[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0233792B2 - - Google Patents

Info

Publication number
JPH0233792B2
JPH0233792B2 JP58013652A JP1365283A JPH0233792B2 JP H0233792 B2 JPH0233792 B2 JP H0233792B2 JP 58013652 A JP58013652 A JP 58013652A JP 1365283 A JP1365283 A JP 1365283A JP H0233792 B2 JPH0233792 B2 JP H0233792B2
Authority
JP
Japan
Prior art keywords
electrode
oxide
supported
metal
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58013652A
Other languages
Japanese (ja)
Other versions
JPS59200781A (en
Inventor
Yoichi Kamegaya
Yukio Arai
Tomomi Asaki
Yasufumi Sasaki
Nobuyuki Koyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP58013652A priority Critical patent/JPS59200781A/en
Publication of JPS59200781A publication Critical patent/JPS59200781A/en
Publication of JPH0233792B2 publication Critical patent/JPH0233792B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技類分類> 開示技術は硫酸酸性溶液中や低塩素イオン濃度
溶液中での電解等の酸素発生環境下に耐え、所望
の電極反応体に対して過電圧の低い電解用電極の
技術分野に属する。 <要旨の解説> 而して、発明はチタニウム等の耐蝕性電導性基
体の表面の1部、又は、全表面に多孔質の被担持
物と該被担持物に担持物を担持させて電極反応体
を被覆一体化した電解用電極に関する発明であ
り、特に、上記耐蝕性電導性基体表面上に電気め
つき法等により多孔質の白金金属の被担持物を一
体的に形成させ、その後熱分解法等によりイリジ
ウム含量で40〜99原子%の酸化イリジウムとこれ
に対しマンガン、及び、コバルト含量で1〜60原
子%の酸化マンガン及び酸化コバルトのいづれか
一方か、或は双方の成分から成る担持を該被担持
物に3次元的に一体形成した電解用電極に係る発
明である。 <従来技術> 周知の如く一般に広く用いられている電解用電
極としては耐蝕性電導性基体上に電極反応体を被
覆接合した電解用電極があるが、該種電解用電極
に要求される基礎特性を上げると、基本的に2つ
の条件があつて、まず、第一に電極反応体の外的
条件としての対基体接合条件があり、これには機
械的接合強度が大きく、又、化学的耐蝕性が強
く、更に当然のことながら、電導性を有している
ことが必要であり、第二に、電極反応体自体の内
的条件としては該電極反応体を構成する成分相互
の機械的結合強度が大きく、又、化学的耐蝕性が
強く、勿論、所定の電導性を具備し、加えて電極
反応体時の過電圧が低いことが望まれる。 ところで、上述通常の電解用電極として耐蝕性
電導性基体上に電極反応体を被覆接合したものは
該電極反応体が白金族成分を含有する成分組成か
ら成る電解用電極がこれまで多く知られている。 而して、それら白金族成分を含有する電極反応
体については白金族成分だけからなる白金族金属
のものと、白金族酸化物のものとがあるが、前者
の白金族金属を被覆した電解用電極は相当古くか
ら用いられており、とりわけ、白金金属を被覆し
たものは多くの改良案出がなされてきており、電
極反応体自体の結合、及び、対基体接合の強度が
大きく、耐蝕性に優れ、且つ、耐久性を有する良
好な電解用電極が開発されるようになつてきてい
る。 さりながら、該種白金金属を被覆した電解用電
極は上述のごとく優れた多くの特性を有するにも
かかわらず、その用途に限界が加えられている不
都合さがある。 <従来技術の問題点> 蓋し、その大きな要因について検討すると、他
の種々の実用面に供されている電極と比較して、
白金金属を電極反応体とした電解用電極において
は塩素、及び、酸素に対する過電圧特性が電解初
期では他の電極と同様に近い値であるものの、電
解時間の経過と共に上昇して、高い値になり、結
果的に電解電力消費の増大を招き、コスト高にな
る不利点があるからであり、又、該過電圧の上昇
によつて設定目的以外の電解反応が生じ、これが
当該設定目的電解を阻害する場合がある不具合が
あるからである。 そこで、これに対処するに該白金金属を電極反
応体とした電極においては敍上時間の経過ととも
に過電圧が上昇する点を解消するべく、幾つかの
試み、例えば、白金金属に種々の金属をさまざま
な手段で添加し、合金化して過電圧の上昇を抑制
する技術や、過電圧の上昇した白金金属電極を陰
極電解により再活性化する技術等が開発されてき
た。 しかしながら、該種開発技術により電極製造す
るには工程が複雑であるなどの理由で実用的には
製造が困難である難点があつたり、結果的に耐蝕
性が劣る電極になつたり、活性効果の持続が短か
たつてりする欠点があつたりして実用に供し得る
には至つていない。 他方、前述後者の電極反応体成分が酸化ルテニ
ウム、酸化ロジウム、酸化パラジウム又は、酸化
イリジウム等からなる白金族酸化物を含有してお
り、これを耐蝕性電導性基体表面に被覆する電解
用電極は、過電性が低く、その持続性に優れ、安
定な触媒機能を有するようにすることが出来、そ
の上、白金族酸化物被覆電極の代表的な製法が熱
分解によつて白金族酸化物を形成する化合物を含
む溶液を気体表面上に塗布して熱分解によつて得
る熱分解法であるため、白金族酸化物が多成分の
組み合せであつても簡単に得られる等、多くの利
点を有してはいる。 しかしながら、電極反応体が1種類の白金族酸
化物だけの成分では電極反応体の基体に対する機
械的接合、及び、電極反応体自体の機械的結合強
度が著しく小さく、電極反応時に電極反応体の脱
落を生じる欠点があり、その上、電極寿命が非常
に短くなるという難点もあり、実用的に乏しい不
都合さがあつた。 そのため、これまで該白金族酸化物被覆電解用
電極の寿命を増加させるためには白金族酸化物成
分に酸化チタニウム等の耐蝕性酸化物や白金族金
属等の第2生分を加え、これらとの混合物化や、
合金化、或は、混晶物化等の手段をとることによ
つて、電極反応体の結合強度の増大が図られてき
ている。 一方、電極反応体成分として、非白金族酸化物
である酸化マンガン、酸化コバルト等も知られて
はいる。 しかしながら、耐蝕性電導性基体表面に被覆さ
れた電極反応体が非白金族酸化物だけの成分では
電極反応体と対基体との電導性、及び、電極反応
体自体の電導性が悪く、そのため、電解反応時の
初期電位が高く、実用に供し得るには至つていな
い。 <発明の背景> 発明者らはこの発明に先行して電極反応体成分
がチタニウム等の耐蝕性電導性基体表面上に一体
的に接合した多孔質の被担持物成分と該被担持物
の内部、及び、表面に3次元に担持させた担持物
成分とから成る電解用電極、即ち、電極反応体成
分を基体に接合した被担持物成分と被担持物に3
次元的に結合した担持物成分の2つの異なる独立
した成分組成に分けて電極反応体を構成した電解
用電極を開発し、基本的に対基体機械的接合強度
に優れ、電極反応体の脱落をも防止し、化学的耐
蝕性にも優れた発明の電解用電極を案出し特許出
願した。 更に、発明者は上述電解用電極において、上記
被担持物成分が多孔質白金金属で、他方、上記担
持物成分が酸化イリジウムの組み合せであるよう
にすることによつて、硫酸酸性溶液中や低塩素イ
オン濃度溶液中での電解において所望の電極反応
に対して過電圧が低く、耐久性に優れた電解用電
極を開発し、これを特許出願した。 <発明の目的> この出願の発明の目的は前述従来技術に基づく
電解用電極の問題点を解決するのみならず技術的
には一般の電解用電極の延長に在らしめるもの
の、これを更に改善することを技術的課題とし、
前記担持物成分の酸化イリジウムに対し所定に限
定された範囲内で更に酸化マンガン及び酸化コバ
ルトのうち少なくとも1種以上を加えることによ
つて、より過電圧の低い、而して耐久性に富む電
解用電極を現出し、化学産業における電極利用分
野に益する優れた電解用電極とこの製造方法を提
供せんとするものである。 <発明の構成> 上述目的に沿い先述特許請求の範囲を要旨とす
るこの出願の発明の構成は、耐蝕性電導性基体表
面上に電気めつき等により、多孔質の白金金属を
接合して被担持物を形成した後、熱分解によつ
て、酸化イリジウム、酸化マンガン、及び、酸化
コバルトになる化合物のうちイリジウム化合物と
マンガン化合物及びコバルト化合物のうち少なく
とも1種以上の化合物を含有する溶液を上述接合
形成した被担持物の白金金属の全体に充分に浸透
させ、酸化性雰囲気中で熱分解により該白金金属
に該酸化物を3次元で担持物として担持して電極
反応体が多孔質の白金金属成分の被担持物とイリ
ジウム含量で40〜99原子%の酸化イリジウムに対
しマンガン及びコバルト含量で1〜60原子%の酸
化マンガン、及び、酸化コバルトのうち少なくと
も1種の担持物から成る電解用電極として過電圧
を経時的稼動中低くし、又、耐蝕性低下を防止、
電極反応体消耗速度を抑制することが出来るよう
にした技術的手段を講じたものである。 <発明の原理> 而して上記担持物についてその成分として酸化
イリジウムに所定の酸化マンガン及び酸化コバル
トのうち1種以上を加えたこの発明の電解用電極
においては、真の電極面積が酸化イリジウムのみ
の担持物成分の電解用電極の場合より大きくなつ
ているため、より過電圧を低く維持することが出
来、又、被担持物である白金金属と担持物である
金属酸化物との機械的結合が大きく、且つ、被担
持物である白金金属が多孔質である為、白金金属
が担持物である金属酸化物の周囲を取り巻いて、
金属酸化物自体の機械的結合を補つていることに
より機械的強度に優れ、加えて担持物自体が活性
で、且つ、3次元形態にすることによつて、電解
時の白金の不活性化を防いで電極電位を低く維持
できることになり、被担持物、及び、担持物の消
耗を小さくおさえることが出来、又、加えて、低
塩素イオン濃度溶液中での電解では、酸化マンガ
ン及び酸化コバルトの塩素発生に対する電極触媒
機能によつてさらに一層過電圧を低く維持出来る
ためと考えられる。 又、該酸化物の状態はX線回折結果よりそれぞ
れの酸化物単体の状態と異なり、格子定数のシフ
トが見られ、複合酸化物形態を取つていることが
推定される。而して、上記担持物成分のうち酸化
イリジウムの量をイリジウム含量で40〜99原子%
としたのは、蓋し、40原子%より下がると酸素発
生環境下では耐蝕性の劣る酸化マンガン又は酸化
コバルト単体の析出が担持物成分中に多くなるた
め耐蝕性が低下するようになり、その結果、電極
反応体の消耗速度が早まつて電極寿命が短くなる
不具合があるからであり、又、99原子%を越える
と酸化マンガン、酸化コバルトの添加による低過
電圧維持効果が少くなり、真の電極面積を増加さ
せる作用と塩素発生に対する電極触媒機能面への
作用が弱くなり、過電圧をより低くする機能が薄
くなるからである。 したがつて、担持物成分として酸化イリジウム
の量はイリジウム含量で40〜99原子%を最適とし
たものであり、その結果、酸化マンガン及び酸化
コバルトのうち少なくとも1種以上の量は相対結
果としてマンガン及びコバルト含量で1〜60原子
%を最適とするものである。 ところで、次に被担持物としての多孔質の白金
金属についてはこれを形成するには直接基体表面
上に多孔質の白金金属を形成する手段と、白金金
属の被覆層を形成後、多孔質化処理を行う手段と
が考えられるが、後者では白金金属の表面をあら
しても、完全に化合物の溶液を浸透させ、非白金
族酸化物を3次元で担持させる状態を得るまでに
はいたらない場合がある。 したがつて、この発明の電解用電極における多
孔質の白金金属を形成するには前者の手段の直接
多孔質の白金金属を形成する手段を採用すること
が望ましく、その方法としては、前述電気めつき
法の外に溶射法、熱分解法等があるが、これらの
中でも特性的に優れており、且つ、経済的にも便
利であるものは上記電気めつき法であつて、該電
気めつき法の中でも電着白金金属の状態が多孔質
で球形状の集合体で形成される状態が現出される
態様のものが望ましい。 尚、より多孔質性の高い、即ち、機械的に担持
強度の大きい白金金属を得たい場合には直接多孔
質の白金金属を適宜形成した後、更に、化学的、
もしくは、電気化学的方法等によつて多孔質状態
を高める処理を付与することが有効な方法であ
る。 又、製造工程において被担持物である上記白金
金属に要求される物理化学的な特性としては非白
金族の化合物を含む溶液が浸透できる程度の多孔
質状態を有し、更に、熱分解の加熱工程下では気
体と白金金属との接合部が酸化性のガスや、化合
物中の揮発成分との反応によつて劣化を生じるこ
とがない接合状態であることが必要である。 而して電解用電極の製造方法においては担持物
としの多孔質の白金金属が化合物を含む溶液の充
分な芯統制を得るには白金金属のみかけ密度が19
g/cm3以下であることが好ましくはあるが、著し
く多孔質状態を高め、その結果、みかけ密度が8
g/cm3以下になつている状態であると、却つて機
械的強度の低下を招くことになり、逆に電極の寿
命を短くするおそれがある。 他方、該多孔質の白金金属の被担持物に該酸化
物を担持物として3次元的に形成するに際して熱
分解する化合物とその溶媒は白金金属へ浸透を円
滑に進めるため、溶液の粘度が小さく、化合物の
濃度も高くならないようにすることが望ましい。 そして、化合物の浸透を良くするための補助的
手段としては超音波を基体に照射しながら浸透さ
せていく方法も有効的である。 <実施例> 次にこの発明の実施例を説明すれば以下の通り
である。 実施例 1 チタニウム金属板をトリクレン脱脂液にて脱脂
を行い、フツ酸水溶液と濃塩酸で表面処理して基
体とした後ジニトロジアミノ白金を硫酸水溶液に
溶解した白金めつき浴を用いて電気めつき法によ
り、該チタニウム金属板基体表面上にみかけの密
度が、約16g/cm2で電着量が1.7mg/cm2の被担持
物である多孔質の白金金属を形成した試料を作製
した。 一方、塩化イリジウム酸1.95g、塩化マンガン
0.29g、エタノール1ml、ブタノール19ml、の溶
液、塩化イリジウム酸1.95g、塩化コバルト0.33
g、エタノール1ml、ブタノール19mlの溶液、及
び、酸化イリジウム酸1.95g、酸化マンガン0.14
g、酸化コバルト0.15g、エタノール1ml、ブタ
ノール19mlの各塗布溶液をそれぞれ調合した。 而して、該、各塗布溶液を担持金属酸化物の全
量が金属での重量換算で0.14mg/cm2にそれぞれな
る如くマイクロピペツトで取り、前記白金金属表
面おのおの塗布し、次いで、室温で真空乾燥法に
より1時間乾燥させた後500℃の大気中で20分間
加熱を行い実施例電極−1、−2、−3を作製し
た。 そして、比較のため、塩化イリジウム酸2.14g
をブタノール20mlに溶解して浸透液を調合してお
き、一方、上記実施例電極作製態様と同様な工程
でチタニウム金属板基体上に被担持物としての白
金金属1.7mg/cm2を形成し、担持物である酸化イ
リジウムの量が金属での重量換算で0.14mg/cm2
なるように上記浸透液をマイクロピペツトで取り
上記白金金属に浸透させ、上記各実施例電極作製
工程と同様にして乾燥、及び、加熱を行い、比較
電極−1を作製した。 次にこれらの各電極を液温30℃の30g/の塩
化ナトリウム液中で10A/dm2における電極電位
の測定を行い、これらの電極を液温60℃のIM/
の硫酸水溶液中で10A/dm2における電極電位
の測定を行い、それらの結果を表−1に示す。
<Technical classification> The disclosed technology belongs to the technical field of electrodes for electrolysis that can withstand oxygen-generating environments such as electrolysis in acidic sulfuric acid solutions and low chlorine ion concentration solutions and has a low overvoltage with respect to the desired electrode reactant. . <Explanation of the gist> The invention is based on a porous material to be supported on a part or all of the surface of a corrosion-resistant conductive substrate such as titanium, and an electrode reaction by supporting the material on the supported material. This invention relates to an electrode for electrolysis that is integrally coated with a body, and in particular, a porous platinum metal support is integrally formed on the surface of the corrosion-resistant conductive substrate by electroplating or the like, and then thermally decomposed. A support consisting of iridium oxide with an iridium content of 40 to 99 atom % and manganese, and one or both of manganese oxide and cobalt oxide with a cobalt content of 1 to 60 atom % by a method etc. This invention relates to an electrode for electrolysis that is three-dimensionally integrally formed on the supported object. <Prior art> As is well known, there are electrodes for electrolysis that are widely used in general and include electrode reactants coated and bonded on a corrosion-resistant conductive substrate, but the basic characteristics required for such electrodes for electrolysis are Basically, there are two conditions. Firstly, there are external conditions for bonding the electrode reactant to the substrate, which include high mechanical bonding strength and chemical corrosion resistance. It is necessary that the electrode reactant itself has strong conductivity and, of course, electrical conductivity.Secondly, the internal conditions of the electrode reactant itself include mechanical bonding between the components that make up the electrode reactant. It is desired that the material has high strength, high chemical corrosion resistance, and of course has a certain electrical conductivity, and in addition, has a low overvoltage when acting as an electrode reactant. By the way, as for the above-mentioned ordinary electrolytic electrode in which an electrode reactant is coated and bonded on a corrosion-resistant conductive substrate, there have been many known electrolytic electrodes in which the electrode reactant has a composition containing a platinum group component. There is. There are two types of electrode reactants containing platinum group components: platinum group metals consisting only of platinum group components and platinum group oxides. Electrodes have been used for a long time, and in particular, many improvements have been made to those coated with platinum metal, which have increased the strength of the bond between the electrode reactants themselves and the bond to the substrate, and have improved corrosion resistance. Electrolytic electrodes that are superior and durable are being developed. However, although the electrolytic electrode coated with the seed platinum metal has many excellent properties as described above, it has the disadvantage that its applications are limited. <Problems with conventional technology> If we consider the major factors behind this problem, compared to other electrodes used for various practical purposes,
In electrolytic electrodes that use platinum metal as an electrode reactant, the overvoltage characteristics against chlorine and oxygen are similar to other electrodes at the beginning of electrolysis, but as the electrolysis time progresses, the overvoltage characteristics rise to high values. This is because, as a result, electrolysis power consumption increases, resulting in higher costs.Also, due to the increase in overvoltage, an electrolytic reaction other than the intended purpose occurs, which inhibits the intended purpose electrolysis. This is because there may be some problems. To deal with this problem, several attempts have been made to solve the problem of overvoltage increasing over time in electrodes using platinum metal as an electrode reactant. Techniques have been developed to suppress the rise in overvoltage by adding and alloying platinum by various means, and to reactivate platinum metal electrodes with increased overvoltage by cathodic electrolysis. However, manufacturing electrodes using this seed development technology has the disadvantage that it is difficult to manufacture in practice due to the complicated process, resulting in electrodes with poor corrosion resistance and poor activation effects. It has shortcomings such as short duration and has not been put to practical use. On the other hand, the latter electrode reactant component contains a platinum group oxide such as ruthenium oxide, rhodium oxide, palladium oxide, or iridium oxide, and the electrode for electrolysis coats the surface of a corrosion-resistant conductive substrate with the platinum group oxide. , it is possible to have low overcharging, excellent durability, and stable catalytic function.In addition, the typical manufacturing method for platinum group oxide coated electrodes is to produce platinum group oxides by thermal decomposition. Since this is a thermal decomposition method in which a solution containing a compound that forms is applied onto a gas surface and thermally decomposed, platinum group oxides can be easily obtained even if they are a combination of multiple components, and have many advantages. It has. However, in a component where the electrode reactant is only one type of platinum group oxide, the mechanical bonding strength of the electrode reactant to the substrate and the mechanical bonding strength of the electrode reactant itself are extremely low, and the electrode reactant falls off during the electrode reaction. This method has the drawback of causing a large amount of damage, and also has the drawback that the electrode life is extremely short, which is a practical disadvantage. Therefore, in order to increase the life of the platinum group oxide coated electrode for electrolysis, it has been necessary to add a corrosion-resistant oxide such as titanium oxide or a second raw material such as a platinum group metal to the platinum group oxide component. mixture of
The bonding strength of electrode reactants has been increased by taking measures such as alloying or mixed crystal formation. On the other hand, non-platinum group oxides such as manganese oxide and cobalt oxide are also known as electrode reactant components. However, if the electrode reactant coated on the surface of the corrosion-resistant conductive substrate is composed only of non-platinum group oxides, the electrical conductivity between the electrode reactant and the opposite substrate and the electrical conductivity of the electrode reactant itself are poor. The initial potential during the electrolytic reaction is high, and it has not yet been put to practical use. <Background of the Invention> Prior to this invention, the inventors developed a porous support component in which an electrode reactant component was integrally bonded onto the surface of a corrosion-resistant conductive substrate such as titanium, and an internal structure of the support object. , and a supported component supported three-dimensionally on the surface; that is, an electrolytic electrode consisting of a supported component having an electrode reactant component bonded to a substrate;
We have developed an electrode for electrolysis in which the electrode reactant is composed of two different independent component compositions of support components that are dimensionally combined, and has basically excellent mechanical bonding strength to the substrate and prevents the electrode reactant from falling off. He devised an electrolytic electrode with excellent chemical corrosion resistance and applied for a patent. Furthermore, in the electrode for electrolysis, the above-mentioned supported material component is a porous platinum metal, and the above-mentioned supported material component is a combination of iridium oxide. We have developed an electrode for electrolysis with low overvoltage and excellent durability for the desired electrode reaction in electrolysis in chloride ion concentration solutions, and have filed a patent application for this electrode. <Objective of the Invention> The object of the invention of this application is not only to solve the problems of the electrolytic electrode based on the prior art described above, but also to further improve the electrode, although it is technically an extension of the general electrolytic electrode. The technical challenge is to
By adding at least one of manganese oxide and cobalt oxide to the iridium oxide of the support component within a predetermined range, an electrolytic product with lower overvoltage and higher durability can be obtained. It is an object of the present invention to provide an excellent electrode for electrolysis and a method for manufacturing the same, which is useful in the field of electrode use in the chemical industry. <Structure of the Invention> The structure of the invention of this application, which is based on the above-mentioned claims in accordance with the above-mentioned object, is to bond porous platinum metal onto the surface of a corrosion-resistant conductive substrate by electroplating or the like. After forming a support, the above-mentioned solution contains at least one compound among iridium compounds, manganese compounds, and cobalt compounds among compounds that become iridium oxide, manganese oxide, and cobalt oxide by thermal decomposition. The electrode reactant is made of porous platinum by sufficiently permeating the entire platinum metal of the bonded support object and supporting the oxide in three dimensions on the platinum metal by thermal decomposition in an oxidizing atmosphere. For electrolysis, consisting of a metal component supported and at least one of manganese oxide and cobalt oxide with a manganese and cobalt content of 1 to 60 at % to iridium oxide with an iridium content of 40 to 99 at % As an electrode, it reduces overvoltage over time during operation, and also prevents corrosion resistance from decreasing.
This is a technical measure that makes it possible to suppress the rate of electrode reactant consumption. <Principle of the Invention> Therefore, in the electrode for electrolysis of the present invention in which one or more of predetermined manganese oxide and cobalt oxide is added to iridium oxide as a component of the above-mentioned support, the true electrode area is only iridium oxide. Since the electrode is larger than the electrode for electrolysis of the supported component, it is possible to maintain a lower overvoltage, and the mechanical bond between the supported material, platinum metal, and the supported material, the metal oxide, is improved. Since the platinum metal that is the supported material is large and porous, the platinum metal surrounds the metal oxide that is the supported material,
It has excellent mechanical strength by supplementing the mechanical bond of the metal oxide itself, and in addition, the support itself is active and has a three-dimensional shape, which prevents the inactivation of platinum during electrolysis. This makes it possible to maintain a low electrode potential by preventing the electrolysis of manganese oxide and cobalt oxide in electrolysis in a low chlorine ion concentration solution. This is thought to be because the overvoltage can be maintained even lower due to the electrocatalytic function against chlorine generation. Further, the state of the oxide is different from the state of each oxide alone, and a shift in the lattice constant is observed from the results of X-ray diffraction, and it is presumed that it is in the form of a composite oxide. Therefore, the amount of iridium oxide among the above support components is adjusted to 40 to 99 atomic% in terms of iridium content.
The reason for this is that when the temperature is lower than 40 atomic percent with the lid on, corrosion resistance decreases because manganese oxide or simple cobalt oxide, which has poor corrosion resistance, increases in the supported components in an oxygen-generating environment. As a result, the consumption rate of the electrode reactant is accelerated, resulting in a shortened electrode life. Also, if the content exceeds 99 atomic percent, the effect of maintaining low overvoltage due to the addition of manganese oxide and cobalt oxide decreases, making it impossible to achieve true This is because the effect of increasing the electrode area and the effect on the electrode catalyst function against chlorine generation are weakened, and the function of lowering overvoltage is weakened. Therefore, the optimal amount of iridium oxide as a support component is 40 to 99 at% iridium content, and as a result, the amount of at least one of manganese oxide and cobalt oxide is relatively low. The optimum cobalt content is 1 to 60 atomic %. By the way, the next method for forming porous platinum metal as a supported material is to form porous platinum metal directly on the surface of the substrate, and to form a coating layer of platinum metal and then make it porous. However, in the latter case, even if the surface of platinum metal is roughened, it is not possible to completely penetrate the compound solution and obtain a state in which non-platinum group oxides are supported three-dimensionally. There is. Therefore, in order to form porous platinum metal in the electrode for electrolysis of the present invention, it is desirable to adopt the former means of directly forming porous platinum metal. In addition to the plating method, there are thermal spraying methods, thermal decomposition methods, etc., but among these methods, the one that has excellent characteristics and is economically convenient is the electroplating method mentioned above. Among the methods, it is preferable to use one in which the electrodeposited platinum metal forms a porous, spherical aggregate. In addition, if it is desired to obtain a platinum metal with higher porosity, that is, with a higher mechanical support strength, after directly forming a porous platinum metal, further chemical,
Alternatively, an effective method is to apply a treatment to increase the porous state by an electrochemical method or the like. In addition, in the manufacturing process, the physicochemical properties required of the platinum metal to be supported are that it should be porous to the extent that a solution containing a non-platinum group compound can permeate therein, and that it should be porous enough to be penetrated by a solution containing a non-platinum group compound; During the process, it is necessary that the joint between the gas and the platinum metal be in a joint state that does not deteriorate due to reaction with oxidizing gas or volatile components in the compound. Therefore, in the method for manufacturing electrodes for electrolysis, in order to obtain sufficient core control of a solution containing a compound using porous platinum metal as a support, the apparent density of platinum metal must be 19
g/cm 3 or less is preferable, but it significantly increases the porous state, resulting in an apparent density of 8.
If it is less than g/cm 3 , the mechanical strength will be reduced, which may conversely shorten the life of the electrode. On the other hand, when the oxide is three-dimensionally formed as a support on the porous platinum metal support, the thermally decomposed compound and its solvent penetrate smoothly into the platinum metal, so the viscosity of the solution is low. , it is desirable to prevent the concentration of the compound from becoming too high. As an auxiliary means for improving the penetration of the compound, it is also effective to irradiate the substrate with ultrasonic waves. <Example> Next, an example of the present invention will be described as follows. Example 1 A titanium metal plate was degreased with a trichlene degreasing solution, and the surface was treated with a hydrofluoric acid aqueous solution and concentrated hydrochloric acid to prepare a substrate, and then electroplated using a platinum plating bath in which dinitrodiaminoplatinum was dissolved in a sulfuric acid aqueous solution. By this method, a sample was prepared in which porous platinum metal was formed on the surface of the titanium metal plate substrate with an apparent density of about 16 g/cm 2 and an electrodeposited amount of 1.7 mg/cm 2 . On the other hand, 1.95 g of chloroiridic acid, manganese chloride
Solution of 0.29 g, 1 ml of ethanol, 19 ml of butanol, 1.95 g of iridic acid chloride, 0.33 cobalt chloride
g, 1 ml of ethanol, 19 ml of butanol solution, and 1.95 g of iridic acid oxide, 0.14 manganese oxide
Coating solutions of 0.15 g of cobalt oxide, 1 ml of ethanol, and 19 ml of butanol were prepared. Then, each coating solution was taken with a micropipette so that the total amount of the supported metal oxide was 0.14 mg/cm 2 in terms of metal weight, and applied to each of the platinum metal surfaces, and then heated at room temperature. After drying for 1 hour using a vacuum drying method, the electrodes were heated in the atmosphere at 500° C. for 20 minutes to produce Example electrodes-1, -2, and -3. And, for comparison, 2.14 g of chloroiridic acid
was dissolved in 20 ml of butanol to prepare a penetrating solution, and on the other hand, 1.7 mg/cm 2 of platinum metal was formed as a support on a titanium metal plate substrate in the same process as in the electrode production mode of the above example, The above penetrating solution was taken with a micropipette so that the amount of supported iridium oxide was 0.14 mg/cm 2 in terms of the weight of the metal, and the solution was allowed to penetrate into the platinum metal. The sample was dried and heated to produce a comparative electrode-1. Next, the electrode potential of each of these electrodes was measured at 10A/ dm2 in a 30g/dm sodium chloride solution at a liquid temperature of 30°C, and these electrodes were placed in an IM/dm2 solution at a liquid temperature of 60°C.
The electrode potential was measured at 10 A/dm 2 in an aqueous sulfuric acid solution, and the results are shown in Table 1.

【表】 表−1より、被担持物が白金金属で担持物が酸
化イリジウムに所定の酸化マンガン、及び、酸化
コバルトのうち1種以上を加えた組み合せからな
る実施例電極−1、−2、−3は、担持物が酸化イ
リジウムのみの比較電極−1と異つて、塩素及び
酸素発生に対し充分低い電極電位、即ち、低い過
電圧を示すことが認められる。 実施例 2 上述実施例1の場合と同様にして基体チタニウ
ム金属板上にみかけ密度が約16g/cm3で電着量が
1.7mg/cm2の被担持物である白金金属を形成した。 次いで、塩化イリジウム1.56g、塩化コバルト
0.84g、エタノール2ml、ブタノール18mlの溶液
を用いて、実施例1の電極作製の場合と同様にし
て担持金属酸化物の全量が金属での、重量換算で
0.14mg/cm2の金属酸化物を上記担持白金金属に3
次元で担持させて実施例電極−4を作製した。 そして、比較のため、当該実施例と同様な工程
でチタニウム金属板上に被担持物白金金属を形成
した後、塩化イリジウム1.24g、塩化コバルト
1.34g、エタノール2ml、ブタノール18mlの溶液
を用いて、上記実施例電極に担持金属酸化物の全
量量が金属での重量換算で0.14mg/cm2の金属酸化
物を上記被担持物白金金属に3次元で担持させて
比較電極−2を作製した。 次に、上記実施例電極−2、−4、及び、前記
比較電極−1、−2を液温55℃のIM/の硫酸水
溶液で400A/dm2の電流密度で電解を行い、一
定時間ごとに電流密度1A/dm2における電極電
位の測定を行い、その時の電位が対塩化銀電極電
位で1.7Vに達するまでの電極寿命を表−2に示
す。
[Table] From Table-1, Example electrodes-1, -2, in which the supported material is platinum metal and the supported material is a combination of iridium oxide and one or more of predetermined manganese oxide and cobalt oxide; It is recognized that, unlike comparative electrode-1, in which only iridium oxide is supported, electrode-3 exhibits a sufficiently low electrode potential against chlorine and oxygen generation, that is, a low overpotential. Example 2 In the same manner as in Example 1 above, the apparent density was about 16 g/cm 3 and the amount of electrodeposition was
1.7 mg/cm 2 of platinum metal to be supported was formed. Next, 1.56 g of iridium chloride, cobalt chloride
Using a solution of 0.84 g, 2 ml of ethanol, and 18 ml of butanol, the entire amount of supported metal oxide is metal, calculated in terms of weight, in the same manner as in the case of electrode production in Example 1.
0.14mg/ cm2 of metal oxide was added to the above supported platinum metal.
Example electrode-4 was prepared by supporting the sample in two dimensions. For comparison, platinum metal to be supported was formed on a titanium metal plate in the same process as in the example, and then 1.24 g of iridium chloride and cobalt chloride were added.
Using a solution of 1.34 g, 2 ml of ethanol, and 18 ml of butanol, a total amount of metal oxide supported on the above-mentioned example electrode was 0.14 mg/cm 2 in terms of metal weight, and the metal oxide was added to the platinum metal to be supported. Comparative electrode-2 was prepared by supporting it three-dimensionally. Next, the above Example electrodes-2, -4 and the above-mentioned Comparative electrodes-1, -2 were subjected to electrolysis at a current density of 400 A/dm 2 in an IM/sulfuric acid aqueous solution at a liquid temperature of 55°C. The electrode potential was measured at a current density of 1 A/dm 2 , and the electrode life until the potential reached 1.7 V versus silver chloride electrode potential is shown in Table 2.

【表】 表−2により、担持物として酸化イリジウムの
比率がイリジウム含量で40原子%より下がると、
酸素発生環境下において電極反応対の消耗速度が
早まり電極寿命が短かくなることが認められる。 <発明の効果> 以上、この発明によれば、耐蝕性電導性基体表
面上に電極反応体を被覆した電解用電極におい
て、電極反応体成分の構成の骨格を成している多
孔質の被担持物に対して担持物を3次元的に担持
させたことにより、基本的に対基体機械的接合強
度に優れ、電極反応対の脱落を防止し、化学的耐
蝕性にも優れ、加えて、電極反応時の過電圧を低
くする効果が奏される。 又、酸化イリジウム酸化マンガン及び酸化コバ
ルトになる化合物のうち、イリジウム化合物とマ
ンガン化合物及びコバルト化合物のうち少くとも
1種以上の化合物を設定原子%含有する溶液を白
金金属に浸透させ、熱分解により3次元的に担持
させた電解用電極は、担持物成分が酸化イリジウ
ムのみの電解用電極より真の電極面積が大きくな
つていることから過電圧をより低く維持すること
が出来、加えて、海水の如く低塩素イオン濃度溶
液中での電解では該金属酸化物の相互作用によつ
て一層電圧を低くすることが可能となり、電解電
力消費を少なくし省エネルギーを図ることが出来
る効果がある。 そして、電極反応体成分相互の機械的結合強度
も強く、化学的耐蝕性も良く、しかも、それらが
常に均一になつている優れた効果が奏される。 更に、該被担持物が白金金属であるにもかかわ
らず、担持物成分が金属酸化物であるため、白金
金属の電極で生じる経時的電解作用下における過
電圧の上昇が該電極反応体成分のほとんど消耗す
るまで完全に抑制することが出来る上にケースに
よつては白金金属の電極での過電圧上昇値までに
達する時間をはるかに遅延させることが可能とな
る効果がある。 更に又、電極反応対成分が消耗して電極寿命に
達する状態で被担持物成分だけを増量させること
によつて電極寿命が増加する効果もあり、電極反
応体成分総量を増加させる必要がない省資源上の
利点もある。 加えて、電極反応体が残存して高い過電圧で寿
命に達する場合、担持物のみを増加させて寿命の
延長を図ることが出来る効果があり、同じく電極
反応対の全体増量を図らなくて済む良さもある。
[Table] According to Table 2, when the ratio of iridium oxide as a support falls below 40 atomic % in terms of iridium content,
It is observed that in an oxygen-generating environment, the electrode reaction pair wears out faster and the electrode life becomes shorter. <Effects of the Invention> As described above, according to the present invention, in an electrolytic electrode in which an electrode reactant is coated on the surface of a corrosion-resistant conductive substrate, a porous supported material forming the framework of the electrode reactant component is By supporting the support three-dimensionally on the object, it basically has excellent mechanical bonding strength to the substrate, prevents the electrode reaction pair from falling off, and has excellent chemical corrosion resistance. This has the effect of lowering overvoltage during reaction. Further, a solution containing a set atomic percent of at least one of iridium oxide, manganese oxide, and cobalt compound among the compounds that become iridium oxide, manganese oxide, and cobalt oxide is infiltrated into platinum metal, and 3 Dimensionally supported electrolytic electrodes have a larger true electrode area than electrolytic electrodes containing only iridium oxide as a supported component, so they can maintain a lower overvoltage. In electrolysis in a solution with a low chlorine ion concentration, it is possible to further lower the voltage due to the interaction of the metal oxides, which has the effect of reducing electrolytic power consumption and saving energy. Further, the mechanical bonding strength between the electrode reactant components is strong, the chemical corrosion resistance is good, and the excellent effects that they are always uniform are exhibited. Furthermore, although the material to be supported is platinum metal, since the supported component is a metal oxide, the increase in overvoltage caused by the electrolytic action over time that occurs at the platinum metal electrode is mostly due to the electrode reactant component. Not only can it be completely suppressed until it is consumed, but in some cases it has the effect of significantly delaying the time it takes for the overvoltage at the platinum metal electrode to reach its increased value. Furthermore, by increasing only the supported material component in a state where the electrode reactant component has been exhausted and the electrode has reached the end of its life, the electrode life can be increased, and the total amount of the electrode reactant component does not need to be increased. There are also resource advantages. In addition, if the electrode reactant remains and reaches the end of its life at a high overvoltage, it has the effect of increasing only the supported material to extend the life, and there is also no need to increase the total amount of electrode reactants. There is also.

Claims (1)

【特許請求の範囲】[Claims] 1 電極反応体が耐蝕性電導性基体表面上に一体
的に接合した多孔質の被担持物と該被担持物に3
次元的に担持させた担持物とから成る電解用電極
において、上記被担持物成分が多孔質白金金属
で、他方上記担持物成分がイリジウム含量で40〜
99原子%の酸化イリジウムとこれに対しマンガン
及びコバルトがその含量で1〜60原子%の酸化マ
ンガン及び酸化コバルトのうち少なくとも1種の
成分とから成ることを特徴とする電解用電極。
1. A porous supported object in which an electrode reactant is integrally bonded on the surface of a corrosion-resistant conductive substrate, and 3.
In an electrolytic electrode comprising a dimensionally supported material, the supported material component is porous platinum metal, and the supported material component has an iridium content of 40 to 40%.
An electrode for electrolysis comprising 99 atomic % of iridium oxide and at least one component of manganese oxide and cobalt oxide in a content of 1 to 60 atomic % of manganese and cobalt.
JP58013652A 1983-02-01 1983-02-01 Electrode for electrolysis Granted JPS59200781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013652A JPS59200781A (en) 1983-02-01 1983-02-01 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013652A JPS59200781A (en) 1983-02-01 1983-02-01 Electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPS59200781A JPS59200781A (en) 1984-11-14
JPH0233792B2 true JPH0233792B2 (en) 1990-07-30

Family

ID=11839148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013652A Granted JPS59200781A (en) 1983-02-01 1983-02-01 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPS59200781A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348837A (en) * 2009-05-07 2012-02-08 大曹株式会社 Anode for oxygen generation
JP2013136801A (en) * 2011-12-28 2013-07-11 Hitachi Ltd System for converting and storing renewable energy

Also Published As

Publication number Publication date
JPS59200781A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
EP0090425B1 (en) Electrolysis electrode and production method thereof
EP0047595B1 (en) Electrochemical cell
US4052271A (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JPH0581677B2 (en)
US4822459A (en) Lead oxide-coated electrode for use in electrolysis and process for producing the same
US4310391A (en) Electrolytic gold plating
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
KR910001950B1 (en) Electrode structure and process for fabricating the same
JPH0575840B2 (en)
KR890002700B1 (en) Low over-voltage electrodes for alkaline electrolytes
US5665218A (en) Method of producing an oxygen generating electrode
JPH0355555B2 (en)
JPH0233792B2 (en)
JPH0257159B2 (en)
JP2596821B2 (en) Anode for oxygen generation
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JP3661924B2 (en) Oxygen generating anode
JPH036998B2 (en)
JP2020193371A (en) Ozone generating electrode
JP3941898B2 (en) Activated cathode and method for producing the same
JPH02282490A (en) Oxygen generating anode and production thereof
JPS61223189A (en) Production of cathode