[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0233449A - Fuel injection control device - Google Patents

Fuel injection control device

Info

Publication number
JPH0233449A
JPH0233449A JP18423388A JP18423388A JPH0233449A JP H0233449 A JPH0233449 A JP H0233449A JP 18423388 A JP18423388 A JP 18423388A JP 18423388 A JP18423388 A JP 18423388A JP H0233449 A JPH0233449 A JP H0233449A
Authority
JP
Japan
Prior art keywords
solenoid valve
pressure
fuel
current
common rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18423388A
Other languages
Japanese (ja)
Other versions
JP2606306B2 (en
Inventor
Masaru Tanaka
勝 田中
Mikio Kumano
熊野 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63184233A priority Critical patent/JP2606306B2/en
Publication of JPH0233449A publication Critical patent/JPH0233449A/en
Application granted granted Critical
Publication of JP2606306B2 publication Critical patent/JP2606306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To perform evasive running by lowering the fuel pressure in a common rail to the pressure at which a solenoid valve can be opened by the mounted power voltage with a pressure control means when detecting an abnormality of a high-voltage generating means in a Diesel engine or the like. CONSTITUTION:Driving pulses tau1-tauN and charge pulses are applied to a high- voltage generating section 10 from an ECU 50 calculating the fuel injection quantity and injection timing, the high voltage is generated on a capacitor C1, a three-way solenoid valve drive control section 30 quickly raises the current to three-way solenoid pieces V1-VN, a discharge is completed when it reaches the peak current. The hold current is fed from a constant current circuit section 20 by the signal from a current detecting circuit 31. When an abnormality detecting circuit section 40 detects that the high-voltage generating section 10 does not generate the necessary high voltage for some reasons, the CPU of the ECU 50 sets the command injection pressure to the common rail pressure at which the three-way solenoid valves V1-VN can be driven by the mounted power B voltage. Fuel injection is continued to perform evasive running, the device can be made fail-safe.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ディーゼルエンジン等に使用される蓄圧配管
(コモンレール)を有する燃料噴射制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a fuel injection control device having a pressure accumulation pipe (common rail) used in a diesel engine or the like.

「従来の技術」 最近、ディーゼルエンジン用の種々の電子制御式燃料噴
射装置が開発されている0例えば第7図の従来システム
の全体構成図に示すようにインジェクターaにコモンレ
ールb内に蓄圧される高圧燃料を作用させ、ニードルC
のリフトを三方電磁弁dにより制御する方法が考えられ
ている(特開昭62−258160)、三方電磁弁dの
非通電時には、ボートXとボートYが連通し、高圧燃料
が油圧ピストンeの上部に導かれ、その圧力によりニー
ドルCのリフトを阻止する0通電時には、アウターバル
ブfが吸引上昇しボートxが塞がれボートYとボートZ
が連通するため油圧ピストンeにかかる圧力はボートY
、ボートZを経て低圧側へリークする。このため、ニー
ドルCは燃料圧力により上昇し、噴射口を開いて燃料を
噴射するものである。非通電時には、アウターバルブf
には下向きに力 F=gPe(D+”−Dz’)/4+Fs(但し、Pc
:コモンレール圧力、Fs:バネ力)が作用しているの
で、ボートYとボートZを接続しコモンレールb内の高
圧燃料を噴射するためには力Fに打ち勝つ程の吸引エネ
ルギーが必要になるばかりでなく、アウターバルブfを
吸引する動作を高速で行わないと、ボートXとボートZ
が連通し燃料が低圧側へリークしてしまう、さらに、噴
射開始時期を精密に制御する上からも、アウターバルブ
fの吸引動作は極めて高速に行わなければならない、従
って、コモンレール圧Pcが高い程大きな三方電磁弁d
の吸引エネルギーが必要となる。
``Prior Art'' Recently, various electronically controlled fuel injection devices for diesel engines have been developed.For example, as shown in the general configuration diagram of a conventional system shown in FIG. 7, pressure is accumulated in the common rail b in the injector a. Apply high pressure fuel and needle C
A method has been proposed in which the lift of the boat is controlled by a three-way solenoid valve d (Japanese Patent Application Laid-Open No. 62-258160). When the three-way solenoid valve d is de-energized, boats X and Y are connected, and high-pressure fuel is supplied to the hydraulic piston e. When the needle C is guided to the top and its pressure prevents the lift of the needle C, when the current is applied, the outer valve f is sucked up and the boat x is blocked, and the boat Y and the boat Z are
Because of the communication, the pressure applied to the hydraulic piston e is the boat Y.
, leaks to the low pressure side via boat Z. Therefore, the needle C rises due to the fuel pressure, opens the injection port, and injects the fuel. When de-energized, the outer valve f
is a downward force F=gPe(D+"-Dz')/4+Fs (however, Pc
: common rail pressure, Fs: spring force), so in order to connect boat Y and boat Z and inject the high pressure fuel in common rail b, suction energy sufficient to overcome force F is required. If the suction action of outer valve f is not performed at high speed, boat X and boat Z
is in communication, causing fuel to leak to the low-pressure side.Furthermore, in order to precisely control the injection start timing, the suction operation of the outer valve f must be performed at extremely high speed.Therefore, the higher the common rail pressure Pc, the higher the common rail pressure Pc. large three-way solenoid valve d
of suction energy is required.

高い燃料圧力に逆らって三方電磁弁dを迅速に動作させ
かつ消費エネルギーの低減を目的とするこのシステムで
は、ECUは入力される実コモンレール圧Pc、アクセ
ル開度Acep、エンジン回転数Ne、吸気温度、冷却
水温等の各種情報から燃料噴射時期、燃料噴射量を演算
し電磁弁駆動パルス口を出力するが、第8図に示すよう
に該駆動パルス口は、デコーダgにより気筒毎に分配し
インターフェイスhを介して電磁弁駆動回路へ送られる
。前記デコーダgは東芝製高速CMOSデコーダTC7
4HC138を使用したものであって、CPUから端子
A、B、Cに印加される3ビツトのコードにより出力Y
0〜Y、の内の一つの出力が動作可能な状態となり電磁
弁駆動パルスC(ローアクティブ)を電磁弁駆動回路へ
出力するものである。電磁弁駆動パルス口はCPUのい
わゆるタイマ機能(アウトプットコンベア機能)を利用
して精度良く出力される。またデコーダgの前記入力A
、B、CもCPUのボートにより制御される。
In this system, the purpose of which is to quickly operate the three-way solenoid valve d against high fuel pressure and reduce energy consumption, the ECU uses the input actual common rail pressure Pc, accelerator opening Acep, engine speed Ne, and intake air temperature. , calculates fuel injection timing and fuel injection amount from various information such as cooling water temperature, and outputs a solenoid valve drive pulse port.As shown in Fig. 8, the drive pulse port is distributed to each cylinder by a decoder g and interface h to the solenoid valve drive circuit. The decoder g is a high-speed CMOS decoder TC7 manufactured by Toshiba.
It uses 4HC138, and the output Y is determined by the 3-bit code applied to terminals A, B, and C from the CPU.
One of the outputs 0 to Y becomes operable and outputs a solenoid valve drive pulse C (low active) to the solenoid valve drive circuit. The solenoid valve drive pulse port is outputted with high precision using the so-called timer function (output conveyor function) of the CPU. In addition, the input A of the decoder g
, B, and C are also controlled by the CPU vote.

すなわち、タイマ機能(アウトプットコンベア機能)に
よりCPUから出力された電磁弁駆動パルスCをA、B
、C端子により選択することによりすべての気筒の駆動
パルスを精度良く制御できる。
In other words, the solenoid valve drive pulse C output from the CPU by the timer function (output conveyor function) is
, C terminal allows drive pulses for all cylinders to be controlled with high precision.

三方電磁弁駆動パルスがハイレベルの間三方電磁弁dに
通電するが、最高150MPaにも達する燃料圧力に逆
らって該電磁弁dの動作を迅速に行うために車載電源電
圧(バッテリ電圧)を越える高電圧を発生させておき、
電磁弁駆動回路に送られてきた三方電磁弁駆動パルスの
立ち上がりと同時に放電して三方電磁弁dに高電圧を供
給すゐ、このように急峻な立ち上がりの電流により磁束
が急増し高い燃料圧力下でも早い応答が可能となる。
While the three-way solenoid valve drive pulse is at a high level, the three-way solenoid valve d is energized, but in order to quickly operate the solenoid valve d against the fuel pressure, which reaches a maximum of 150 MPa, the on-vehicle power supply voltage (battery voltage) is exceeded. Generate high voltage,
At the same time as the three-way solenoid valve drive pulse that is sent to the solenoid valve drive circuit rises, it discharges and supplies high voltage to the three-way solenoid valve d.This sharp rise in current causes a sudden increase in magnetic flux, which causes the magnetic flux to rise under high fuel pressure. However, a quick response is possible.

一方、コモンレール圧力はエンジン負荷やエンジン回転
数Neに応じ燃費向上や排ガス浄化をねらって最適値に
制御される。高圧フィードポンプiの電磁弁jへの通電
開始時期から通電終了時期までの間にカムにのリフトを
利用し高圧を発生させている。このシステムでは、通電
終了時期はエンジン回転数に応じたある特定のタイミン
グとし、同じく回転数に応じたある特定のタイミングに
設定された基準からT、(see)後を通電開始時期と
じT2を演算により変化させることでコモンレール圧力
を最適値に制御している。そのポンプの電磁弁通電開始
時期T、の演算方法を以下に述べる。
On the other hand, the common rail pressure is controlled to an optimum value according to the engine load and engine speed Ne with the aim of improving fuel efficiency and purifying exhaust gas. The lift of the cam is used to generate high pressure between the time when energization of the solenoid valve j of the high-pressure feed pump i starts and the time when energization ends. In this system, the energization end time is set at a specific timing according to the engine rotation speed, and the energization start time and T2 are calculated after T, (see) from a standard set at a certain timing corresponding to the engine rotation speed. The common rail pressure is controlled to the optimum value by changing the pressure. The method of calculating the timing T for starting energization of the solenoid valve of the pump will be described below.

まず、指令噴射量と指令噴射圧により基本的な通電開始
時期を定めておき、指令噴射圧と実コモンレール圧Pc
の差分に応じたPID!II御でフィードバック制御を
行う、つまり、上記の基本的な通電開始時期にフィード
バック補償量を加えて最終的な通電開始時期T、を設定
している。
First, the basic energization start timing is determined based on the command injection amount and command injection pressure, and the command injection pressure and actual common rail pressure Pc
PID according to the difference! Feedback control is performed under the II control, that is, the final energization start time T is set by adding a feedback compensation amount to the above basic energization start time.

「発明が解決しようとする課題」 しかしながら、前記従来システムにおいて三方電磁弁に
高電圧を供給する高電圧発生部が、何らかの原因で故障
を生じ、高電圧を供給できなくなった場合は、開弁の応
答性が悪化し燃料噴射の時期及び噴射量に対する制御精
度が低下して、燃料のリークが増え燃費悪化をひきおこ
すばかりでなく、エンジン負荷が大きくコモンレール圧
が高い場合には、三方電磁弁が吸引力不足で開弁ぜず燃
料噴射が不可能となってエンジン停止に至る等の問題点
がある。
``Problems to be Solved by the Invention'' However, in the conventional system, if the high voltage generator that supplies high voltage to the three-way solenoid valve malfunctions for some reason and is no longer able to supply high voltage, it is difficult to open the valve. Not only does responsiveness deteriorate and control accuracy for fuel injection timing and injection amount decreases, resulting in increased fuel leakage and poor fuel efficiency, but also when the engine load is large and the common rail pressure is high, the three-way solenoid valve There are problems such as the valve not opening due to insufficient power, making it impossible to inject fuel, leading to the engine stopping.

本発明は、前記問題点を解決するためになされたもので
、高電圧発生部が故障した場合には、高圧のコモンレー
ル圧を降圧して、車載電源電圧により電磁弁の開閉を制
御できる燃料噴射制御装置を提供することを目的とする
ものである。
The present invention has been made in order to solve the above-mentioned problems, and is a fuel injection system that can reduce the high common rail pressure and control the opening and closing of the solenoid valve using the on-vehicle power supply voltage when the high voltage generation section fails. The purpose of this invention is to provide a control device.

「課題を解決するための手段」 前記目的を達成するための具体的手段は、高い所定圧の
燃料をコモンレール内に蓄圧し、この燃料を開弁により
噴射ノズルから内燃機関の各気筒に噴射する電磁弁と、
該電磁弁を駆動する電磁弁駆動回路とからなる燃料噴射
制御装置において、該電磁弁駆動回路は車載電源電圧を
超える高電圧を印加する高電圧発生手段と、電磁弁の動
作状態をホールドするための一定@流を該電磁弁に供給
する定電流回路と、電磁弁の開閉を制御するスイッチン
グ回路を含み、さらに前記高電圧発生手段の異常を検出
する異常検出手段と、その異常検出により車載電源電圧
で電磁弁を開弁できるよう前記コモンレール内の燃料圧
を降圧する圧力制御手段とを設けたことを特徴とするも
のである。
"Means for Solving the Problem" The specific means for achieving the above objective is to accumulate fuel at a high predetermined pressure in a common rail, and inject this fuel from an injection nozzle into each cylinder of an internal combustion engine by opening the valve. solenoid valve and
In a fuel injection control device comprising a solenoid valve drive circuit for driving the solenoid valve, the solenoid valve drive circuit includes a high voltage generating means for applying a high voltage exceeding the on-vehicle power supply voltage, and a means for holding the operating state of the solenoid valve. It includes a constant current circuit that supplies a constant @ current to the solenoid valve, and a switching circuit that controls the opening and closing of the solenoid valve, and further includes an abnormality detection means that detects an abnormality in the high voltage generation means, and an on-vehicle power supply by the abnormality detection. The present invention is characterized in that it includes pressure control means for reducing the fuel pressure in the common rail so that the solenoid valve can be opened by voltage.

「作用」 前記具体的手段によれば、高電圧発生手段の異常を異常
検出手段が検出すると、圧力制御手段がコモンレール内
の燃料圧を、車載電源電圧により電磁弁が開弁可能な圧
力にまで降圧し、燃料噴射を継行していわゆる退避走行
を可能にする。
"Operation" According to the specific means, when the abnormality detection means detects an abnormality in the high voltage generation means, the pressure control means increases the fuel pressure in the common rail to a pressure at which the solenoid valve can open using the onboard power supply voltage. The pressure is lowered and fuel injection continues to enable so-called evacuation driving.

「実施例」 本発明の実施例を第1〜第3図に基づいて説明する。"Example" Embodiments of the present invention will be described based on FIGS. 1 to 3.

第1図は、本発明装置の回路構成図であって、ブロック
10.ブロック20.ブロック30で構成される従来の
回路にブロック40を追加したものである。ブロック1
0は高電圧発生部、ブロック20は三方電磁弁Vl、 
V2・・・VN(以下区別して説明しない場合は単に■
という)のプルイン後のホールド電流18を供給するた
めの定電流回路部、ブロック30は三方電磁弁の駆動制
御部、ブロック40は高電圧発生部10の異常検出回路
部である。
FIG. 1 is a circuit diagram of the device of the present invention, and shows block 10. Block 20. A block 40 is added to the conventional circuit composed of a block 30. block 1
0 is a high voltage generator, block 20 is a three-way solenoid valve Vl,
V2...VN (If not explained separately below, simply ■
block 30 is a drive control section for the three-way solenoid valve, and block 40 is an abnormality detection circuit section for the high voltage generation section 10.

高電圧発生部10は、チャージ電流制御回路11および
電流検出回路12を包含している。端子1には三方電磁
弁■の0N−OFFを制御する気笛毎に分配された駆動
パルスτ1.τ2・・・τN(以下単にτという)が印
加される。端子2には、高電圧発生部10を動作させる
ためのチャージパルスPLSが印加される。駆動パルス
でとチャージパルスPLSは、機関の燃料噴射量、燃料
噴射時期を演算するECU3Oにより、適切な位相で出
“力されている。すなわち、駆動パルスτに先立って、
チャージパルスPLSを入力した高電圧発生部10は、
エネルギーを一時蓄積するためのコイルL1を流れる電
流をスイッチングすることにより、高電圧蓄積手段をな
すコンデンサC1に高電圧を発生させる0本実施例では
第2図におけるチャージ電圧V’CNQの波形にも示す
通り、電圧を5度に分けて昇圧している。三方電磁弁駆
動制御部30において、端子1に印加される駆動パルス
τが高電位になると、MO3形電界効果トランジスタF
ETIが導通状態になり、同時にサイリスタTH2がト
リガされ、コンデンサC1にあらかじめ高圧蓄積された
電荷は、サイリスタTH2三方電磁弁V、MO8形電界
効果トランジスタFET1.および抵抗R1を通じて急
速に放電されるため、三方電磁弁Vを流れる電流も急速
に立ち上がりピーク電流i pに達する。放電を終了す
ると電流はしだいに減衰しあらかじめ設定されているホ
ールド電流i−のレベルに達する。このホールド電流i
、lのレベルは、開弁後の状態を保つのに十分な吸引力
を発生し、かつ熱の発生を少なくでき、MO8形電界効
果トランジスタFETIのオフ時には、電流が十分速く
減衰するレベルに設定されている。ピーク電流i pか
らホールド電流1 ++に減衰した後は、三方電磁弁V
をホールドするために一定のホールド電流i Mが定電
流回路部2゜より三方電磁弁Vに供給される。この定1
!流回路部20は、パワー素子の発熱を抑えるためスイ
ッチングタイプを採用している。ホールド電流i。
High voltage generation section 10 includes a charge current control circuit 11 and a current detection circuit 12. Terminal 1 receives a drive pulse τ1. which is distributed for each whistle to control ON-OFF of the three-way solenoid valve ■. τ2...τN (hereinafter simply referred to as τ) are applied. A charge pulse PLS for operating the high voltage generator 10 is applied to the terminal 2 . The drive pulse and the charge pulse PLS are output with appropriate phases by the ECU 3O, which calculates the fuel injection amount and fuel injection timing of the engine. That is, prior to the drive pulse τ,
The high voltage generation section 10 that receives the charge pulse PLS,
By switching the current flowing through the coil L1 for temporarily storing energy, a high voltage is generated in the capacitor C1 which forms the high voltage storage means. In this embodiment, the waveform of the charge voltage V'CNQ in FIG. As shown, the voltage is increased in 5 steps. In the three-way solenoid valve drive control section 30, when the drive pulse τ applied to the terminal 1 becomes a high potential, the MO3 type field effect transistor F
ETI becomes conductive and at the same time thyristor TH2 is triggered, and the charge previously stored at high voltage in capacitor C1 is transferred to thyristor TH2, three-way solenoid valve V, MO8 field effect transistor FET1. Since the current is rapidly discharged through the resistor R1, the current flowing through the three-way solenoid valve V also rises rapidly and reaches the peak current i p. When the discharge ends, the current gradually attenuates and reaches the preset hold current i- level. This hold current i
, l are set to a level that generates sufficient suction force to maintain the state after the valve is opened, generates less heat, and allows the current to attenuate sufficiently quickly when the MO8 field effect transistor FETI is turned off. has been done. After the peak current i p attenuates to the hold current 1 ++, the three-way solenoid valve V
A constant hold current iM is supplied from the constant current circuit section 2° to the three-way solenoid valve V in order to hold the current. This definition 1
! The flow circuit section 20 employs a switching type in order to suppress heat generation of the power element. Hold current i.

は、ダイオードD1又は、ダイオードD2を通して三方
電磁弁■に供給される。また、三方電磁弁■に流れる電
磁弁電流が抵抗R1間で電流検出回路31により検出さ
れ定電流回路部2oヘフイードバツクされており、駆動
パルスτが低電位になると、MOS形電界効果トランジ
スタFET1はオフし、電磁弁電流は遮断されてホール
ド電流i、Iもオフとなる。
is supplied to the three-way solenoid valve (2) through the diode D1 or the diode D2. In addition, the solenoid valve current flowing through the three-way solenoid valve ■ is detected by the current detection circuit 31 between the resistors R1 and fed back to the constant current circuit section 2o, and when the drive pulse τ becomes a low potential, the MOS field effect transistor FET1 is turned off. However, the solenoid valve current is cut off and the hold currents i and I are also turned off.

ブロック40で示す高電圧発生部10の異常検出回路部
のコンパレータiC1の正入力端子には、抵抗R9を介
して基準電位が入力される。基準電位は定電圧ライン(
5V)と接地間を抵抗R6とR7で分圧することにより
求められ、抵抗R7と並列に安定化のためのコンデンサ
C3が付加されている。コンパレータiC1の負入力端
子には、抵抗R8を介してVo。、。を入力する。V’
Cll6はコンデンサC1の電位VB。を抵抗R4とR
5で分圧することにより求められる。コンパレータLC
Iの出力と正入力端子を接続する抵抗RIO及び正入力
端子と負入力端子の間に挿入されているコンデンサC2
は、ノイズにより誤動作を防止するためのヒステリシス
を与えるためものである。すなわちコンパレータiC1
は、コンデンサC1が昇圧し、負入力端子の電位レベル
が基準電位V□。
A reference potential is input to the positive input terminal of the comparator iC1 of the abnormality detection circuit section of the high voltage generation section 10 indicated by block 40 via the resistor R9. The reference potential is a constant voltage line (
5V) and ground using resistors R6 and R7, and a stabilizing capacitor C3 is added in parallel with resistor R7. Vo is connected to the negative input terminal of the comparator iC1 via a resistor R8. ,. Enter. V'
Cll6 is the potential VB of the capacitor C1. resistor R4 and R
It is obtained by dividing the pressure by 5. Comparator LC
A resistor RIO connects the output of I and the positive input terminal, and a capacitor C2 is inserted between the positive input terminal and the negative input terminal.
is for providing hysteresis to prevent malfunction due to noise. That is, comparator iC1
, the capacitor C1 is boosted and the potential level of the negative input terminal is the reference potential V□.

を越えると、出力■。U?をロウレベルに反転させてE
CU3Oに入力する。F、CU3O内において単安定マ
ルチバイブレータ(東芝製TC;4538)iC2のA
トリガ端子に第2図の電磁弁駆動パルス口を入力すると
ともに、B端子、CD端子をハイレベルに設定すること
により、該バイブレータlC2は駆動パルス口の立ち上
がりで出力Qがローレベルに反転し、以後コンデンサC
4,抵抗R11、ダイオードD5で決定される時間Tだ
けローレベルを維持した後、ハイレベルに復帰する。
If it exceeds, the output ■. U? invert to low level and press E
Input to CU3O. F, A of monostable multivibrator (TC made by Toshiba; 4538) iC2 in CU3O
By inputting the solenoid valve drive pulse port shown in Fig. 2 to the trigger terminal and setting the B and CD terminals to high level, the output Q of the vibrator IC2 is reversed to low level at the rising edge of the drive pulse port. From now on capacitor C
4. After maintaining the low level for a time T determined by the resistor R11 and the diode D5, it returns to the high level.

そして、この出力Q(第21囚)をDタイプフリップフ
ロップiC3のCLOCK端子に入力し、RESET端
子、SET端子をローレベルとし、異常検出回路部40
のコンパレータiC1の出力■。1.をDATA端子に
入力する。これによりCLOCK端子の立ち上がり時の
DATA端子のレベルがQ端子から出力される。従って
、単安定マルチバイブレークiC2の時定数Tを適当に
選ぶと、高電圧発生部10で何らかの原因により必要な
高電圧が発生しない時に、Dタイプフリップフロップi
C3の出力Q(第2図[E])がハイレベルとなる。
Then, this output Q (21st prisoner) is inputted to the CLOCK terminal of the D-type flip-flop iC3, and the RESET and SET terminals are set to low level, and the abnormality detection circuit section 40
Output of comparator iC1 ■. 1. is input to the DATA terminal. As a result, the level of the DATA terminal when the CLOCK terminal rises is output from the Q terminal. Therefore, if the time constant T of the monostable multi-bibreak iC2 is appropriately selected, when the necessary high voltage is not generated in the high voltage generator 10 for some reason, the D type flip-flop i
The output Q of C3 (FIG. 2 [E]) becomes high level.

この出力QをECU3O内のCPUの図示しないょ一ト
、□(以下異常検出ボートという)正入力して異常検出
信号とする。
This output Q is positively inputted to a CPU (not shown) in the ECU 3O (hereinafter referred to as an abnormality detection board) and used as an abnormality detection signal.

前記実施例の回路構成及びその作動、よ、前j己第1.
2図に基づいて説明した通りであって、ECU3OのC
PUに入力されるDタイプフリップ70ツブiC3の出
力Qに基づいて実施されるコモンレール圧力Pcの圧力
制御について、第3図の通電開始時期T2の算出ルーチ
ンのフローチャートに従い説明する。
The circuit configuration of the above embodiment and its operation are as follows.
As explained based on Figure 2, C of ECU3O
Pressure control of the common rail pressure Pc performed based on the output Q of the D-type flip 70 tube iC3 input to the PU will be described with reference to the flowchart of the calculation routine for the energization start time T2 in FIG.

コモンレール圧力Pcの圧力制御は、高圧フィードポン
プの電磁弁の開閉により行うもので、最終的には電磁弁
への通電開始時期T、を算出し、このタイミングで出力
されるポンプ電磁弁制御パルスによりポンプの電磁弁を
開弁することにより行う。
Pressure control of the common rail pressure Pc is performed by opening and closing the solenoid valve of the high-pressure feed pump.Finally, the timing T to start energizing the solenoid valve is calculated, and the pump solenoid valve control pulse output at this timing is used to control the common rail pressure Pc. This is done by opening the solenoid valve of the pump.

まず、ステップ5100(以下ステップを省略する)で
、異常検出ボートP1のレベルがハイレベルかローレベ
ルかを判断する。ローレベルであれば5101へ進み、
エンジン回転数Neと指令噴射量Q Fll+の二次元
マツプより補間にて求められた値を、水温補正し指令噴
射圧P Fll+を算出する。前記5100でハイレベ
ルであれば5102へ進む、5102では、車載電源電
圧で三方電磁弁Vが駆動可能なコモンレール圧に指令噴
射圧P2、を設定する。具体的にはP、□< 60 M
 P aとする。続いて8103では、指令噴射圧P 
y+++と指令噴射量Q、□の二次元マツプより補間に
て高圧フィードポンプの基本的電磁弁通電タイミングT
□□、を算出する。また5104では、実コモンレール
圧Paと指令噴射圧PFII+の差分に応じたPID制
御によりフィードバック補償i”ry、、を求める。続
いて5105へ進み、前記5103及び5104で算出
されたT、□□とT、□に基づいて高圧フィードポンプ
の電磁弁通電開始時期T2を算出する。
First, in step 5100 (hereinafter steps will be omitted), it is determined whether the level of the abnormality detection boat P1 is high level or low level. If the level is low, proceed to 5101,
A value obtained by interpolation from a two-dimensional map of the engine rotational speed Ne and the commanded injection amount Q Fll+ is corrected for water temperature to calculate the commanded injection pressure P Fll+. If the level is high in step 5100, the process proceeds to step 5102. In step 5102, the command injection pressure P2 is set to the common rail pressure at which the three-way solenoid valve V can be driven by the on-vehicle power supply voltage. Specifically, P, □< 60 M
Let it be P a. Subsequently, in 8103, the command injection pressure P
The basic solenoid valve energization timing T of the high-pressure feed pump is determined by interpolation from the two-dimensional map of y+++, commanded injection amount Q, and □.
Calculate □□. In addition, in 5104, feedback compensation i"ry, is calculated by PID control according to the difference between the actual common rail pressure Pa and the commanded injection pressure PFII+. Next, the process proceeds to 5105, where T, □□ calculated in 5103 and 5104, and Based on T and □, the solenoid valve energization start timing T2 of the high-pressure feed pump is calculated.

前記高電圧発生部10の故障が、cPUの異常検出ボー
トP1により検出されると、高圧フィードポンプの電磁
弁通電開始時期T、の算出基準となる指令噴射圧P、1
.が60MPa未満に設定される。このため算出された
T2のタイミングでボンブ電磁弁を開くと、高圧フィー
ドポンプにより発生する実コモンレール圧Peが降圧し
て、車載電源電圧を印加される三方電磁弁■が開弁可能
となる。
When a failure of the high voltage generating section 10 is detected by the abnormality detection boat P1 of the cPU, the command injection pressure P,1, which is the standard for calculating the timing T for starting energization of the solenoid valve of the high pressure feed pump, is
.. is set to less than 60 MPa. Therefore, when the bomb electromagnetic valve is opened at the calculated timing T2, the actual common rail pressure Pe generated by the high-pressure feed pump is reduced, and the three-way electromagnetic valve (2) to which the on-vehicle power supply voltage is applied can be opened.

高電圧発生部10の異常を検出する他の実施例として、
前記第1図に示すコンパレータIC1のV OLl ?
のレベルを直接監視することにより行う方法がある。
As another embodiment for detecting an abnormality in the high voltage generating section 10,
V OLl ? of the comparator IC1 shown in FIG. 1 above?
One method is to directly monitor the level of

まず第4図に示す通り、エンジンの回転角を検出する回
転センサの15℃A信号(以後Neパルスという)に番
号を付ける。Gl信号入力直後のNeパルス立ち上がり
を第1気筒のNeパルス番号を0番とし、以後Neパル
スの立ち上がり毎にNeパルス番号をカウントアツプし
てい(、Neパルス番号7番の次はカウントをリセット
し、点火順序に従い第5気筒のNeパルス番号0番とす
る。G2信号入力直後のNeパルスの立ち上がりは第6
気隨のNeパルス番号0番とし、以下、前記の方法に基
づいてNeパルスに番号を付す、そこで、例えばNeパ
ルス7番目の立ち上がりで■。u7のレベルを見れば、
第1実施例で説明したようにローレベルならコンデンサ
C1が高電位となり、高電位発生部10が正常、ハイレ
ベルなら異常とみなすことができる。それ以後の処理は
、前記第1実施例の場合と同様にする。
First, as shown in FIG. 4, numbers are assigned to the 15°C A signal (hereinafter referred to as Ne pulse) of the rotation sensor that detects the rotation angle of the engine. The Ne pulse number of the first cylinder is set to 0 at the rise of the Ne pulse immediately after the Gl signal is input, and the Ne pulse number is counted up every time the Ne pulse rises thereafter (the count is reset after Ne pulse number 7). According to the ignition order, the Ne pulse number of the fifth cylinder is set to 0.The rise of the Ne pulse immediately after the input of the G2 signal is the sixth cylinder.
The current Ne pulse number is set to 0, and the Ne pulses are numbered based on the method described above. Therefore, for example, at the rising edge of the seventh Ne pulse. If you look at the level of u7,
As explained in the first embodiment, when the level is low, the capacitor C1 becomes a high potential, and the high potential generating section 10 is considered normal, and when the level is high, it is considered abnormal. The subsequent processing is the same as in the first embodiment.

前記技術手段に基づくコモンレール圧の降圧制御処理を
第5図及び第6図に示すフローチャートにより説明する
The common rail pressure step-down control process based on the above technical means will be explained with reference to the flowcharts shown in FIGS. 5 and 6.

第5図のNe割り込み処理ルーチンにおいて、Neパル
スの番号を8200で7番かどうかを判断する。7番目
でなければNoで何も処理をせず、7番目であればYE
Sで8201へ進み異常検出ボートP1に接続された■
。。、のレベルがハイレベルであるか否かを判断する。
In the Ne interrupt processing routine shown in FIG. 5, it is determined whether the Ne pulse number is 8200 and is number 7. If it's not the 7th, say No and do nothing, if it's the 7th, say YE.
Proceed to 8201 with S and connect to abnormality detection boat P1 ■
. . It is determined whether the level of , is high level or not.

ローレベルであれば5202で異常フラグを「0」にセ
ットし、ハイレベルであれば8203で「1」にセット
する。また、第6図の電磁弁通電開始時期T、の算出ル
ーチンにおいて、5300で異常フラグのセット状態を
判断し、異常フラグが「1」にセットされていれば53
02へ進み、指令噴射圧PFIMを60MPa未溝で制
カナるようにする。異常フラグが「0」にセットされて
いれば8301以下の通常通りの制御を行う、以後53
01〜5305の各ステップは、第1の実施例と同様で
あるので説明を省略する。
If the level is low, the abnormality flag is set to "0" in step 5202, and if it is high, it is set to "1" in step 8203. In addition, in the calculation routine for the solenoid valve energization start timing T shown in FIG.
Proceed to step 02, and set the command injection pressure PFIM to 60 MPa. If the abnormality flag is set to "0", normal control from 8301 onwards will be performed, from now on 53
Each step from 01 to 5305 is the same as in the first embodiment, so the explanation will be omitted.

前記技術手段によれば、コンパレータlc1のV 01
1?のレベルを、直接監視することによりコモンレール
圧の降圧制御が可能となり、ECU内における単安定バ
イブレータtc2及びDタイプフリップフロップiC3
の回路構成を省略することができる。
According to the said technical means, V 01 of comparator lc1
1? Step-down control of the common rail pressure is possible by directly monitoring the level of the monostable vibrator tc2 and D type flip-flop iC3 in the ECU
The circuit configuration of can be omitted.

尚、前記高電圧発生部10及びその異常検出手段等につ
いては、実施例手段に限定されるものではない。
Note that the high voltage generating section 10 and its abnormality detecting means are not limited to the means of the embodiment.

「発明の効果J 本発明は、前記具体的手段及び作用の説明で明らかにし
たように、高電圧発生手段の異常を異常検出手段が検出
すると、圧力制御手段がコモンレール内の燃料圧を、車
載電源電圧により電磁弁が開弁可能な圧力にまで降圧し
、燃料噴射を継杆していわゆる退避走行を可能にするこ
とができ、フェイルセーフの思想を実現できる等の優れ
た効果がある。
``Effect of the Invention J'' As clarified in the explanation of the specific means and operation described above, the present invention provides that when the abnormality detection means detects an abnormality in the high voltage generation means, the pressure control means controls the fuel pressure in the common rail on the vehicle. The power supply voltage lowers the pressure to a level that allows the solenoid valve to open, and continues fuel injection to enable so-called evacuation driving, which has excellent effects such as realizing the concept of fail-safe.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図は回路構成図
、第2図は作動を説明するタイムチャート、第3図は通
電開始時期T、の算出ルーチンのフローチャート、第4
図は他の異常検出手段の作動を示すタイムチャート、第
5図はNe割り込み処理ルーチンを示すフローチャート
、第6図は他の実施例における通電開始時期T、の算出
ルーチンを示すフローチャート、第7図は従来システム
の全体構成図、第8図はその作動を示すタイムチャート
であって、併せてECU内のブロック図を示したもので
ある。 10、、、高電圧発生部、 20.、、定電流回路、3
0 、、、三方電磁弁駆動制御部、 40 、、、異常
検出回路部、 50.、、ECU、  Ll、、、コイ
ル、C1、、、コンデンサ、 V、V+、Vz・・・V
w、、、三方電磁弁、 i C1、、、コンパレータ、 ic2.。 、単安定マルチバイブレータ、 i C3、、、Dタイ プフリップフロップ。 第 図 T、X出ルーチン 第 図 第 図
The accompanying drawings show an embodiment of the present invention, and FIG. 1 is a circuit configuration diagram, FIG. 2 is a time chart explaining the operation, FIG. 3 is a flowchart of a routine for calculating the energization start time T, and FIG.
5 is a flowchart showing the Ne interrupt processing routine, FIG. 6 is a flowchart showing the calculation routine for the energization start timing T in another embodiment, and FIG. 7 is a time chart showing the operation of another abnormality detection means. 8 is an overall configuration diagram of the conventional system, and FIG. 8 is a time chart showing its operation, and also shows a block diagram inside the ECU. 10., High voltage generation section, 20. ,, constant current circuit, 3
0. Three-way solenoid valve drive control section 40. Abnormality detection circuit section 50. ,, ECU, Ll, , Coil, C1, , Capacitor, V, V+, Vz...V
w, 3-way solenoid valve, i C1, , comparator, ic2. . , monostable multivibrator, i C3, , D type flip-flop. Figure T, X output routine Figure Figure

Claims (1)

【特許請求の範囲】[Claims]  高い所定圧の燃料をコモンレール内に蓄圧し、この燃
料を開弁により噴射ノズルから内燃機関の各気筒に噴射
する電磁弁と、該電磁弁を駆動する電磁弁駆動回路とか
らなる燃料噴射制御装置において、該電磁弁駆動回路は
車載電源電圧を超える高電圧を印加する高電圧発生手段
と、電磁弁の動作状態をホールドするための一定電流を
該電磁弁に供給する定電流回路と、電磁弁の開閉を制御
するスイッチング回路を含み、さらに前記高電圧発生手
段の異常を検出する異常検出手段と、その異常検出によ
り車載電源電圧で電磁弁を開弁できるよう前記コモンレ
ール内の燃料圧を降圧する圧力制御手段とを設けたこと
を特徴とする燃料噴射制御装置。
A fuel injection control device consisting of a solenoid valve that stores fuel at a high predetermined pressure in a common rail and injects the fuel from an injection nozzle into each cylinder of an internal combustion engine by opening the valve, and a solenoid valve drive circuit that drives the solenoid valve. In the solenoid valve drive circuit, the solenoid valve drive circuit includes a high voltage generating means that applies a high voltage exceeding the on-vehicle power supply voltage, a constant current circuit that supplies the solenoid valve with a constant current to hold the operating state of the solenoid valve, and a solenoid valve. further includes an abnormality detection means for detecting an abnormality in the high voltage generating means, and upon detection of the abnormality, lowering the fuel pressure in the common rail so that the solenoid valve can be opened using the on-vehicle power supply voltage. 1. A fuel injection control device comprising: pressure control means.
JP63184233A 1988-07-22 1988-07-22 Fuel injection control device Expired - Lifetime JP2606306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184233A JP2606306B2 (en) 1988-07-22 1988-07-22 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184233A JP2606306B2 (en) 1988-07-22 1988-07-22 Fuel injection control device

Publications (2)

Publication Number Publication Date
JPH0233449A true JPH0233449A (en) 1990-02-02
JP2606306B2 JP2606306B2 (en) 1997-04-30

Family

ID=16149704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184233A Expired - Lifetime JP2606306B2 (en) 1988-07-22 1988-07-22 Fuel injection control device

Country Status (1)

Country Link
JP (1) JP2606306B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201294A (en) * 1991-02-27 1993-04-13 Nippondenso Co., Ltd. Common-rail fuel injection system and related method
JP2007205249A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017398A (en) * 2000-08-30 2002-03-07 박상록 Circuit for protection against excess high-pressure occurrence of common rail in diesel fuel injection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201294A (en) * 1991-02-27 1993-04-13 Nippondenso Co., Ltd. Common-rail fuel injection system and related method
JP2007205249A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection control device

Also Published As

Publication number Publication date
JP2606306B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US8649151B2 (en) Injector drive circuit
US8599530B2 (en) Electromagnetic valve driving circuit
JP4776651B2 (en) Internal combustion engine control device
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
JP4251201B2 (en) Injector drive device
US6026780A (en) Method for controlled transition between use of different injection waveform types in a hydraulically-actuated electronically-controlled fuel injection system
US7234439B2 (en) Fuel injection system executing overlap injection operation
JP4071838B2 (en) Method and apparatus for control of an internal combustion engine
JP3384000B2 (en) Fuel injection control device for internal combustion engine
JP6292143B2 (en) vehicle
JPH0233449A (en) Fuel injection control device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
JPS6098146A (en) Fuel control method of internal-combustion engine
JP2003322050A (en) Boosting type fuel injection device
JP3694950B2 (en) Fuel injection valve drive circuit for multi-cylinder direct injection engines
JP6844501B2 (en) Fuel injection valve control device and fuel injection valve control method
JP3052572B2 (en) Fuel injection control device for internal combustion engine
US5934258A (en) Fuel injector control system for cylinder injection type internal combustion engine
JPS639657A (en) Optimal pilot injection controller for diesel engine
JPH1162677A (en) Solenoid valve driving device
JPS5832937A (en) Fuel supply unit in internal-combustion engine
JP2004144079A (en) Fuel injection control system of reduced emission
JP2012102658A (en) Fuel injection control device of internal combustion engine
JP2001107784A (en) Injector driving circuit
JPS59211727A (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12