04 | アルファ ラヴァル コーポレイト アクチボラゲット | Gas purification centrifuge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5642128A (en) * | 1979-09-17 | 1981-04-20 | Hitachi Ltd | Atomic spectrum analyzer |
JPS5992330A (en) * | 1982-10-20 | 1984-05-28 | シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− | Centrifugal analyzer |
JPS6118843A (en) * | 1984-07-06 | 1986-01-27 | Hitachi Koki Co Ltd | Absorption recording apparatus for centrifugal separator |
JPS6179140A (en) * | 1984-09-27 | 1986-04-22 | Yokogawa Hokushin Electric Corp | Measuring device for optical characteristic of paper |
-
1988
- 1988-07-29 JP JP19123088A patent/JPH0238948A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5642128A (en) * | 1979-09-17 | 1981-04-20 | Hitachi Ltd | Atomic spectrum analyzer |
JPS5992330A (en) * | 1982-10-20 | 1984-05-28 | シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− | Centrifugal analyzer |
JPS6118843A (en) * | 1984-07-06 | 1986-01-27 | Hitachi Koki Co Ltd | Absorption recording apparatus for centrifugal separator |
JPS6179140A (en) * | 1984-09-27 | 1986-04-22 | Yokogawa Hokushin Electric Corp | Measuring device for optical characteristic of paper |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04223252A (en) * | 1990-12-26 | 1992-08-13 | Hitachi Koki Co Ltd | Optical device of centrifugal analyzer |
JP2008543535A (en) * | 2005-06-08 | 2008-12-04 | アルファ ラヴァル コーポレイト アクチボラゲット | Gas purification centrifuge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5091652A (en) | Laser excited confocal microscope fluorescence scanner and method | |
JP3626951B2 (en) | Scanning system and scanning method for scanning a plurality of samples | |
US5213673A (en) | Multi-colored electrophoresis pattern reading apparatus | |
US5242567A (en) | Fluorescent pattern reading apparatus | |
CN112414992A (en) | Raman spectrum excitation enhancement module | |
CN114460060B (en) | Raman spectrum imaging system and method for rapid detection of nano/micro plastic | |
EP0065409A2 (en) | Apparatus for detecting a particle agglutination pattern | |
JP3506652B2 (en) | Capillary array electrophoresis device | |
JPH0238948A (en) | Analysis equipment | |
CN114594082A (en) | A simplified miniature method for Raman spectroscopic detection for lab-on-a-chip | |
CN216082493U (en) | High-sensitivity Raman spectrum detection system | |
US3982838A (en) | Compact fast analyzer of rotary cuvette type | |
US7504641B2 (en) | Polarisation fluorometer | |
RU2080568C1 (en) | Luminescent photometer | |
SE9500712L (en) | Optical analyzer | |
RU1777054C (en) | Concentration meter | |
JPH06222001A (en) | Single beam reflection measuring equipment | |
JPS62501933A (en) | Fluorescence analysis arrangement | |
CN110320160B (en) | A time-division multiplexing reflection anisotropy differential optical measurement device and method | |
SU681372A1 (en) | Method of the determination of turbidity of a wine product | |
SU1111078A1 (en) | Channel-type fluorescent detector for amino-acid analysis | |
SU819641A1 (en) | Automatic gas sample analyzer | |
SU693178A1 (en) | Refractometric system for analytic ultracentrifuge | |
JPS6182141A (en) | Spectrophotometer | |
RU2082960C1 (en) | Laser gas analyzer |