JPH0234787A - Laminated body having carbon-based coating film - Google Patents
Laminated body having carbon-based coating filmInfo
- Publication number
- JPH0234787A JPH0234787A JP18322688A JP18322688A JPH0234787A JP H0234787 A JPH0234787 A JP H0234787A JP 18322688 A JP18322688 A JP 18322688A JP 18322688 A JP18322688 A JP 18322688A JP H0234787 A JPH0234787 A JP H0234787A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- carbon
- halogen
- film
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 238000000576 coating method Methods 0.000 title claims abstract description 20
- 239000011248 coating agent Substances 0.000 title abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 108
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 54
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 46
- 150000002367 halogens Chemical class 0.000 claims abstract description 46
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 5
- 239000011347 resin Substances 0.000 claims abstract description 5
- 229920005989 resin Polymers 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000000919 ceramic Substances 0.000 claims abstract description 3
- 239000002131 composite material Substances 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052731 fluorine Inorganic materials 0.000 abstract description 12
- 239000011737 fluorine Substances 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 230000005611 electricity Effects 0.000 abstract description 10
- 230000003068 static effect Effects 0.000 abstract description 10
- 150000002431 hydrogen Chemical class 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 description 20
- 239000002994 raw material Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 108091008695 photoreceptors Proteins 0.000 description 11
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- -1 CCL Chemical class 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- YHGWMROFZIEUCZ-UHFFFAOYSA-N N.I.I.I Chemical compound N.I.I.I YHGWMROFZIEUCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
「発明の利用分野」
本発明は、ガラス、金属、セラミックス、有機樹脂等の
表面に耐機械的ストレス、静電気対策を同時に解決する
ことを目的として、赤外および可視域に透明な炭素を主
成分とする被膜がコーティングされている、炭素を主成
分とする被膜を有する複合体に関するものである。Detailed Description of the Invention "Field of Application of the Invention" The present invention aims to simultaneously solve mechanical stress resistance and static electricity countermeasures on the surfaces of glass, metals, ceramics, organic resins, etc. The present invention relates to a composite body having a carbon-based coating, which is coated with a transparent carbon-based coating.
「従来の技術」
ガラス、金属、プラスチ・ンクス、樹脂等の比較的柔ら
かい材料の表面を、それら柔らかい材料よりも硬い膜で
コーティングすることは、摩耗、ひっかき等の機械的ス
トレスに対して、有効である。``Prior art'' Coating the surface of relatively soft materials such as glass, metal, plastic, resin, etc. with a film that is harder than those soft materials is effective against mechanical stresses such as abrasion and scratches. It is.
そのような膜としては、A1.Off、TiN、BN、
WC,S i C,、S i、Na、SiO□等の無機
膜および、本発明人の出願による「炭素被膜を有する複
合体」 (昭和56年特許願第146930号)が知ら
れている。しかしながら、上記既知の保護膜は、既して
電気的に高い抵抗率をもち、静電気が発生しやすく、雰
囲気中のゴミやチリをその表面に吸着しやすい性質があ
った。また、電子写真プロセスに用いられる感光体等の
ように積極的に電界をかけ、静電気を利用するような複
合材料に用いた場合などは、電気抵抗の高い保護膜には
電荷が蓄積されてしまい、期待される性能が長期にわた
り発揮できない問題があった。Such membranes include A1. Off, TiN, BN,
Inorganic films such as WC, SiC, Si, Na, SiO□, and "composite having a carbon film" filed by the present inventor (Patent Application No. 146930 of 1982) are known. However, the above-mentioned known protective film already has high electrical resistivity, tends to generate static electricity, and tends to attract dirt and dust in the atmosphere to its surface. In addition, when used in composite materials that actively apply an electric field and utilize static electricity, such as photoreceptors used in electrophotographic processes, charges accumulate in the protective film with high electrical resistance. However, there was a problem that the expected performance could not be achieved for a long period of time.
そのような問題を解決する方法として前記既知膜中に導
電性物質を添加する方法が考えられる。One possible way to solve such problems is to add a conductive substance to the known film.
この場合添加された導電性物質が光の吸収中心となり、
前記既知の保護膜中での光の吸収が発生して、赤外およ
び可視域での透光性を必要とする応用に適用できなくな
る。In this case, the added conductive substance becomes a light absorption center,
Light absorption occurs in the known protective film, making it unsuitable for applications requiring transparency in the infrared and visible ranges.
さらに、前記既知の保護膜は成膜過程の条件にもよるが
、内部応力が蓄積され、膜のピーリングが発生する問題
もあった。したがって膜厚をうすすくする、前記保護膜
と下地材料の間に密着性の向上を目的とした中間層を設
ける等の対策が必要となるが、膜厚の低下は耐機械スト
レスの低下を意味し、中間層の存在はプロセス増加によ
るコスト高の問題が発生する。Furthermore, depending on the conditions of the film forming process, the known protective film has the problem of accumulation of internal stress and peeling of the film. Therefore, it is necessary to take measures such as thinning the film thickness or providing an intermediate layer between the protective film and the underlying material to improve adhesion, but a reduction in film thickness means a reduction in mechanical stress resistance. However, the presence of an intermediate layer causes the problem of increased costs due to increased processes.
「発明の構成」
本発明の目的は、以十述べた問題を解決し、保護膜とし
ての耐機械ストレス、静電気に由来する問題点、透明性
を同時に満足するために、炭素を主成分とする被膜にハ
ロゲン元素と窒素または水素とハロゲン元素と窒素を0
.1〜50原子パーセント添加し、該ハロゲン元素と窒
素もしくは、ハロゲン元素と窒素と水素が添加された炭
素を主成分とする被膜を基体表面にコーティングされた
ことを特徴とする炭素を主成分とする被膜を有する複合
体を提供することである。"Structure of the Invention" The purpose of the present invention is to solve the above-mentioned problems and to simultaneously satisfy mechanical stress resistance as a protective film, problems arising from static electricity, and transparency. Zero halogen element and nitrogen or hydrogen, halogen element and nitrogen in the coating
.. 1 to 50 atomic percent added, and the substrate surface is coated with a film mainly composed of carbon to which the halogen element and nitrogen or halogen element, nitrogen, and hydrogen are added. An object of the present invention is to provide a composite having a coating.
本発明による複合体に用いるハロゲン元素と窒素が添加
された炭素を主成分とする被膜は炭素の原料としてメタ
ン(CH,)、エタン(C,H,)、エチレン(C2H
4)、アセチレン(czH,)等の炭化水素をプラズマ
中に導入し、前記炭素原料を分解、励起し、所定の基板
上に堆積させることによって形成することができる。こ
の時、同時にハロゲン元素の原料としてN F sと、
SF、、W F b等のフッ化物、CCL等の塩化物、
CH,Br等の臭化物又は、ヨウ化物窒素の原料として
NH,、N2等をプラズマ中に導入してF、CI、Br
、I等のハロゲン元素および窒素を添加する。添加量は
、ハロゲン元素と窒素を含む物質の流量によって制御す
ることができる。ここで、炭素を含む原料ガスとして、
前記炭化水素の他にCF、、CHz F 2等のフン化
炭素、CC14等の塩化炭素、CH,Br等の臭化炭化
水素を用いてもよい。The coating mainly composed of carbon to which a halogen element and nitrogen are added is used in the composite according to the present invention.
4) It can be formed by introducing a hydrocarbon such as acetylene (czH) into plasma, decomposing and exciting the carbon raw material, and depositing it on a predetermined substrate. At this time, at the same time, N F s is used as a raw material for the halogen element,
Fluorides such as SF, W F b, chlorides such as CCL,
Bromides such as CH, Br, or NH, N2, etc. as raw materials for iodide nitrogen are introduced into the plasma to produce F, CI, Br.
, I, etc. and nitrogen are added. The amount added can be controlled by the flow rate of the substance containing the halogen element and nitrogen. Here, as a raw material gas containing carbon,
In addition to the above-mentioned hydrocarbons, fluorinated carbons such as CF, CHz F 2 and the like, chlorinated carbons such as CC14, and brominated hydrocarbons such as CH and Br may be used.
しかしながら、ハロゲン元素としては、プラズマ反応室
内壁の腐蝕の問題から弗素と窒素化物が最も利用しやす
い。また、ハロゲン元素と窒素の添加量制御の点から炭
素原料物質としては弗素と窒素を含まない炭化水素が有
効である。However, as the halogen element, fluorine and nitride are most easily used due to the problem of corrosion of the walls of the plasma reaction chamber. Furthermore, from the viewpoint of controlling the amounts of halogen elements and nitrogen added, hydrocarbons that do not contain fluorine and nitrogen are effective as carbon raw materials.
本発明による被膜は、以上述べたような原料物質、すな
わち炭素原料物質とハロゲン元素および窒素の原料物質
を同時にプラズマ反応室に導入し、この時ハロゲン系原
料物質と窒素原料物質の流量を調整することによって被
膜のハロゲン元素および窒素の添加量を制御することが
できる。The film according to the present invention is produced by introducing the above-mentioned raw materials, that is, a carbon raw material, a halogen element, and a nitrogen raw material into a plasma reaction chamber at the same time, and at this time adjusting the flow rates of the halogen-based raw material and the nitrogen raw material. By this, the amount of halogen element and nitrogen added to the film can be controlled.
ハロゲン元素と窒素の添加量は導電率、透過率、硬度の
違いとして観測される。以下にハロゲン元素と窒素の原
料物質の流量を変えた時の導電率の変化の実験結果を示
す。The amounts of halogen elements and nitrogen added are observed as differences in conductivity, transmittance, and hardness. The experimental results of changes in electrical conductivity when the flow rates of halogen elements and nitrogen source materials are changed are shown below.
ハロゲン元素と窒素原料物質としてN F xを用いた
。炭素原料物質としてエチレンを用い、エチレンの流量
11003CC、反応圧力10Pa、投入電力密度0.
08W/cm”とした。第1図に示すようニN F z
とN H’sの量が増すに従い、導電率が高くなってい
る。また、第2図に示すようにNF、とN Hzの流量
が増すに従い透過率は高(なる。さらに第3図に示すよ
うにNF、とN H3の流量が増すに従い硬度は低下す
る。硬度が低下するということは、すなわち、内部応力
が低下することを意味する。N F x was used as the halogen element and nitrogen source material. Ethylene was used as the carbon raw material, the ethylene flow rate was 11003 CC, the reaction pressure was 10 Pa, and the input power density was 0.
08W/cm". As shown in Figure 1, N F z
As the amount of NH's increases, the conductivity increases. In addition, as shown in Figure 2, as the flow rate of NF and N Hz increases, the permeability increases (becomes higher).Furthermore, as shown in Figure 3, as the flow rate of NF and N H3 increases, the hardness decreases.Hardness In other words, a decrease in internal stress means a decrease in internal stress.
ハロゲン元素と窒素またはハロゲン元素と窒素と水素が
添加された炭素を主成分とする被膜を用いれば、以上述
べたように比較的広い範囲にわたって被膜の導電率、硬
さ、透過率を変えることができる。すなわち種々の応用
に要求される最適特性が、比較的安価に容易に得ること
ができる6以上ハロゲン元素と窒素原料物質の流量を変
えることによってハロゲン元素と窒素添加量を変えるこ
とを述べたが、もちろん放電時の投入電力、反応圧力、
放電容器の形、炭素原料物質流量等の放電条件は一定で
ある。また、これらの放電条件のうち1つもしくは2つ
以上を変化させても、ハロゲン元素と窒素の添加量を変
えることができる。By using a film whose main component is a halogen element and nitrogen, or carbon to which a halogen element, nitrogen, and hydrogen are added, it is possible to change the conductivity, hardness, and transmittance of the film over a relatively wide range, as described above. can. That is, as described above, the optimal characteristics required for various applications can be obtained by changing the amounts of halogen elements and nitrogen added by changing the flow rates of 6 or more halogen elements and nitrogen raw materials, which can be easily obtained at relatively low cost. Of course, the power input during discharge, the reaction pressure,
Discharge conditions such as the shape of the discharge vessel and the flow rate of the carbon raw material are constant. Further, even if one or more of these discharge conditions are changed, the amounts of the halogen element and nitrogen added can be changed.
−例として、投入電力を変化させた場合の導電率の変化
を第4図に示す。すなわち、投入電力を増すに従い導電
率は高くなる。この場合も勿論、投入電力以外の放電パ
ラメータである反応圧力、放電容器の形、NF、とNH
,流量、C,H,流量等は一定である。- As an example, FIG. 4 shows the change in conductivity when the input power is changed. That is, as the input power increases, the conductivity increases. In this case, of course, the discharge parameters other than the input power are the reaction pressure, the shape of the discharge vessel, NF, and NH.
, flow rate, C, H, flow rate, etc. are constant.
以上述べたように、ハロゲン元素と窒素または水素とハ
ロゲン元素と窒素を含む炭素を主成分とする被膜の導電
率、硬さ、透過率等の膜特性は、投入電力、反応圧力、
放電容器の形、炭素原料物質流量、ハロゲン元素と窒素
の原料物質流量等の放電パラメータを変えることにより
、容易に、安価に比較的広い範囲で変化させることがで
きる。As mentioned above, the film properties such as electrical conductivity, hardness, and transmittance of a film whose main components are a halogen element and nitrogen or hydrogen, a halogen element, and carbon containing nitrogen are determined by input power, reaction pressure,
By changing discharge parameters such as the shape of the discharge vessel, the flow rate of the carbon raw material, and the flow rate of the raw material of halogen elements and nitrogen, it is possible to easily and inexpensively change the discharge parameters over a relatively wide range.
またハロゲン元素と窒素またはハロゲン元素と窒素と水
素が添加された炭素を主成分とする被膜は内部応力が小
さいという特徴がある。これは、通常炭素中に存在する
未結合手(ダングリングボンド)には、水素がターミネ
ートされ未結合手の引力を緩和することにより内部応力
を低減させるが、未結合手すべてに水素がターミネート
されるわけではな(、多少の未結合手が膜中に残ってお
り、これが内部応力の原因の1つと考えられる。Furthermore, a film whose main component is carbon to which a halogen element and nitrogen or a halogen element, nitrogen, and hydrogen are added is characterized by low internal stress. This is because the dangling bonds that normally exist in carbon are terminated with hydrogen, which relieves the attractive force of the dangling bonds and reduces internal stress. However, some dangling bonds remain in the film, and this is thought to be one of the causes of internal stress.
ここに水素よりも反応性の高いハロゲン元素および窒素
、例えば弗素と窒素がプラズマ中に存在すると弗素と窒
素は炭素と容易にC−F、C−N結合をつくり炭素の未
結合手は水素のみの場合よりも低減すると考えられる。When halogen elements and nitrogen, which are more reactive than hydrogen, such as fluorine and nitrogen, are present in the plasma, fluorine and nitrogen easily form C-F and C-N bonds with carbon, and the only dangling bond of carbon is hydrogen. This is considered to be lower than in the case of .
すなわち、内部応力が低減されることになる。また、内
部応力の低下により膜のピーリングの発生が防止される
ことも特徴の1つである。In other words, internal stress is reduced. Another feature is that the reduction in internal stress prevents the occurrence of peeling of the film.
さらに、ハロゲン元素と窒素または、ハロゲン元素と窒
素と水素が添加された炭素を主成分とする被膜は耐熱性
の点においても優れている。Furthermore, a film whose main component is a halogen element and nitrogen, or carbon to which a halogen element, nitrogen, and hydrogen are added is also excellent in terms of heat resistance.
また、ハロゲン元素と窒素またはハロゲン元素と窒素と
水素が添加された炭素を主成分とする被膜は堆積的の基
板の温度が室温から150°C以下の低温で成膜できる
ことも特徴の1つである。従って、複合体の基体として
、プラスチックス、樹脂等の有機物、セレン半導体等、
高温にできないものでも構成することができる。Another feature is that films whose main components are halogen elements and nitrogen, or carbon to which halogen elements, nitrogen, and hydrogen are added, can be formed at low deposition substrate temperatures ranging from room temperature to 150°C or less. be. Therefore, organic substances such as plastics and resins, selenium semiconductors, etc., can be used as the base of the composite.
It can also be constructed from materials that cannot be heated to high temperatures.
以下図面に従って作成方法を述べる。The production method will be described below according to the drawings.
第5図は本発明に用いたハロゲン元素と窒素またはハロ
ゲン元素と窒素と水素が添加された炭素を主成分とする
被膜を形成するためのプラズマCVD装置の概要を示す
。FIG. 5 shows an outline of a plasma CVD apparatus used in the present invention for forming a film mainly composed of a halogen element and nitrogen or carbon to which a halogen element, nitrogen, and hydrogen are added.
図面において、ドーピング系(1)において、キャリア
ガスである水素を(2)より、反応性気体である炭化水
素気体例えばメタン、エチレンを(3)より、ハロゲン
元素と窒素を含む気体例えばN F 3とNHlを(4
)よりバルブ(6)、流量計(7)をへて反応系(8)
中にノズル(9)より導入される。このノズルに至る前
に、反応性気体の励起用にマイクロ波エネルギを00)
で加えて予め活性化させることは有効である。In the drawing, in the doping system (1), hydrogen as a carrier gas is added as a carrier gas, a hydrocarbon gas as a reactive gas such as methane or ethylene is added as a doping system (3), and a gas containing a halogen element and nitrogen as an example as N F 3 is added as a reactive gas. and NHL (4
), the reaction system (8) passes through the valve (6) and flow meter (7).
It is introduced into the interior through a nozzle (9). Before reaching this nozzle, microwave energy is applied for excitation of the reactive gas (00).
It is effective to activate it in advance in addition to the above.
反応系(8)には第1の電極OD、第2の電極(121
を設けた。この場合(第1の電極面積/第2の電極面積
)く1の条件を満たすようにした。一対の電極(11)
、02)間には高周波電源03)、マツチングトランス
側、直流バイアス電源051より電気エネルギが加えら
れ、プラズマが発生する。排気系06)は圧力調整バル
ブ07)、ターボ分子ポンプ00、ロータリーポンプ0
9)をへて不要気体を排気する。反応性気体には、反応
空間QOにおける圧力が0.001−10Torr代表
的には0.01〜1TorrO下で高周波もしくは直流
によるエネルギにより0.1〜5KWのエネルギが加え
られる。The reaction system (8) includes a first electrode OD and a second electrode (121
has been established. In this case, condition 1 (first electrode area/second electrode area) was satisfied. A pair of electrodes (11)
, 02), electric energy is applied from the high frequency power source 03), the matching transformer side, and the DC bias power source 051, and plasma is generated. The exhaust system 06) includes a pressure adjustment valve 07), a turbo molecular pump 00, and a rotary pump 0.
9) to exhaust unnecessary gas. Energy of 0.1 to 5 KW is applied to the reactive gas by high frequency or direct current energy at a pressure in the reaction space QO of 0.001 to 10 Torr, typically 0.01 to 1 TorrO.
特に励起源がIGH,以上、例えば2.45GH2の周
波数にあっては、C−H結合より水素を分離し、さらに
周波数源が0.1〜50MH2例えば13.56MH2
の周波数にあってはC−C結合、C=C結合を分解し、
−C−C−結合を作り、炭素の不対結合手同志を互いに
衝突させて共有結合させ、安定なダイヤモンド構造を局
部的に有した構造とさせ得る。In particular, when the excitation source has a frequency of IGH or higher, for example 2.45 GH2, hydrogen is separated from the C-H bond, and the frequency source is 0.1 to 50 MH2, for example 13.56 GH2.
At the frequency of , the C-C bond and C=C bond are decomposed,
-C-C- bonds are formed, and the unpaired bonds of carbon collide with each other to form a covalent bond, resulting in a structure locally having a stable diamond structure.
直流バイアスは一200〜600V (実質的には−4
00〜+400 V)を加える。なぜなら、直流バイア
スが零のときは自己バイアスが一200V(第2の電極
を接地レベルとして)を有しているためである。DC bias is -200 to 600V (substantially -4
00 to +400 V). This is because when the DC bias is zero, the self-bias has a voltage of 1200V (with the second electrode at the ground level).
以上のようにしてプラズマにより被形成面上にC−C結
合を多数形成したアモルファス構造または微結晶構造を
有するアモルファス構造の弗素と窒素または弗素と窒素
と水素を含んだ炭素を生成させた。さらにこの電磁エネ
ルギは50w〜1にWを供給し、単位面積あたり0.0
3〜3w/c++]のプラズマエネルギーを加えた。こ
の弗素と窒素を含んだ炭素の透過率は第6図に示すよう
に600nm以上の波長域では95%以上の透過であり
、400n+nでも50%以上透過のほぼ透明な膜が得
られた。また、膜の内部応力は弗素と窒素を含まない膜
る比べて1710以下と非常に小さなものであった。酸
やアルカリ、有機溶剤等の薬品に室温にて1時間浸して
おいても、その表面を400倍の光学顕微鏡で観察する
限りでは変化は見られず、また、500°Cに加熱した
恒温槽(空気)中に1時間放置したものの表面も変化が
見られず化学的、熱的に安定な膜を得ることができた。As described above, fluorine and nitrogen or carbon containing fluorine, nitrogen, and hydrogen having an amorphous structure with a large number of C--C bonds formed on the surface to be formed or an amorphous structure having a microcrystalline structure was generated by plasma. Furthermore, this electromagnetic energy supplies 50W~1W and 0.0W per unit area.
3 to 3 w/c++] plasma energy was applied. As shown in FIG. 6, the transmittance of this carbon containing fluorine and nitrogen was 95% or more in the wavelength range of 600 nm or more, and an almost transparent film with 50% or more transmission was obtained even at 400n+n. Furthermore, the internal stress of the film was very small, at 1710 or less, compared to a film containing no fluorine or nitrogen. Even if the surface was immersed in chemicals such as acids, alkalis, and organic solvents for one hour at room temperature, no change was observed when observed under an optical microscope at 400x magnification. Although the film was left in (air) for 1 hour, no change was observed on the surface, and a chemically and thermally stable film could be obtained.
以上述べた作成方法はあくまで一例であり、従来より良
く知られているグロー放電プラズマであっても、アーク
放電プラズマであっても、また、ECRを用いたプラズ
マであってもよい。The above-described production method is just an example, and the well-known glow discharge plasma, arc discharge plasma, or plasma using ECR may be used.
以下実施例に従って本発明を応用した複合体に′ついて
さらに詳しく述べる。Hereinafter, a composite to which the present invention is applied will be described in more detail according to Examples.
「実施例1」
電子写真のプロセスに用いられる感光体に、本発明によ
る複合体を応用した場合の例を以下に述べる。"Example 1" An example in which the composite according to the present invention is applied to a photoreceptor used in an electrophotographic process will be described below.
第7図は、本発明よる炭素を主成分とした被膜を応用し
た場合の感光体の構造を示す。約200μm厚さのPE
Tシート(1)上に厚さ600人のAI蒸着層(2)、
中間層(3)をはさんで0.6〜1.2μmの電荷発生
層を(4)を設け、本発明による保護膜(6)、約20
tImの電荷移動層(5)を通して光(7)が入射する
と前記電荷発生層で吸収され、電子正孔対が生成される
。あらかじめ、電荷移動層もしくは保護層を負に帯電さ
せておけば、光入射のあった領域のみ電荷発生層で生成
された正孔が電荷移動層を移動し帯電された負電荷を中
和させる。この時、電荷発生層で生成された電子は中間
層を通って1蒸着層に達し、排出される。光入射のなか
った領域に残った負電荷は、その後トナーを吸着し、転
写紙に転写されて、光入射の有無に応じた像を転写紙上
に形成することとなる。FIG. 7 shows the structure of a photoreceptor to which a coating mainly composed of carbon according to the present invention is applied. Approximately 200μm thick PE
AI vapor deposition layer (2) with a thickness of 600 people on the T-sheet (1),
A charge generation layer (4) with a thickness of 0.6 to 1.2 μm is provided between the intermediate layer (3), and a protective film (6) according to the present invention is formed with a thickness of about 20 μm.
When light (7) is incident through the charge transfer layer (5) of tIm, it is absorbed by the charge generation layer, and electron-hole pairs are generated. If the charge transfer layer or the protective layer is negatively charged in advance, holes generated in the charge generation layer move through the charge transfer layer only in areas where light is incident, neutralizing the negative charges. At this time, electrons generated in the charge generation layer pass through the intermediate layer, reach one deposited layer, and are discharged. The negative charge remaining in the area where no light was incident then adsorbs toner and is transferred to the transfer paper, forming an image on the transfer paper depending on whether or not light is incident.
ここで形成された保護層は本発明を用いたものであり、
NF3とNH,の流量によりその比抵抗を1011〜1
0’ (0cm)に制御されたものである。従って、
比抵抗が低すぎる為に発生する、帯電電荷の横方向の移
動がなく、光入射のあった領域の境界はぼけることなく
はっきりとしている。依って、転写された像も鮮明なも
のであった。また、比抵抗が高すぎれば、繰り返し使用
により徐々に保護膜に電荷が蓄積され、使用済のトナー
が除去されなくなり、転写紙が黒くなるという現象が起
こるが、本発明による保護膜は電荷が蓄積されない程度
の比抵抗に制御されているため、そのような現象もなく
長期に渡り良質の転写像を得ることができた。The protective layer formed here uses the present invention,
Depending on the flow rate of NF3 and NH, the specific resistance is 1011~1
0' (0 cm). Therefore,
There is no lateral movement of charged charges that occurs because the resistivity is too low, and the boundaries of the area where light is incident are clear without blurring. Therefore, the transferred image was also clear. Furthermore, if the specific resistance is too high, charges will gradually accumulate in the protective film due to repeated use, making it impossible to remove used toner and causing the transfer paper to become black. Since the resistivity was controlled to such an extent that no accumulation occurred, it was possible to obtain high-quality transferred images over a long period of time without such a phenomenon.
また、ここで用いた保護膜の透過率は500nm以上の
波長域で80%以上であり、400nm以上の波長域で
60%以上であった。従って、本実用例の感光体は可視
光域においても十分使用可能なものであった。Further, the transmittance of the protective film used here was 80% or more in a wavelength range of 500 nm or more, and 60% or more in a wavelength range of 400 nm or more. Therefore, the photoreceptor of this practical example was sufficiently usable even in the visible light range.
勿論、耐摩耗性、耐引っ掻き等の機械的ストレスに対す
る耐久性が向上していることは言うまでもない。Of course, it goes without saying that durability against mechanical stress such as abrasion resistance and scratch resistance is improved.
更に、ここで用いた保護膜は内部応力が低減され密着性
も良いものであった。即ち、シート状感光体を曲率半径
10ma+まで曲げても、保護膜にクランクの発生は見
られず、また、ビーリングも生じなかった。Furthermore, the protective film used here had reduced internal stress and good adhesion. That is, even when the sheet-like photoreceptor was bent to a radius of curvature of 10 ma+, no cranking was observed in the protective film, and no beering occurred.
以上、本実施例では感光体としてシート状有機感光体に
ついて述べたが、ドラム状有機感光体、アモルファスシ
リコン感光体、セレン感光体についても同様に本発明に
よる保護膜を構成することができ、同様の効果が得られ
る。In this embodiment, a sheet-like organic photoreceptor has been described as a photoreceptor, but the protective film according to the present invention can be similarly constructed for a drum-shaped organic photoreceptor, an amorphous silicon photoreceptor, and a selenium photoreceptor. The effect of this can be obtained.
「実施例2j 代表的なサーマルプリントヘッド構造を第8図に示す。“Example 2j A typical thermal print head structure is shown in FIG.
絶縁基板(1)上にグレーズ(2)を形成し、グレーズ
(2)と同時に発熱体部にあたる部分に突起したグレー
ズ(3)を形成し、次に基板(]])上に発熱体(4)
と電気導電体(5)とを順次積層し、その後公知のフォ
トリソグラフィー技術を用いて、突起したグレーズの上
に発熱体素子部(21)を形成し、最後に本発明による
弗素と窒素または弗素と窒素と水素を含んだ炭素を主成
分とする被膜を保護膜(6)として形成した。A glaze (2) is formed on an insulating substrate (1), a protruding glaze (3) is formed on the part corresponding to the heating element at the same time as the glaze (2), and then a heating element (4) is formed on the substrate (]]). )
and an electric conductor (5) are sequentially laminated, and then a heating element portion (21) is formed on the protruding glaze using a known photolithography technique, and finally, fluorine and nitrogen or fluorine according to the present invention are laminated. A film mainly composed of carbon containing nitrogen and hydrogen was formed as a protective film (6).
通常用いられる保護膜は窒化珪素膜等の無機膜であり、
その膜厚は5μmと大きいものであるが、本実施例で用
いた保護膜(6)は実施例1で形成した保護膜と同様の
特性を有し、N F 3、NH3の流量を制御すること
によりビッカース硬度2000kg/m+a”以上の硬
い膜を形成することができる。そのため膜厚1μm程度
の被膜で実用に際しては十分である。The protective film usually used is an inorganic film such as a silicon nitride film.
Although the film thickness is as large as 5 μm, the protective film (6) used in this example has the same characteristics as the protective film formed in Example 1, and controls the flow rates of NF3 and NH3. As a result, a hard film with a Vickers hardness of 2000 kg/m+a" or more can be formed. Therefore, a film with a thickness of about 1 μm is sufficient for practical use.
また、本実施例で用いた保護膜は内部応力が109dy
n/cm”以下と小さく密着性も良好であり、500゛
Cにおいて1時間(空気中)の耐熱試験でも良好である
ことを確認した。Furthermore, the internal stress of the protective film used in this example was 109 dy.
It was confirmed that the adhesion was small (n/cm" or less) and had good adhesion, and that it was also good in a heat resistance test at 500°C for 1 hour (in air).
さらに、10”Ωcm程度の比抵抗は静電気対策に好都
合であり、傷の発生原因となるゴミや塵を低減でき、ま
た、静電気の電子回路に及ぼす影響も低減することがで
きた。Further, a specific resistance of about 10''Ωcm is convenient for countermeasures against static electricity, and it is possible to reduce dirt and dust that can cause scratches, and also to reduce the influence of static electricity on electronic circuits.
本応用例では既知の発熱体゛(4)を用いたが、本発明
によるハロゲン元素と窒素を含む炭素を主成分とする被
膜を発熱体として用いることも可能である。即ち、ハロ
ゲン元素と窒素の濃度が高くなるような成膜条件で被膜
を作成して、被膜の比抵抗を103〜104Ωcmとな
ようにすれば、この被膜を発熱体として用いることがで
きる。In this application example, a known heating element (4) was used, but it is also possible to use a coating mainly composed of carbon containing a halogen element and nitrogen according to the present invention as the heating element. That is, if a film is formed under film-forming conditions such that the concentrations of the halogen element and nitrogen are high, and the resistivity of the film is set to 10 3 to 10 4 Ωcm, this film can be used as a heating element.
「実施例3」
本実施例は密着型イメージセンサに本発明の炭素を主成
分とする被膜を通用し第9図に示す構造の炭素を主成分
とする被膜を形成したものである。``Example 3'' In this example, a coating mainly composed of carbon according to the present invention was applied to a contact type image sensor, and a coating mainly composed of carbon having the structure shown in FIG. 9 was formed.
第9図に示すように透明ガラス基板(33)上に電極及
びアモルファスシリコンを公知のプラズマCvD法を用
いて積層させエキシマレーザ−により電極及びアモルフ
ァスシリコンの層を加工することにより光センサー素子
(34)を形成させた後、透光性ポリイミド(35)を
公知のスピンナー法で塗布し密着型イメージセンサ−を
作製した。その後上記イメージセンサ−の透光性ポリイ
ミド(35)上に実施例1で述べた方法により保護膜(
36)を2.Ol!mの厚さに形成した。As shown in FIG. 9, electrodes and amorphous silicon are laminated on a transparent glass substrate (33) using a known plasma CVD method, and the electrodes and amorphous silicon layer are processed using an excimer laser to form a photosensor element (34). ) was formed, and then a transparent polyimide (35) was applied by a known spinner method to produce a contact image sensor. Thereafter, a protective film (
36) to 2. Ol! It was formed to a thickness of m.
前記保護膜のビッカース硬度を測定したところ2500
Kg/mm’であり、また比抵抗はlXl0’ΩcII
+であった。形成された炭素被膜は被形成面上と表面と
にダイヤモンド類似の硬さと静電気対策にとって適度な
電気絶縁性とを有しているため、原稿面上の凹凸やホチ
キスの金具等により上記の層に傷が付(こともなく、ま
た原稿と保護膜との間の摩擦により静電気が生じても静
電気の蓄積を防ぐことができた。また光センサー素子へ
の電気的影響を抑えると共に透光性ポリイミド中の不純
物が混入することを防止できた。The Vickers hardness of the protective film was measured and was 2500.
Kg/mm', and the specific resistance is lXl0'ΩcII
It was +. The formed carbon film has a hardness similar to that of diamond on the surface to be formed and a suitable electrical insulation property for static electricity countermeasures. There were no scratches, and even if static electricity was generated due to friction between the document and the protective film, it was possible to prevent static electricity from accumulating.Also, in addition to suppressing the electrical influence on the optical sensor element, the translucent polyimide It was possible to prevent impurities from entering the container.
「効果」
以上述べたように本発明はハロゲン元素と窒素または水
素とハロゲン元素と窒素が添加された炭素を主成分とす
る被膜を有する複合体であり、該被膜はハロゲン元素と
窒素添加量により、容易にしかも安価に該被膜の硬度、
透光性、比抵抗を変化させることができ、加えて該被膜
の内部応力は小さく密着性の良いものである。"Effects" As described above, the present invention is a composite having a film mainly composed of a halogen element and nitrogen, or hydrogen, a halogen element, and carbon to which nitrogen is added. , the hardness of the coating can be easily and inexpensively adjusted,
Translucency and specific resistance can be changed, and in addition, the internal stress of the coating is small and the adhesion is good.
本発明によるハロゲン元素と窒素または水素とハロゲン
元素と窒素が添加された炭素を主成分とする被膜を応用
した複合体において、実施例に述べたとうり、本発明に
よる炭素を主成分とする被膜を通用しなかった場合に比
べ、該複合体の寿命および信頼性を格段に向上させるこ
とができた。As described in the examples, in a composite to which a coating mainly composed of carbon to which a halogen element and nitrogen or hydrogen, a halogen element, and nitrogen are added according to the present invention, the coating mainly composed of carbon according to the present invention is applied. Compared to the case where this method did not work, the lifespan and reliability of the composite could be significantly improved.
第1図はNF、とNH,の流量と導電率の関係を示す。
第2図はNF、とN H3の流量と透過率の関係を示す
。
第3図はNF、とNH3の流量と硬度の関係を示す。
第4図は投入電力と導電率の関係を示す。
第5図は本発明の炭素または炭素を主成分とする被膜を
形成するためのプラズマCVD装置の概要を示す。
第6図は弗素と窒素と水素を含んだ炭素の透過率を示す
。
第7図は、本発明よる炭素を主成分とした被膜を応用し
た場合の感光体の構造を示す。
第8図は代表的なサーマルプリントヘッド構造を示す。
第9図は密着型イメージセンサに本発明の炭素を主成分
とする被膜を適用したものである。
/θジ
λリ シ0
、〜’R+ /Vl’/3 う冷ゴ1と (Sここ!
ゴ)第2図
/l//”3 + N1−b流帰
(sccFl)
ネ
I刀
八qも十人H3
う!L%(sccH)
名3図
投入tカ
(w)
第4図
ソ(うご (rlnす
第乙図FIG. 1 shows the relationship between the flow rate and conductivity of NF, and NH. FIG. 2 shows the relationship between the flow rate and permeability of NF and NH3. FIG. 3 shows the relationship between the flow rates of NF and NH3 and the hardness. FIG. 4 shows the relationship between input power and conductivity. FIG. 5 shows an outline of a plasma CVD apparatus for forming carbon or a film containing carbon as a main component according to the present invention. FIG. 6 shows the transmittance of carbon containing fluorine, nitrogen, and hydrogen. FIG. 7 shows the structure of a photoreceptor to which a coating mainly composed of carbon according to the present invention is applied. FIG. 8 shows a typical thermal print head structure. FIG. 9 shows a contact type image sensor to which the film containing carbon as a main component of the present invention is applied. /θjiλrishi0, ~'R+ /Vl'/3 Ureigo1 and (S here!
Go) Fig. 2 /l//”3 + N1-b flow back (sccFl) Ne I Tohachiq also ten people H3 U! L% (sccH) Name 3 figure input t Ka (w) Fig. 4 So ( Ugo (rlnsu No. 2
Claims (1)
極的にハロゲン元素と窒素または水素とハロゲン元素と
窒素が添加された炭素を主成分とする被膜がガラス、金
属、セラミックス、有機樹脂等の基板の上に作成されて
いることを特徴とする炭素を主成分とする被膜を有する
複合体。Carbon-based coatings created using plasma CVD (chemical vapor deposition) and actively added with halogen elements and nitrogen or hydrogen and halogen elements and nitrogen are used on glass, metals, ceramics, organic resins, etc. A composite having a film mainly composed of carbon, which is formed on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18322688A JPH0234787A (en) | 1988-07-22 | 1988-07-22 | Laminated body having carbon-based coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18322688A JPH0234787A (en) | 1988-07-22 | 1988-07-22 | Laminated body having carbon-based coating film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0234787A true JPH0234787A (en) | 1990-02-05 |
Family
ID=16131998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18322688A Pending JPH0234787A (en) | 1988-07-22 | 1988-07-22 | Laminated body having carbon-based coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0234787A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222488A (en) * | 2007-03-12 | 2008-09-25 | National Institute For Materials Science | Method for manufacturing cubic boron nitride |
-
1988
- 1988-07-22 JP JP18322688A patent/JPH0234787A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222488A (en) * | 2007-03-12 | 2008-09-25 | National Institute For Materials Science | Method for manufacturing cubic boron nitride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5238705A (en) | Carbonaceous protective films and method of depositing the same | |
US5230931A (en) | Plasma-assisted cvd of carbonaceous films by using a bias voltage | |
US5145711A (en) | Cyclotron resonance chemical vapor deposition method of forming a halogen-containing diamond on a substrate | |
US5120625A (en) | Carbon material containing a halogen and deposition method for same | |
KR970059848A (en) | A light receiving member having a surface protection layer having a particular outermost surface and a method of manufacturing the same | |
US6410102B1 (en) | Plasma process method | |
JP3938431B2 (en) | Method for producing water-repellent coating film | |
JPH0234787A (en) | Laminated body having carbon-based coating film | |
Jeong et al. | Effects of gas composition and rf power on properties of a–C: H/SiC: H composite films grown by plasma-enhanced chemical vapor deposition | |
JPH04183871A (en) | Device for forming built-up film due to microwave plasma cvd method | |
JPH0230760A (en) | Composite body having film composed principally of carbon | |
JPH0230762A (en) | Composite body having film composed principally of carbon | |
JPH0230755A (en) | Carbon-based coating film | |
JP3370318B2 (en) | Member provided with diamond-like carbon film | |
JPH0234786A (en) | Laminated body having carbon-based coating film | |
JPH02107773A (en) | Formation of carbon-based coating film | |
JPH02107774A (en) | Formation of carbon-based coating film | |
JPH0230763A (en) | Composite body having film composed principally of carbon | |
JPH0234785A (en) | Carbon-based coating film | |
JPH0230761A (en) | Composite body having film composed principally of carbon | |
JPH0226822A (en) | Film essentially consisting of carbon | |
JP3057072B2 (en) | Method for producing diamond-like carbon film | |
KR0156562B1 (en) | A method for preparing an electrophotographic photoreceptor | |
JPH04247877A (en) | Deposited film forming device | |
JP2002302769A (en) | Method for cleaning deposited film forming apparatus |