[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0237033A - Power transmission - Google Patents

Power transmission

Info

Publication number
JPH0237033A
JPH0237033A JP18699088A JP18699088A JPH0237033A JP H0237033 A JPH0237033 A JP H0237033A JP 18699088 A JP18699088 A JP 18699088A JP 18699088 A JP18699088 A JP 18699088A JP H0237033 A JPH0237033 A JP H0237033A
Authority
JP
Japan
Prior art keywords
differential rotation
shaft
rotation
clutch
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18699088A
Other languages
Japanese (ja)
Inventor
Masao Teraoka
正夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline Japan Ltd
Original Assignee
Tochigi Fuji Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Fuji Sangyo KK filed Critical Tochigi Fuji Sangyo KK
Priority to JP18699088A priority Critical patent/JPH0237033A/en
Publication of JPH0237033A publication Critical patent/JPH0237033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To make it possible to transmit a large torque between rotary members by controlling differential rotation generated between the rotary members by means of a coupling given with a large differential rotation when the differential rotation is generated between them. CONSTITUTION:When an input shaft 45 rotates with the rotation drive force from an engine 1 and differential rotation is generated between the input shaft 45 and output shaft 47 sides due to delay in rotation caused by load from front wheel 19 side, the differential rotation is amplified through a planetary gear 77 and transmitted to a rotor 79 of an electromagnetic powder clutch 91. At this time, by operating an electromagnet 87 to turn an electromagnetic powder clutch 91 into a fastened state, a slight differential rotation is amplified by means of an amplifying mechanism. It is, as a result, possible to transmit a large torque to the front wheel 19 side, via the output shaft 47, from the reaction force of the clutch 91 transmitted through the torque of the clutch 91 and the amplifying mechanism.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば車両などに用いられる動力伝達g!
胃に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) This invention is applicable to power transmission g!
Concerning the stomach.

(従来の技術) 軸継手(この発明において、軸継手とは着脱軸継手であ
るクラッチと永久軸継手であるカップリングとを含んだ
概念とする)の一種に、例えば磁性粉体式電磁クラッチ
(Tilパウダークラッチ)がある。周知のように、石
粉には磁力が作用すると磁力線に沿って鎮状につながっ
て固体化する性質があることから、この性質を利用して
電磁パウダークラッチは入力側と出力側とを磁気を帯び
た磁粉を介して連結し、この磁粉の結合力によりトルク
伝達を行うように構成・されたクラッチである。
(Prior Art) As a type of shaft coupling (in this invention, the concept of shaft coupling includes a clutch that is a detachable shaft coupling and a coupling that is a permanent shaft coupling), for example, a magnetic powder electromagnetic clutch ( Til powder clutch). As is well known, when a magnetic force acts on stone powder, it has the property of forming a solid state along the lines of magnetic force, and by utilizing this property, an electromagnetic powder clutch magnetizes the input side and the output side. This is a clutch that is configured and configured to be connected via magnetic particles, and to transmit torque by the coupling force of the magnetic particles.

ところで、この電磁パウダークラッチには最大伝達トル
ク(トルク容量)が小さいという欠点がある。従って、
例えば車両用の動力伝達装置をパウダークラッチを用い
て構成するとトルク容量が不足する。クラッチの径を大
きくするか又は磁粉に磁力を与える磁石装置を大きくす
ればトルク容量を増すことができるが、装置がそれだけ
大型化し重量が増加する。
However, this electromagnetic powder clutch has a drawback in that the maximum transmission torque (torque capacity) is small. Therefore,
For example, if a power transmission device for a vehicle is configured using a powder clutch, the torque capacity will be insufficient. Torque capacity can be increased by increasing the diameter of the clutch or by increasing the size of the magnet device that applies magnetic force to the magnetic particles, but this increases the size and weight of the device.

(発明が解決しようとする課題) そこで、この発明は小型で大きなトルク容量を有する動
力伝達装置の提供を目的とする。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a power transmission device that is small in size and has a large torque capacity.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために、この発明の動力伝達装置は
、相対回転可能に配置された一対の回転部材と、これら
の回転部材間の差動回転を増幅する増幅機構と、この増
幅機構に゛よって増幅された差動回転を与えられ差動回
転を制動可能な軸継手とを備えた構成とした。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the power transmission device of the present invention includes a pair of rotating members arranged to be relatively rotatable, and a difference between these rotating members. The structure includes an amplification mechanism that amplifies dynamic rotation, and a shaft coupling that is given the differential rotation amplified by the amplification mechanism and can brake the differential rotation.

(作用) 回転部材間に差動回転が生じると、この差動回転は増幅
機構によって増幅されて軸継手に作用する。こうして大
きな差動回転を与えられた軸継手が差動回転を制動する
ことにより、回転部材間に大きなトルクが伝達される。
(Operation) When differential rotation occurs between the rotating members, this differential rotation is amplified by the amplification mechanism and acts on the shaft coupling. The shaft joint, which has been given a large differential rotation, brakes the differential rotation, thereby transmitting a large torque between the rotating members.

(実施例) 第1図ないし第3図により第1実施例を説明する。(Example) A first embodiment will be explained with reference to FIGS. 1 to 3.

第2図(a )はフロントエンジン・リヤドライブベー
スの四輪駆動(4WD )車の動力伝達系に、又第2図
(b ’)はフロントエンジン・フロントドライブペー
スの4WD車の動力伝達系にそれぞれこの実施例の動力
伝達装置を用いた例を示す。なお、以下の説明において
左右の方向は第1図における左右の方向であり、その左
方は第2図(a )の車両の後方に相当し第2図(b 
)の車両の前方に相当する。
Figure 2 (a) shows the power transmission system of a front engine/rear drive based four-wheel drive (4WD) vehicle, and Figure 2 (b') shows the power transmission system of a front engine/front drive 4WD vehicle. An example using the power transmission device of this embodiment is shown. In addition, in the following explanation, the left and right directions are the left and right directions in FIG. 1, and the left side corresponds to the rear of the vehicle in FIG.
) corresponds to the front of the vehicle.

先ず、第2図<a )、(b)によりそれぞれの車両の
動力伝達を説明する。
First, the power transmission of each vehicle will be explained with reference to FIGS. 2(a) and 2(b).

第2図(a )の車両において、縦置きのエンジン1の
回転駆動力はトランスミッション3で変速されてトラン
スファ5に伝達される。トランスファ5は伝達された回
転駆動力をこの実施例の動力伝達装置7とプロペラシャ
フト9を介して前輪側のデファレンシャル装置(フロン
トデフ)11に伝iするとともに、プロペラシャフト1
3を介して後輪側のデファレンシャル装置(リヤデフ)
15に伝達する。伝達された回転駆動力はフロントデフ
11により前車軸17.17を介して左右の前輪19.
19に差動分配され、リヤデフ15により後車軸21.
21を介して左右の後輪23゜23に差動分配される。
In the vehicle shown in FIG. 2(a), the rotational driving force of the vertically placed engine 1 is changed in speed by the transmission 3 and transmitted to the transfer 5. The transfer 5 transmits the transmitted rotational driving force to the front wheel side differential device (front differential) 11 via the power transmission device 7 and propeller shaft 9 of this embodiment, and also transmits the transmitted rotational driving force to the front wheel side differential device (front differential) 11
3 through the rear wheel side differential device (rear differential)
15. The transmitted rotational driving force is transmitted by the front differential 11 to the left and right front wheels 19.17 via the front axle 17.17.
19, and the rear axle 21.
It is differentially distributed to the left and right rear wheels 23° 23 via 21.

又、第2図(b)の中肉において、横置きのエンジン2
5の回転駆動力はトランスミッション27により変速さ
れてトランスファ29に伝達される。トランスファ29
は伝達された回転駆動力をその内部に収納したフロント
デフ31に伝達する一方、この実施例の動力伝達装W1
7、プロペラシャフト33を介してリヤデフ35に伝達
する。伝達された回転駆動力はフロントデフ31により
前車軸37.37を介して左右の前輪39.39に差動
分配され、リヤデフ35により後車軸41゜41を介し
て左右の後輪43.43に差動分配される。
Also, in the middle part of Fig. 2(b), the horizontally mounted engine 2
The rotational driving force of 5 is changed in speed by a transmission 27 and transmitted to a transfer 29. Transfer 29
transmits the transmitted rotational driving force to the front differential 31 housed therein, while the power transmission device W1 of this embodiment
7. Transmitted to the rear differential 35 via the propeller shaft 33. The transmitted rotational driving force is differentially distributed to the left and right front wheels 39.39 by the front differential 31 via the front axle 37.37, and is distributed to the left and right rear wheels 43.43 via the rear axle 41°41 by the rear differential 35. Differentially distributed.

次に、この実施例の構成を第1図により説明する。Next, the configuration of this embodiment will be explained with reference to FIG.

入力軸45(回転部材)はトランスファ5,29側に連
結されエンジン1.25からの回転駆動力によって回転
可能に配置されている。出力軸47(回転部材)は軸部
材49と中空部材51とを一体に形成してなり、中空部
材51の左端部に設けた軸支部53で入力軸45に相対
回転可能に係合している。軸部材49はプロペラシャフ
ト9゜33側に連結されている。中空部材51の内部に
おいて、中間軸55が入力軸45及び出力軸49と同軸
に配置され、出力軸49との間に設けた軸支部において
すべり軸受57を介して相対回転自在に支承されている
。又、中空部材51は隔壁59により左右の隔室61.
63に区画されている。
The input shaft 45 (rotating member) is connected to the transfers 5 and 29 and is arranged to be rotatable by the rotational driving force from the engine 1.25. The output shaft 47 (rotating member) is formed by integrally forming a shaft member 49 and a hollow member 51, and is engaged with the input shaft 45 at a shaft support 53 provided at the left end of the hollow member 51 so as to be relatively rotatable. . The shaft member 49 is connected to the propeller shaft 9°33 side. Inside the hollow member 51, an intermediate shaft 55 is disposed coaxially with the input shaft 45 and the output shaft 49, and is supported for relative rotation via a slide bearing 57 at a shaft support provided between the input shaft 45 and the output shaft 49. . Further, the hollow member 51 is divided into left and right compartments 61 by a partition wall 59.
It is divided into 63 sections.

左側の隔室61の内部において、入力軸45の右端部に
はフランジ状のキャリヤ65が一体に形成されている。
Inside the left compartment 61, a flange-shaped carrier 65 is integrally formed at the right end of the input shaft 45.

このキャリヤ65には複数本のビン67が円周上等間隔
に固定されている。各ビン67には′ri星歯車69が
回転自在に支承され、これに−重ねて遊星歯車69の脱
落防止板71が取付けられている。中空部材51の内周
には内歯車73が形成され遊星歯車6つと噛合っている
。又、中間軸55には太陽歯車75が形成され遊星歯車
69と噛合っている。こうして、遊星歯車装置77(増
幅機l1l)が構成されている。
A plurality of bottles 67 are fixed to this carrier 65 at equal intervals on the circumference. A star gear 69 is rotatably supported on each bin 67, and a plate 71 for preventing the planet gear 69 from falling off is attached to overlap the star gear 69. An internal gear 73 is formed on the inner periphery of the hollow member 51 and meshes with six planetary gears. Further, a sun gear 75 is formed on the intermediate shaft 55 and meshes with the planetary gear 69. In this way, the planetary gear device 77 (amplifier l1l) is configured.

すなわち、エンジン1.25からの回転駆動力により入
力軸45が回転すると遊星歯車69はキャリヤ65の回
転とともに公転し、公転に伴って内歯車73上を高速で
自転する。太陽歯車75及びそれと一体の中間軸55は
′M星尚歯ll69高速回転を受けて互いの歯数比によ
りさらに高速で回転する。
That is, when the input shaft 45 is rotated by the rotational driving force from the engine 1.25, the planetary gear 69 revolves together with the rotation of the carrier 65, and rotates on the internal gear 73 at high speed as the planetary gear 69 revolves. The sun gear 75 and the intermediate shaft 55 integrated with the sun gear 75 are rotated at a high speed due to the high speed rotation of the sun gear 75 and the intermediate shaft 55 which is integral with the sun gear 75 and rotates at a higher speed due to the ratio of the number of teeth.

右の隔室63の内部において、ロータ79が配置され、
その基部は中間軸55と一体に形成されるとともに先端
部の円筒面を中空部材51の内周面とわずかなギャップ
81を介して対向している。
Inside the right compartment 63, a rotor 79 is arranged,
The base portion is formed integrally with the intermediate shaft 55, and the cylindrical surface of the tip portion faces the inner circumferential surface of the hollow member 51 with a slight gap 81 interposed therebetween.

隔室63内には鉄粉のような強磁性の磁粉が封入されて
いる。中間軸55と隔壁59との間にはシール85が配
置され、遊星歯車装置77からのギヤオイルが隔室63
へ侵入して磁粉の流動性が失われるのを防止している。
Ferromagnetic magnetic powder such as iron powder is enclosed in the compartment 63. A seal 85 is disposed between the intermediate shaft 55 and the partition wall 59, and gear oil from the planetary gear set 77 flows into the partition chamber 63.
This prevents the magnetic particles from penetrating and losing their fluidity.

中空部材51の外周を囲んで、ロータ79と対向した位
置に電磁石87が配置されており、中空部材51の外周
と微少なエアギャップを介してトランスファケース89
に取付けられている。又、中空部材51の外周において
電磁石87のla極と対向する位置に磁束をギャップ8
1に効果的に導くための溝90が設けられている。この
ようにして、電磁パウダークラッチ91(軸継手)が構
成されている。
An electromagnet 87 is arranged at a position facing the rotor 79 surrounding the outer periphery of the hollow member 51, and is connected to the transfer case 89 via the outer periphery of the hollow member 51 and a small air gap.
installed on. Also, the magnetic flux is directed to the gap 8 at a position facing the la pole of the electromagnet 87 on the outer periphery of the hollow member 51.
1 is provided with a groove 90 for effectively guiding it. In this way, the electromagnetic powder clutch 91 (shaft coupling) is configured.

すなわち、電磁石87を作動させると磁粉が吸引されて
ギャップ81を満たし、ロータ79と中空部月51とが
連結され、磁粉の結合力及び遊星III装置77がロー
タ79から受ける反力によりトルク伝達が行われる。こ
のとき、電磁石87の磁力を変化させ磁粉の結合力を調
節すれば伝達トルクの大きさ及びロータ79と中空部材
51の間の、つまり入力軸45と出力軸47の間の差動
回転の制限量を調節することができる。又、電磁石87
の作動を停止すれば磁粉は連結固体化を解除されパウダ
ークラッチ91は開放状態となる。
That is, when the electromagnet 87 is activated, the magnetic particles are attracted and fill the gap 81, the rotor 79 and the hollow part 51 are connected, and the torque is transmitted due to the coupling force of the magnetic particles and the reaction force that the planet III device 77 receives from the rotor 79. It will be done. At this time, by changing the magnetic force of the electromagnet 87 and adjusting the binding force of the magnetic particles, the magnitude of the transmitted torque and the differential rotation between the rotor 79 and the hollow member 51, that is, between the input shaft 45 and the output shaft 47 are limited. The amount can be adjusted. Also, electromagnet 87
When the operation of the powder clutch 91 is stopped, the magnetic particles are released from solidification and the powder clutch 91 is opened.

電磁石87のこのような作動は運転席から手動操作可能
か、又は例えば舵角や車輪のスリップあるいは加速など
を検知するセンサからの信号に基づいて自動操作可能に
構成されている。
The electromagnet 87 can be operated manually from the driver's seat, or automatically based on signals from sensors that detect steering angle, wheel slip or acceleration, for example.

次に、この実施例の機能を説明する。なお、以下の説明
において車両との関係は第2図(a )の車両で代表す
る。
Next, the functions of this embodiment will be explained. In the following description, the relationship with vehicles is represented by the vehicle in FIG. 2(a).

エンジン1からの回転駆動力により入力軸45が回転し
、前輪19.19側からの負荷による回転遅れのために
出力軸47側との間に差動回転が生じると、上記のよう
に、この差動回転は遊星歯車装置77によって増幅され
電磁パウダークラッチ91のロータ79に伝達される。
When the input shaft 45 rotates due to the rotational driving force from the engine 1, and differential rotation occurs between the input shaft 45 and the output shaft 47 due to rotation delay due to the load from the front wheels 19 and 19, as described above, this occurs. The differential rotation is amplified by the planetary gear set 77 and transmitted to the rotor 79 of the electromagnetic powder clutch 91.

このとき、電磁石87を作動させて電磁パウダークラッ
チ91を締結状態にしておけば、上記のように、わずか
な差動回転が増幅機構によって増幅されて、電磁パウダ
ークラッチ91のトルクと、増幅機構を介して伝達され
る電磁パウダクラッチ91の反力か^ ら、出力軸47を介して大きなトルクを前輪19゜19
側へ伝達することが可能となる。又、電磁石87の磁力
を変化させて伝達トルクを調節すれば前輪19.19側
と後輪23.23側への駆動力の配分率を調節すること
ができる。
At this time, if the electromagnet 87 is operated to keep the electromagnetic powder clutch 91 in the engaged state, the slight differential rotation will be amplified by the amplification mechanism as described above, and the torque of the electromagnetic powder clutch 91 and the amplification mechanism will be increased. From the reaction force of the electromagnetic powder clutch 91 transmitted through the output shaft 47, a large torque is transmitted to the front wheels 19
It becomes possible to transmit the information to the other side. Further, by changing the magnetic force of the electromagnet 87 and adjusting the transmission torque, it is possible to adjust the distribution ratio of the driving force to the front wheels 19, 19 and the rear wheels 23, 23.

以上のように、電磁パウダークラッチ91の径や電磁石
87を大型にせずに動力伝達装置のトルク容量を増加す
ることができるから小型−であって大きな重量増化を伴
わない。
As described above, the torque capacity of the power transmission device can be increased without increasing the diameter of the electromagnetic powder clutch 91 or the electromagnet 87, so the power transmission device is compact and does not involve a large increase in weight.

次に、第2図(a )の重両の性能に即した機能を説明
する。
Next, functions corresponding to the performance of the heavy vehicle shown in FIG. 2(a) will be explained.

電磁パウダークラッチ91を開放すると前輪19.19
側への駆動力伝達が遮断されて車両は後輪駆fill(
2WD)走行状態となる。又、電磁パウダークラッチ9
1を締結すると車両は4WD走行状態となる。
When the electromagnetic powder clutch 91 is released, the front wheel 19.19
The transmission of drive force to the side is cut off, and the vehicle becomes rear-wheel drive (
2WD) is in running condition. Also, electromagnetic powder clutch 9
When 1 is engaged, the vehicle enters the 4WD driving state.

動力伝達装置7.99は大きな伝達トルクが得られるか
ら、前輪19.19側と後輪23.23側の間における
駆動力の配分分割及び差動回転の制限量などの調節は広
い範囲で行える。従って、下記のように操縦安定性や走
破性などを著しく向上させることができる。
Since the power transmission device 7.99 can obtain a large transmission torque, it is possible to adjust the distribution division of the driving force between the front wheels 19.19 side and the rear wheels 23.23 side and the limit amount of differential rotation over a wide range. . Therefore, as described below, handling stability, running performance, etc. can be significantly improved.

例えば悪路において後輪23.23が大きくスリップし
たことをセンサが検知すると電磁石87の磁力が強(な
るように構成すれば、このような場合前輪19.19に
大きな駆動力を迅速に伝達することができる。従って悪
路から迅速な脱出が可能となり走破性が向上する。
For example, if the sensor detects that the rear wheels 23, 23 have significantly slipped on a rough road, the magnetic force of the electromagnet 87 will be strong (if configured so that it becomes so, a large driving force will be quickly transmitted to the front wheels 19, 19 in such a case. Therefore, it is possible to quickly escape from a rough road, and the drivability is improved.

又、舵角によって電磁パウダークラッチ91の締結力が
調節されるように構成し、大きく操舵したときに締結力
を弱まるようにすれば差動回転が許容されて例えば車庫
入れのような低速急旋回時に生じる前輪19.19と後
輪23.23間の回転差が電磁パウダークラッチ91に
より吸収されタイトコーナーブレーキング現家が防止さ
れる。
In addition, if the engagement force of the electromagnetic powder clutch 91 is adjusted according to the steering angle, and if the engagement force is weakened when the steering angle is large, differential rotation is allowed, and it is possible to perform low-speed sharp turns such as parking, for example. The rotational difference between the front wheels 19.19 and the rear wheels 23.23 that sometimes occurs is absorbed by the electromagnetic powder clutch 91, thereby preventing tight corner braking.

なお、この実施例において第3図に示すような変形が可
能である。同図のように、この変形例においては上記態
様とは反対に遊星歯車装置77は右側に、又パウダーク
ラッチ91は左側に配置され入力軸93は中間軸95を
貫通して遊星歯車装置77側に連結されている。従って
、電磁石87を固定するトランスファケース97を短く
できる。
Note that this embodiment can be modified as shown in FIG. As shown in the figure, in this modification, contrary to the above embodiment, the planetary gear set 77 is arranged on the right side, the powder clutch 91 is arranged on the left side, and the input shaft 93 passes through the intermediate shaft 95 to the side of the planetary gear set 77. is connected to. Therefore, the transfer case 97 that fixes the electromagnet 87 can be shortened.

その他の構成、機能、効果は上記第1の実施例と同じで
ある。
Other configurations, functions, and effects are the same as those of the first embodiment.

次に、第4図により第2実施例を説明する。この実施例
も第2図(a )、(b)の車両において第1実施例の
動力伝達装置7のように配置された動力伝達装置99と
して用いた。第4図に示すように、この実施例は第1実
施例と同様に電磁パウダークラッチ91を用いている。
Next, a second embodiment will be explained with reference to FIG. This embodiment was also used as a power transmission device 99 arranged like the power transmission device 7 of the first embodiment in the vehicle shown in FIGS. 2(a) and 2(b). As shown in FIG. 4, this embodiment uses an electromagnetic powder clutch 91 like the first embodiment.

以下、第1実施例と同じ部材には同一の番号を附して引
用しながら主に第1実施例との相異点を簡単に説明する
Hereinafter, the differences from the first embodiment will be briefly explained while referring to the same members with the same numbers as in the first embodiment.

なお、以下の説明において左右の方向は第4図における
左右の方向であり、その左方は第2図(a )の車両の
後方に、又同図(b)の車両の前方にそれぞれ相当する
In the following explanation, the left and right directions are the left and right directions in Figure 4, and the left side corresponds to the rear of the vehicle in Figure 2 (a) and the front of the vehicle in Figure 2 (b), respectively. .

入力軸101(回転部材)はトランスファ5゜29側に
連結され、エンジン1,25からの回転駆動力により回
転する。出力軸103(回転部材)は軸部材105と中
空部材107とからなり、入力軸101と同軸上で相対
回転可能に配置されている。軸部材105はプロペラシ
ャフト9.33側に連結されており、中空部材107は
隔壁109により左右の隔室111.113に区画され
ている。
The input shaft 101 (rotating member) is connected to the transfer 5° 29 side and is rotated by the rotational driving force from the engines 1 and 25. The output shaft 103 (rotating member) consists of a shaft member 105 and a hollow member 107, and is arranged coaxially with the input shaft 101 so as to be relatively rotatable. The shaft member 105 is connected to the propeller shaft 9.33 side, and the hollow member 107 is partitioned into left and right compartments 111, 113 by a partition wall 109.

左側の隔室111において、歯数が互いに数枚異った2
枚の歯車115.117が隣り合って配置されており、
左側の歯車115は中空部材107に連結され、右側の
歯車117は入力軸101に連結されている。キャリヤ
119には円周上等間隔に複数本のビン121が固定さ
れ、各ビン121には遊星歯車123が歯車115.1
17と噛合いながら回転自在に支承されている。又、キ
ャリヤ119は中間軸125に連結されており、中間軸
125は中空・部材107に回転自在に支承され、入力
軸101と出力軸103と同軸上で相対回転自在に配置
されている。又、隔1109と中間軸125の間にはシ
ール127が配置されている。このようにして、不思議
歯車装@129(増幅様構)が構成されている。
In the compartment 111 on the left side, two teeth with different numbers of teeth
The gears 115 and 117 are arranged next to each other,
The gear 115 on the left side is connected to the hollow member 107, and the gear 117 on the right side is connected to the input shaft 101. A plurality of bins 121 are fixed to the carrier 119 at equal intervals on the circumference, and each bin 121 has a planetary gear 123 attached to the gear 115.1.
It is rotatably supported while meshing with 17. Further, the carrier 119 is connected to an intermediate shaft 125, which is rotatably supported by the hollow member 107 and arranged coaxially with the input shaft 101 and the output shaft 103 so as to be relatively rotatable. Further, a seal 127 is arranged between the gap 1109 and the intermediate shaft 125. In this way, the mysterious gear system @129 (amplification mode structure) is constructed.

ずなわち、入力軸101が回転し出力軸103との間に
、つまり歯車115.117との間に差動回転が生じる
と、遊星歯車123は不思議歯車の増幅機能により自転
しながら歯車115.117上を高速で公転しキャリヤ
119を高速で回転させる。この^速回転は中間軸12
5に連結されたパウダークラッチ91のロータ79に伝
達されて中空部材107どの間に大きな差動回転が与え
られ、第1実施例と同様に、大きなトルクを出力軸10
3に伝達することが可能となる。
That is, when the input shaft 101 rotates and differential rotation occurs between the input shaft 101 and the output shaft 103, that is, between the gears 115. The carrier 119 is rotated at a high speed by revolving on the carrier 117 at a high speed. This ^ speed rotation is caused by the intermediate shaft 12
5 is transmitted to the rotor 79 of the powder clutch 91 connected to the hollow member 107, and a large differential rotation is applied between the hollow member 107, and similarly to the first embodiment, a large torque is transmitted to the rotor 79 of the powder clutch 91 connected to the output shaft 10.
It becomes possible to transmit the information to 3.

その伯の構成、機能、効果は上記第1実施例と同様であ
る。
Its configuration, functions, and effects are the same as those of the first embodiment.

次に、第5図により第3実施例を説明する。この実施例
は、中空部材107をトランスファケース等に固定し、
出力軸131を中空にして入力軸101に套装した。従
って電磁石87を中空部材107の外周に一体的に設け
ることができる為、磁力のもれをなくすことができる。
Next, a third embodiment will be explained with reference to FIG. In this embodiment, the hollow member 107 is fixed to a transfer case or the like,
The output shaft 131 was made hollow and was enclosed in the input shaft 101. Therefore, since the electromagnet 87 can be integrally provided on the outer periphery of the hollow member 107, leakage of magnetic force can be eliminated.

また本実施例においては、電磁パウダークラッチ91が
遊星歯車123の公転を制動することにより回転部材間
のトルク伝達を行う。
Further, in this embodiment, the electromagnetic powder clutch 91 brakes the revolution of the planetary gear 123, thereby transmitting torque between the rotating members.

その他の構成、機能、効果は上記第2実施例と同じであ
る。
Other configurations, functions, and effects are the same as those of the second embodiment.

以上、軸継手として電磁パウダークラッチを用いた構成
を例にして説明したが、この発明は他の軸継手、例えば
ビスカスカップリング、ポンプを利用した継手を用いて
も構成することができる。
Although the above description has been made using an example of a configuration using an electromagnetic powder clutch as a shaft coupling, the present invention can also be constructed using other shaft couplings, such as a viscous coupling or a coupling using a pump.

差動歯車装置の差動制限装置として利用することもでき
る。
It can also be used as a differential limiting device for a differential gear device.

[発明の効果] 以上のように、この発明の動力伝達装置は、回転部材間
の差動回転が小さい状態でも大きな伝達トルク容量が得
られ、その上、小型、軽量である。
[Effects of the Invention] As described above, the power transmission device of the present invention can obtain a large transmission torque capacity even when the differential rotation between rotating members is small, and is also small and lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の部分断面図、第2図(a )、(
b)はいずれも第1実施例を用いた車両の動力伝達を示
す概略図、第3図は第1実施例の変形例の構成を示す概
略図、第4図は第2実施例の構成を示す概略図、第5図
は第3実施例の構成を示す概略図である。 7.99・・・動力伝達装置 45.93.101・・・入力軸(回転部材)47.1
03,131・・・出力軸(回転部材)77・・・′i
!1里歯車装置(増幅機構)91・・・電磁パウダーク
ラッチ(軸継手)129・・・不忠ii歯車装!(増幅
機構)代理人 弁理士  三 好 保 男 第3図 1]9 第4図 第5図
Fig. 1 is a partial sectional view of the first embodiment, Fig. 2(a), (
b) is a schematic diagram showing the power transmission of a vehicle using the first embodiment, FIG. 3 is a schematic diagram showing the configuration of a modification of the first embodiment, and FIG. 4 is a schematic diagram showing the configuration of the second embodiment. FIG. 5 is a schematic diagram showing the configuration of the third embodiment. 7.99...Power transmission device 45.93.101...Input shaft (rotating member) 47.1
03,131...Output shaft (rotating member) 77...'i
! 1 Ri gear system (amplification mechanism) 91...Electromagnetic powder clutch (shaft coupling) 129...Disloyal II gear system! (Amplification mechanism) Agent Patent attorney Yasuo Miyoshi Figure 3 1] 9 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  相対回転可能に配置された一対の回転部材と、これら
の回転部材間の差動回転を増幅する増幅機構と、この増
幅機構によつて増幅された差動回転を与えられ差動回転
を制動可能な軸継手とを備えたことを特徴とする動力伝
達装置。
A pair of rotating members arranged to be able to rotate relative to each other, an amplifying mechanism that amplifies differential rotation between these rotating members, and a differential rotation that is amplified by this amplifying mechanism and can brake the differential rotation. A power transmission device characterized by comprising a shaft coupling.
JP18699088A 1988-07-28 1988-07-28 Power transmission Pending JPH0237033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18699088A JPH0237033A (en) 1988-07-28 1988-07-28 Power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18699088A JPH0237033A (en) 1988-07-28 1988-07-28 Power transmission

Publications (1)

Publication Number Publication Date
JPH0237033A true JPH0237033A (en) 1990-02-07

Family

ID=16198274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18699088A Pending JPH0237033A (en) 1988-07-28 1988-07-28 Power transmission

Country Status (1)

Country Link
JP (1) JPH0237033A (en)

Similar Documents

Publication Publication Date Title
JP2747165B2 (en) Differential device
JP2643979B2 (en) Power transmission device
JP2922924B2 (en) Four-wheel drive vehicle and its torque distribution control device
KR100301741B1 (en) Torque Distribution Device of Vehicle
US4763747A (en) All wheel drive for a motor vehicle
US20060025267A1 (en) Differential with torque vectoring capabilities
US20060025273A1 (en) Differential with torque vectoring capabilities
US20060116233A1 (en) Electric drive axle
US6712730B2 (en) Active torque bias coupling
JPS61207220A (en) Locking mechanism for automobile with four-wheel drive
KR20030031963A (en) Vehicle transmission systems
JP2772979B2 (en) Torque distribution control device for four-wheel drive vehicle
JPH06234330A (en) Four wheel drive transfer case having two wheel overdrive
JP2011133110A (en) Right and left wheel drive gear, front and rear wheel drive gear, and method for controlling the same
JPH0218117A (en) Power transmission device
JPH0237033A (en) Power transmission
JPH06219168A (en) Driving device for vehicle
JPH0266343A (en) Worm gear type differential gear
JPS62214021A (en) Whole wheel drive for automobile
JP3565566B2 (en) Driving force distribution device for four-wheel drive vehicles
JPH02221743A (en) Power transmission
JP3047016B2 (en) Front and rear wheel drive force distribution device
JPH0725269B2 (en) Rear wheel torque distribution control device for vehicle
JP3101046B2 (en) Planetary gear differential
JPH01153337A (en) Differential motion limiting device for four-wheel drive vehicle