JPH02311452A - Diisocyanate compound - Google Patents
Diisocyanate compoundInfo
- Publication number
- JPH02311452A JPH02311452A JP13347689A JP13347689A JPH02311452A JP H02311452 A JPH02311452 A JP H02311452A JP 13347689 A JP13347689 A JP 13347689A JP 13347689 A JP13347689 A JP 13347689A JP H02311452 A JPH02311452 A JP H02311452A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- reaction
- catalyst
- diisocyanate
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 Diisocyanate compound Chemical class 0.000 title claims abstract description 83
- 239000000460 chlorine Substances 0.000 claims abstract description 25
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 25
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 125000005442 diisocyanate group Chemical group 0.000 claims description 20
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical group CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 59
- 239000003054 catalyst Substances 0.000 abstract description 51
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 abstract description 18
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 abstract description 16
- 150000001412 amines Chemical class 0.000 abstract description 9
- 239000004814 polyurethane Substances 0.000 abstract description 8
- 229920002635 polyurethane Polymers 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 8
- 150000004985 diamines Chemical class 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 238000006471 dimerization reaction Methods 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 84
- 239000002904 solvent Substances 0.000 description 36
- 238000009835 boiling Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 238000004821 distillation Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 239000006227 byproduct Substances 0.000 description 13
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000012948 isocyanate Substances 0.000 description 9
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 8
- 229940071125 manganese acetate Drugs 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 6
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 4
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000007259 addition reaction Methods 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012045 crude solution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 235000002867 manganese chloride Nutrition 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 229940099607 manganese chloride Drugs 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 238000005829 trimerization reaction Methods 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- JQCVPZXMGXKNOD-UHFFFAOYSA-N 1,2-dibenzylbenzene Chemical compound C=1C=CC=C(CC=2C=CC=CC=2)C=1CC1=CC=CC=C1 JQCVPZXMGXKNOD-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- NFDXQGNDWIPXQL-UHFFFAOYSA-N 1-cyclooctyldiazocane Chemical compound C1CCCCCCC1N1NCCCCCC1 NFDXQGNDWIPXQL-UHFFFAOYSA-N 0.000 description 1
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- QGBLCIBATKETJC-UHFFFAOYSA-N 3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;manganese(2+) Chemical compound [Mn+2].O1B([O-])OB2OB([O-])OB1O2 QGBLCIBATKETJC-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical class C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- YPKYLZFGWKOVDZ-UHFFFAOYSA-N 6-methylheptane-1,6-diamine Chemical compound CC(C)(N)CCCCCN YPKYLZFGWKOVDZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CKDWPUIZGOQOOM-UHFFFAOYSA-N Carbamyl chloride Chemical compound NC(Cl)=O CKDWPUIZGOQOOM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000006841 cyclic skeleton Chemical group 0.000 description 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 229940077478 manganese phosphate Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 125000006626 methoxycarbonylamino group Chemical group 0.000 description 1
- DXZCANUBKZARPR-UHFFFAOYSA-N methyl n-[6-(methoxycarbonylamino)hexyl]carbamate Chemical compound COC(=O)NCCCCCCNC(=O)OC DXZCANUBKZARPR-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規なジイソシアネート化合物に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to novel diisocyanate compounds.
さらに詳しくは、塩素分の含有率が一定値以下。More specifically, the chlorine content is below a certain value.
具体的には10ppm以下である新規なジイソシアネー
ト化合物に関する。Specifically, it relates to a novel diisocyanate compound having a concentration of 10 ppm or less.
(技術の背景)
イソシアネート化合物は工業的に有用な化合物であり、
中でもジイソシアネート化合物はポリウレタンの原料と
して特に有用である。(Technical background) Isocyanate compounds are industrially useful compounds,
Among these, diisocyanate compounds are particularly useful as raw materials for polyurethane.
(従来技術)
今日、ジイソシアネート化合物は、工業的には全量が、
アミン化合物とホスゲンとの反応により製造されている
。(Prior art) Today, industrially, the total amount of diisocyanate compounds is
It is produced by the reaction of an amine compound and phosgene.
周知のように、ホスゲンは選択性の高い反応性の物質で
ある。As is well known, phosgene is a highly selective and reactive substance.
しかし、同時に強い毒性も有し、その取扱いには厳重な
管理が必要である。However, it is also highly toxic, and its handling requires strict management.
したがって、ホスゲンを用いる製造を続ける限り、ホス
ゲンの漏洩に伴う災害の危険を皆無にすることは不可能
である。Therefore, as long as production using phosgene continues, it is impossible to completely eliminate the risk of disasters associated with phosgene leakage.
また、アミン化合物とホスゲンとの反応により製造され
たジイソシアネート化合物は、未反応のホスゲン、反応
副生物であるクロルフォルメート。In addition, the diisocyanate compound produced by the reaction of an amine compound and phosgene contains unreacted phosgene and chloroformate, which is a reaction by-product.
あるいは反応中間体であるモノおよびジカルバモイルク
ロライド化合物等の不純物を含んでいる。Alternatively, it contains impurities such as mono- and dicarbamoyl chloride compounds that are reaction intermediates.
(発明が解決しようとする課題)
さらにホスゲン化反応の副生物である塩化水素または塩
素を不純物として含んでいる。(Problems to be Solved by the Invention) Furthermore, hydrogen chloride or chlorine, which is a byproduct of the phosgenation reaction, is contained as an impurity.
通常、上記塩化水素または塩素はジイソシアネ−ト化合
物中に全塩素分として1100ppを越えるオーダーで
含まれている。Usually, the above-mentioned hydrogen chloride or chlorine is contained in the diisocyanate compound in an order of over 1100 pp as a total chlorine content.
たとえ、上記程度の濃度であっても塩化水素または塩素
がジイソシアネート化合物中に混じっていると以下のよ
うな問題がある。Even if the concentration is at the above level, if hydrogen chloride or chlorine is mixed in the diisocyanate compound, the following problems will occur.
すなわち、ジイソシアネート化合物の最大の用途である
ポリウレタン工業における製品、具体的には塗料、エラ
ストマー、フオーム等に導入されることになり様々な弊
害をおよぼすことになる。That is, they are introduced into products in the polyurethane industry, where diisocyanate compounds are most commonly used, specifically in paints, elastomers, foams, etc., causing various problems.
たとえば、モノカルバモイルクロライド化合物はジイソ
シアネート化合物とジオールとのウレタン化反応におい
て末端基となってポリウレタンの高分子量化を阻害する
。For example, a monocarbamoyl chloride compound becomes a terminal group in the urethanization reaction between a diisocyanate compound and a diol, and inhibits the increase in the molecular weight of polyurethane.
さらに、上記塩素または塩素化合物は水または空気中の
水分と反応して一部塩素イオンになるが。Furthermore, the above-mentioned chlorine or chlorine compound reacts with water or moisture in the air to partially become chlorine ions.
この塩素イオンも各種のポリウレタン製品の製造あるい
は使用に悪影響をおよぼす。These chlorine ions also have an adverse effect on the production or use of various polyurethane products.
たとえば、ウレタン化反応の際に用いるジブチルスズジ
ラウレート、ジオクチルスズジラウレート等のスズ化合
物、酢酸マンガン、オクチル酸スズ、オクチル酸亜鉛等
の金属塩、ジアザビシクロウンデセン、トリエチルアミ
ン、ジアザビシクロオクタン、ジエチルアミノエタノー
ル等の3級アミン等のウレタン化触媒はルイス塩基に類
別されるものであるが、これらの触媒は塩素イオンと共
存下では中和されるか、あるいは分解する。For example, tin compounds such as dibutyltin dilaurate and dioctyltin dilaurate used in the urethanization reaction, metal salts such as manganese acetate, tin octylate, and zinc octylate, diazabicycloundecene, triethylamine, diazabicyclooctane, and diethylaminoethanol. Urethanization catalysts such as tertiary amines are classified as Lewis bases, but these catalysts are neutralized or decomposed in the coexistence with chlorine ions.
したがって、ホスゲンを用いる方法で製造されたジイソ
シアネート化合物を用いる場合、ウレタン化触媒は塩素
イオンで阻害される全以上を添加することになり、過剰
の触媒を用いることになっていた。Therefore, when using a diisocyanate compound produced by a method using phosgene, more than all of the urethanization catalyst that is inhibited by chlorine ions must be added, and an excess amount of the catalyst must be used.
また、たとえば、ジイソシアネート化合物を用いたウレ
タン塗料中に塩素イオンが含まれることになり、ウレタ
ン塗料を塗布した金属素材の腐蝕や塗膜自信にブリスタ
ー等を生じ易くなる。Further, for example, chlorine ions are contained in urethane paints using diisocyanate compounds, which tends to cause corrosion of metal materials coated with urethane paints and blisters on the paint film itself.
以上のように塩素または塩素化合物を含有しているジイ
ソシアネート化合物は製造上、または用途上鏝つかの問
題があった。As mentioned above, diisocyanate compounds containing chlorine or chlorine compounds have problems in production or use.
なお、この塩素分を経済的に除去できる方法は現在では
見出されていない。Note that no method has been found to date that can economically remove this chlorine content.
(発明の目的)
本発明の目的は、塩素または塩素化合物の含有量が一定
の数値以下にコントロールされたジイソシアネート化合
物を供給することにある。(Object of the Invention) An object of the present invention is to provide a diisocyanate compound in which the content of chlorine or chlorine compounds is controlled to be below a certain value.
このような状況下1本発明者らは鋭意検討した結果5本
発明を完成させた。Under these circumstances, the inventors of the present invention have completed the present invention as a result of intensive studies.
(発明の構成)
すなわち2本発明は
「塩素分の含有率が10ppm以下であることを特徴と
するジイソシアネート化合物」
である。(Structure of the Invention) That is, the second invention is "a diisocyanate compound characterized by having a chlorine content of 10 ppm or less."
アミンをジメチルカーボネートと反応させてウレタン化
合物とし、さらに熱分解してジイソシアネート化合物を
得る方法により上記の目的を達成することができる。The above object can be achieved by a method of reacting an amine with dimethyl carbonate to form a urethane compound and further thermally decomposing it to obtain a diisocyanate compound.
この反応は2段の反応からなっており、それぞれ反応式
で表わすと以下のようになる。This reaction consists of two stages, each represented by the following reaction formula.
第1段反応 R(N H) + n CHa OCOCH3n R(N HCOCH) + n CHa OHn 第2段反応 R(NHCOCH3)。1st stage reaction R(NH) + n CHa OCOCH3n R (N HCOCH) + n CHa OHn 2nd stage reaction R(NHCOCH3).
R(N−C−〇 ) + n CH30H■
まず、第1段反応においてナトリウムメチラートなどの
塩基性物質を触媒として使用し、ジメチルカーボネート
化合物とジアミンを反応モル比率2〜50で反応させて
ウレタン化合物を合成する。R(N-C-〇) + n CH30H■ First, in the first stage reaction, a basic substance such as sodium methylate is used as a catalyst, and a dimethyl carbonate compound and a diamine are reacted at a reaction molar ratio of 2 to 50 to form urethane. Synthesize a compound.
ジメチルカーボネートは、市販品をそのまま、又は必要
な場合は精製して用いられる。Dimethyl carbonate is used as a commercially available product, or after purification if necessary.
アミン化合物は、化学的反応性から、芳香族アミン化合
物と脂肪族アミン化合物に分類される。Amine compounds are classified into aromatic amine compounds and aliphatic amine compounds based on their chemical reactivity.
特に好ましく用いられるのは脂肪族アミン化合物である
。Particularly preferably used are aliphatic amine compounds.
脂肪族アミンは、分子内に脂環式骨格を有する脂環式ア
ミン化合物と、鎖状の骨格を持つ鎖状脂肪族アミンに分
類され、鎖状脂肪族アミンにも好適に応用できるが、脂
環式アミンが特に適している。本発明に用い得るアミン
化合物としては、以下のようなアミンを例として挙げる
ことができる。Aliphatic amines are classified into alicyclic amine compounds that have an alicyclic skeleton in the molecule and chain aliphatic amines that have a chain skeleton, and can be suitably applied to chain aliphatic amines. Cyclic amines are particularly suitable. Examples of amine compounds that can be used in the present invention include the following amines.
脂環式アミンとしては、イソホロンジアミン、1.4−
ジアミノシクロヘキサン、1.3−ビス(アミノメチル
)シクロヘキサン、1.4−ビス(アミノメチル)シク
ロヘキサン、水添4,4゛−ジアミノジフェニルメタン
、水添トルイレンジアミンなどがある。As the alicyclic amine, isophoronediamine, 1.4-
Examples include diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, hydrogenated 4,4'-diaminodiphenylmethane, and hydrogenated toluylenediamine.
これらから有用な環状骨格を有するジイソシアネートが
合成されるので価値が高く、中でもイソホロンジアミン
を出発原料として最終生成物である耐候性に優れたジイ
ソシアネート化合物であるイソホロンジイソシアネート
を製造することは工業的価値がある。Diisocyanates with useful cyclic skeletons can be synthesized from these, so they are of high value. Among them, it is of industrial value to produce isophorone diisocyanate, a diisocyanate compound with excellent weather resistance, as the final product using isophorone diamine as a starting material. be.
イソホロンジアミンには、アミノ基−NH2とアミノメ
チル基−CH2NH2がシクロヘキサン環において、シ
ス位にあるものとトランス位にあるものがあるが、どち
らの異性体も本発明の原料として用いられ、市販のイソ
ホロンジアミンのように、シス体、トランス体の混合物
であっても何ら差支えない。Isophoronediamine has amino groups -NH2 and aminomethyl groups -CH2NH2 in the cis-position and trans-position in the cyclohexane ring, and both isomers can be used as raw materials for the present invention, and commercially available There is no problem even if it is a mixture of cis and trans forms like isophoronediamine.
アミノ基が飽和の炭素に結合しているジアミンで骨格内
に芳香環を有していても原料として好ましく用いられ1
m−キシリレンジアミン等を例として挙げることができ
る。A diamine in which the amino group is bonded to a saturated carbon and is preferably used as a raw material even if it has an aromatic ring in the skeleton.
Examples include m-xylylene diamine.
鎖状脂肪族アミンとしてはへキサメチレンジアミン、2
,2.4−トリメチルへキサメチレンジアミン、2,4
.4−)ジメチルへキサメチレンジアミン、テトラメチ
レンジアミン、1.12−ジアミノドデカンなどが挙げ
られる。As the chain aliphatic amine, hexamethylene diamine, 2
, 2,4-trimethylhexamethylene diamine, 2,4
.. 4-) Dimethylhexamethylene diamine, tetramethylene diamine, 1,12-diaminododecane, and the like.
芳香族アミンは脂肪族アミンと比較してウレタン化の空
時収率、または収率が劣るが、従来の技術を用いてウレ
タン化して本発明の原料として用い得る。Although aromatic amines have inferior space-time yields or yields for urethanization compared to aliphatic amines, they can be urethanized using conventional techniques and used as the raw material of the present invention.
全てのアミンについてエーテル結合、スルホン基、カル
ボニル基、ハロゲン基など安定な基を骨格中に含んでい
ても差し支えはない。All amines may contain stable groups such as ether bonds, sulfone groups, carbonyl groups, and halogen groups in their skeletons.
これら用いられるアミンは予め水分量をippm未満に
しておくことが好ましい。It is preferable that the moisture content of the amines used be adjusted to less than ippm in advance.
その理由は後述するジメチルカーボネート中の水分と同
様触媒の活性を低下させないようにするためである。The reason for this is to prevent the activity of the catalyst from decreasing as with water in dimethyl carbonate, which will be described later.
また、本発明のイソシアネート化合物の製造方法の第1
段反応において触媒として使用される塩基性物質はアル
カリ金属、アルカリ土類金属のアルコラードであって、
リチウム、ナトリウム、カリウム、カルシウム、バリウ
ムのメチラート、エチラート、ターシャリブチラード等
をその例として挙げることができる。Moreover, the first method of producing an isocyanate compound of the present invention
The basic substances used as catalysts in the step reaction are alcolades of alkali metals and alkaline earth metals,
Examples include methylates, ethylates, tert-butyrates of lithium, sodium, potassium, calcium and barium.
塩基性物質は固体でも、また溶液の状態でも使用される
。Basic substances are used both in solid form and in solution.
上記の物質中、入手が容易で、かつ経済的であることな
どより、ナトリウムメチラートが特に好ましい。Among the above substances, sodium methylate is particularly preferred because it is easily available and economical.
ナトリウムメチラートの本発明における使用量は経済的
に影響を及ぼす量ではなく、必ずしちリサイクル使用を
する必要はない。The amount of sodium methylate used in the present invention is not an economically significant amount, and it is not necessary to recycle it.
したがって、設備は簡単になる。Therefore, the equipment becomes simple.
しかも、ナトリウムメチラートはメタノール溶液晶が市
販されており、取扱も容易である。Furthermore, sodium methylate is commercially available as a methanol solution crystal and is easy to handle.
本発明の製造方法は加圧する必要がなく、常圧で充分実
施できるが、装置構造上の圧力損失を補う程度の加圧条
件でも良好に実施し得る。The manufacturing method of the present invention does not require pressurization and can be carried out satisfactorily at normal pressure, but can also be carried out satisfactorily under pressurized conditions that compensate for the pressure loss due to the structure of the apparatus.
また、ジメチルカーボネート/ジアミンをモル比率2〜
50(ジメチルカーボネート/アミノ基のモル比−1〜
25)にするのが好ましい。In addition, dimethyl carbonate/diamine at a molar ratio of 2 to
50 (dimethyl carbonate/amino group molar ratio -1~
25) is preferable.
特にジメチルカーボネート/アミンのモル比を4以上に
するのが好ましい。In particular, it is preferred that the molar ratio of dimethyl carbonate/amine be 4 or more.
ジメチルカーボネート/アミンのモル比2〜50にする
理由は三量化反応が抑制され、必然的にウレタン化合物
の収率が向上するからである。The reason why the molar ratio of dimethyl carbonate/amine is 2 to 50 is that the trimerization reaction is suppressed and the yield of the urethane compound is inevitably improved.
なお、ジメチルカーボネートの使用量を50倍モル以上
にすると効果的ではなくなる。It should be noted that if the amount of dimethyl carbonate used is 50 times the mole or more, it will not be effective.
使用するジメチルカーボネートは水分量を0゜2%未満
にするのが好ましい。The dimethyl carbonate used preferably has a moisture content of less than 0.2%.
その理由はジメチルカーボネート中の水分が触媒と反応
して金属の水酸化物となり、金属の水酸化物は触媒作用
を有していないため触媒の使用量を増加させる必要があ
るからである。The reason for this is that water in dimethyl carbonate reacts with the catalyst to form metal hydroxides, and since metal hydroxides do not have catalytic activity, it is necessary to increase the amount of catalyst used.
通常の方法で製造されるジメチルカーボネートは比較的
水を溶解する性質があり、水が混入する危険性が高い。Dimethyl carbonate produced by conventional methods has a relatively water-soluble property, and there is a high risk of water contamination.
アルカリ触媒の使用量は、触媒の活性に応じて、反応が
実用的な時間で完結するよう決定される。The amount of alkali catalyst used is determined depending on the activity of the catalyst so that the reaction is completed in a practical time.
ナトリウムメチラートの場合、反応粗液中0゜001〜
5重量%、好ましくは0.1〜3重量%の添加で反応が
進行する。In the case of sodium methylate, the reaction crude liquid contains 0°001~
The reaction proceeds with addition of 5% by weight, preferably 0.1 to 3% by weight.
ナトリウムメチラートの使用量が0.001重量%より
少ないと反応が遅く、また、5重量%より多いと触媒の
析出が問題となり、経済的にも不利となる。When the amount of sodium methylate used is less than 0.001% by weight, the reaction is slow, and when it is more than 5% by weight, precipitation of the catalyst becomes a problem, which is also economically disadvantageous.
反応熱の管理上ジメチルカーボネート中にアミン化合物
を滴下していく方が好ましい。In order to manage the heat of reaction, it is preferable to drop the amine compound into dimethyl carbonate.
反応温度は0℃から反応粗液の沸点までの範囲で選ぶこ
とが実用的に可能であるが、低温では反応が遅く、高温
では副生するメタノールの沸とうが激しくなることから
、30℃〜80℃の範囲で選ぶことが好ましい。It is practically possible to select the reaction temperature in the range from 0°C to the boiling point of the crude reaction liquid, but since the reaction is slow at low temperatures and the boiling of by-product methanol becomes intense at high temperatures, it is recommended to select the reaction temperature from 30°C to the boiling point of the crude reaction liquid. It is preferable to select the temperature within the range of 80°C.
原料が固体の場合や、生成するウレタン化合物の析出を
防止したい場合は溶媒を用いても差支えなく、たとえば
メタノール、エタノール、テトラヒドロフラン、ジオキ
サン、ベンゼン、トルエンなど原料及び生成物に対して
不活性である溶剤を用いることが出来る。When the raw material is solid or when it is desired to prevent the precipitation of the urethane compound produced, there is no problem in using a solvent, such as methanol, ethanol, tetrahydrofuran, dioxane, benzene, toluene, etc., which are inert to the raw material and the product. Solvents can be used.
溶媒は溶解しにくい原料又は生成物を溶解するよう反応
条件に応じて種類、量を選んで使用するが、使用量が多
く、希釈率が高いと反応の進行が遅くなって不利であり
、使用量は溶解に必要な最低量にとどめるのが有利であ
る。The type and amount of solvent is selected and used depending on the reaction conditions so as to dissolve raw materials or products that are difficult to dissolve. However, if the amount used is large or the dilution rate is high, the progress of the reaction will slow down, which is disadvantageous. Advantageously, the amount is kept to the minimum required for dissolution.
生成するウレタン化合物に対して1〜10倍量用いるの
が望ましい。It is desirable to use 1 to 10 times the amount of the urethane compound to be produced.
また、出発原料中のジメチルカーボネート/ジアミン化
合物のモル比が2に近いとき1反応粗液中に生成したウ
レタン化合物の濃度は高くなるので、ウレタン化合物の
結晶性が高いものの場合は析出の危険性を防ぐため溶解
力の高い溶媒を選ぶ必要がある。In addition, when the molar ratio of dimethyl carbonate/diamine compound in the starting material is close to 2, the concentration of the urethane compound produced in the crude solution of one reaction will be high, so if the urethane compound is highly crystalline, there is a risk of precipitation. To prevent this, it is necessary to choose a solvent with high dissolving power.
また、溶媒の沸点は生成するウレタン化合物より10℃
以上沸点の低いものを用いるのが蒸留精製が容易となり
、経済的に有利である。In addition, the boiling point of the solvent is 10°C higher than that of the urethane compound produced.
It is economically advantageous to use a compound having a lower boiling point than that mentioned above because it facilitates distillation and purification.
原料の混合方法では、特にバッチ反応の場合、触媒の添
加方式は第1段反応の進行に伴って連続添加または複数
回の断続分割添加方式にする方が一括添加方式より使用
量を1/2〜1/3にすることができるので好ましい。In the raw material mixing method, especially in the case of batch reactions, it is better to use continuous addition or multiple intermittent divided addition methods as the first-stage reaction progresses to reduce the amount used by half compared to the batch addition method. It is preferable because it can be reduced to ~1/3.
この理由は明らかではないが、実施例に示すように触媒
を反応中に連続的または断続的に追加する方が触媒使用
量が少なくてすむことが見い出された。Although the reason for this is not clear, it has been found that the amount of catalyst used can be reduced if the catalyst is added continuously or intermittently during the reaction as shown in the Examples.
ジアミン触媒の仕込み速度が早いと、副生メタノールの
沸とうが激しくなるので、反応温度とともに、触媒の仕
込み速度を管理する必要がある。If the charging speed of the diamine catalyst is high, the by-product methanol will boil violently, so it is necessary to control the charging speed of the catalyst as well as the reaction temperature.
また、第1段反応を連続式で行なう場合、ジアミン触媒
を反応器の入口だけではなく、反応器の中間部から仕込
む方法をとることもできる。Furthermore, when the first stage reaction is carried out in a continuous manner, the diamine catalyst may be charged not only from the inlet of the reactor but also from the middle of the reactor.
たとえば、数基の完全混合槽に直列に反応粗液を流す場
合などは触媒を6槽に分割して仕込む方法をとることが
できる。For example, when the reaction crude liquid is passed in series into several complete mixing tanks, a method can be adopted in which the catalyst is divided into six tanks and charged.
生成したウレタン化合物粗液は、蒸留、晶析、水洗、再
沈等の一般的精製方法で必要な純度まで精製することが
できる。The produced crude urethane compound liquid can be purified to the required purity using general purification methods such as distillation, crystallization, water washing, and reprecipitation.
中でも、先ずリン酸硫酸、ギ酸、シュウ酸、酢酸などを
用いて塩基性触媒である金属アルコラードに由来するア
ルカリ分を中和後、過剰に添加した酸成分を水洗により
除去する。Among these, first, the alkaline content derived from the metal alcoholade, which is a basic catalyst, is neutralized using phosphoric acid, sulfuric acid, formic acid, oxalic acid, acetic acid, etc., and then the excess added acid component is removed by washing with water.
塩基性触媒はウレタン化合物と一緒に加熱されるとウレ
タン化合物をさらに変化させて目的外の高沸点物に変化
させるので、この中和工程が必要になる。This neutralization step is necessary because when the basic catalyst is heated together with the urethane compound, it further changes the urethane compound into an unintended high boiling point product.
中和上ねで生成した塩の除去は水洗、濾過、遠心分離な
どの一般的方法で可能であり、メタノールの除去操作と
組み合わせて実施される。Salts generated during neutralization can be removed by common methods such as water washing, filtration, and centrifugation, and are carried out in combination with methanol removal.
さらにウレタン化合物をフラッシュ蒸発させて精製する
方式が好ましい。Furthermore, a method in which the urethane compound is purified by flash evaporation is preferred.
次いで、このウレタン化合物を部分水添トリフェニル、
m−ターフェニルのような高沸点溶剤中で触媒となるマ
ンガン、モリブデンなどの金属単体、または化合物をメ
タノール溶液として添加し。Next, this urethane compound was converted into partially hydrogenated triphenyl,
An elemental metal or a compound such as manganese or molybdenum that becomes a catalyst is added as a methanol solution in a high boiling point solvent such as m-terphenyl.
熱分解してイソシアネート化合物を得る。The isocyanate compound is obtained by thermal decomposition.
ウレタン化合物の分解反応は以下のような逐次反応であ
る。The decomposition reaction of a urethane compound is a sequential reaction as follows.
R(NHCOCH3) 2
ウレタン化合物
NHCOCH3
R< +
CH30H−C−0
モノイソシアネート
11゜
NHCOCH3
Rく
−C−0
モノイソシアネ−1・
→R(N−C−0) 2+CH30H
ジイソシアネート
触媒の使用でより速い反応速度が達成され、また反応を
溶媒中でかつ、生成するジイソシアネート化合物が留出
する減圧下で、行なうことにより、反応系中のジイソシ
アネート化合物濃度が低く保たれ、イソシアネート基の
2量化、3量化、ウレタン結合のNH基とイソシアネー
ト基の下記付加反応を制御し、高収率を達成することが
できる。R(NHCOCH3) 2 Urethane compound NHCOCH3 R< +
CH30H-C-0 monoisocyanate 11°NHCOCH3 By carrying out the reaction under reduced pressure where the diisocyanate compound to be produced is distilled out, the concentration of the diisocyanate compound in the reaction system is kept low, and the following addition reactions such as dimerization and trimerization of the isocyanate group and the following addition reaction between the NH group of the urethane bond and the isocyanate group are carried out. control and achieve high yields.
HO
1l
−N−C−0+−NCOR
→ HO
1l
−N−,CO
N−COR
触媒として用いられる化合物としては、金属マンガン、
酸化マンガン(M n Ol又はMn203)塩化マン
ガン、硫酸マンガン、リン酸マンガン、ホウ酸マンガン
、炭酸マンガン、酢酸マンガン、ナフテン酸マンガン、
マンガン(n)アセチルアセトナート、マンガン(II
I)アセチルアセトナート、金属モリブデン、二酸化モ
リブデン、モリブデンアセチルアセトナート(MoO2
(acac) 2)二酸化モリブデン、金属タングステ
ン、タングステンヘキサカルボニル、無水タングステン
酸、タングステン酸、等を例示することが出来る。HO 1l -N-C-0+-NCOR → HO 1l -N-,CO N-COR Compounds used as catalysts include metal manganese,
Manganese oxide (MnOl or Mn203) manganese chloride, manganese sulfate, manganese phosphate, manganese borate, manganese carbonate, manganese acetate, manganese naphthenate,
Manganese(n) acetylacetonate, Manganese(II)
I) Acetylacetonate, metallic molybdenum, molybdenum dioxide, molybdenum acetylacetonate (MoO2
(acac) 2) Examples include molybdenum dioxide, metallic tungsten, tungsten hexacarbonyl, tungstic anhydride, and tungstic acid.
これらは含水塩の形でも、また無水物でも用いることが
出来る。These can be used in the form of hydrated salts or in anhydrous form.
工業的に入手が容易であること、安価であること、活性
の高さから、塩化マンガン、硫酸マンガン、酢酸マンガ
ン、ナフテン酸マンガンが特に好ましい。Manganese chloride, manganese sulfate, manganese acetate, and manganese naphthenate are particularly preferred because they are industrially easily available, inexpensive, and highly active.
特に、酢酸マンガンは反応粗液中、低濃度で充分な活性
を有しているため好ましい。In particular, manganese acetate is preferable because it has sufficient activity at a low concentration in the crude reaction solution.
触媒の使用量は使用する原料の反応性、lH度、触媒の
種類や量に応じて最適な量が決められる。The optimal amount of the catalyst to be used is determined depending on the reactivity of the raw materials used, the lH degree, and the type and amount of the catalyst.
量が少なすぎると反応が遅くなり、多すぎると高沸副生
物が増える傾向が認められ、通常、溶媒中の触媒量が0
゜0005重量%から5重量%の領域が最も好ましい。If the amount is too small, the reaction will be slow, and if it is too large, high boiling by-products will tend to increase.Usually, when the amount of catalyst in the solvent is 0,
The range from 0.0005% to 5% by weight is most preferred.
反応温度は150℃より低いとジイソシアネート化合物
の発生が遅くなって実用的でなく、300℃より高いと
工業的に実施しにくく不利となる。If the reaction temperature is lower than 150°C, the generation of the diisocyanate compound will be slow, making it impractical, and if it is higher than 300°C, it will be difficult to carry out industrially, which will be disadvantageous.
即ち、150℃から300℃が好ましい。That is, the temperature is preferably from 150°C to 300°C.
溶媒は、目的生成物であるジイソシアネート化合物およ
びウレタン化合物に対し不活性であることが必要で、脂
肪族化合物、芳香族化合物、アルキル化芳香族化合物、
エーテル化合物等から選んで用いることが出来る。The solvent must be inert to the target products, diisocyanate compounds and urethane compounds, and must be inert to aliphatic compounds, aromatic compounds, alkylated aromatic compounds,
It can be selected from ether compounds and the like.
ハロゲン基等の不活性な基を含んでいても溶媒として差
支えない。It can be used as a solvent even if it contains an inert group such as a halogen group.
また、溶媒は目的生成物であるジイソシアネート化合物
と精製分離し易いものが好ましい。Further, the solvent is preferably one that can be easily purified and separated from the diisocyanate compound that is the target product.
ジイソシアネートと沸点が離れている溶媒は、蒸留によ
る精製分離が可能であり、好ましい。A solvent whose boiling point is different from that of the diisocyanate is preferable because it can be purified and separated by distillation.
溶媒の沸点は、生成するジイソシアネート化合物より低
いものはジイソシアネート化合物とともに留出し、実用
上工程が複雑になって不利であり、生成するジイソシア
ネートより高沸点のものが好ましい。If the boiling point of the solvent is lower than that of the diisocyanate compound to be produced, it will be distilled out together with the diisocyanate compound, which is disadvantageous in that it will complicate the process in practice, so a solvent having a boiling point higher than that of the diisocyanate to be produced is preferred.
さらに、生成するジイソシアネート化合物よりlO℃以
上沸点の高い溶媒は後工程で蒸留により分離精製し易い
ので特に好ましい。Further, a solvent having a boiling point higher than that of the diisocyanate compound to be produced by 10° C. or more is particularly preferred since it can be easily separated and purified by distillation in a subsequent step.
また、溶媒中には経時的に高沸反応副生物が蓄積するの
で、再生を工業的に実施しうる沸点を有する溶媒が望ま
しい。Furthermore, since high-boiling reaction by-products accumulate in the solvent over time, it is desirable to use a solvent with a boiling point that allows industrial regeneration.
好ましい溶媒としては、0−ターフェニル、m−ターフ
ェニル、p−ターフェニル、混合ジフェニルベンゼン、
部分水添トリフェニル、ジベンジルベンゼン、ビフェニ
ル、フェニルエーテル、フェニルシクロヘキサン、ヘキ
ザデカン、テトラデカン、オクタデカン、アイコサン、
ベンジルエーテル、テトラメチレンスルホンなどがある
。Preferred solvents include 0-terphenyl, m-terphenyl, p-terphenyl, mixed diphenylbenzene,
Partially hydrogenated triphenyl, dibenzylbenzene, biphenyl, phenyl ether, phenylcyclohexane, hexadecane, tetradecane, octadecane, icosane,
Examples include benzyl ether and tetramethylene sulfone.
目的とするジイソシアネート化合物に応じて好適な溶媒
が選ばれるべきであるが1例えば、イソホロンジイソシ
アネートの製造の場合は部分水添トリフェニルが特に好
ましい。A suitable solvent should be selected depending on the desired diisocyanate compound; for example, partially hydrogenated triphenyl is particularly preferred in the production of isophorone diisocyanate.
反応は、反応系より生成するジイソシアネート化合物が
留出してくる減圧下で実施する。The reaction is carried out under reduced pressure so that the diisocyanate compound produced from the reaction system is distilled out.
これにより系中のジイソシアネート化合物の濃度が低く
保たれ、高い反応収率が達成されるが、この効果は、溶
媒の沸とう下に行なうと特に有効であり、この点から反
応圧力は反応温度で溶媒が沸どうする減圧度で行なうこ
とが好ましい。This keeps the concentration of diisocyanate compounds in the system low and achieves a high reaction yield, but this effect is particularly effective when the reaction is carried out under boiling solvent, and from this point of view the reaction pressure is controlled by the reaction temperature. It is preferable to carry out the reaction at a reduced pressure at which the solvent boils.
減圧度が高すぎると、副生するアルコールの回収が難し
くなり、また、設備的にも用役面でも不利になるので通
常ITorr以上、また、700Torr以下が好適で
ある。If the degree of reduced pressure is too high, it will be difficult to recover by-product alcohol and it will be disadvantageous in terms of equipment and utility, so it is usually preferred to be at least ITorr and at most 700 Torr.
熱分解反応における原料であるウレタン化合物と溶媒と
触媒は反応系へ連続的に供給される。The urethane compound, solvent, and catalyst, which are raw materials for the thermal decomposition reaction, are continuously supplied to the reaction system.
反応器中の溶媒を溶媒中の高沸副生物と共に連続的に抜
き出し、同時に高沸物を含まない溶媒を反応器へ補充す
る。The solvent in the reactor is continuously withdrawn together with high-boiling by-products in the solvent, and at the same time the reactor is replenished with high-boiler-free solvent.
後に述べるように抜き出した溶媒の精製、再使用が有利
である。It is advantageous to purify and reuse the extracted solvent as described later.
抜き取る溶媒と共に触媒も失なわれるので、失なわれた
と同じ量の触媒を連続仕込みし、触媒濃度を一定に保つ
。Since the catalyst is also lost along with the solvent that is removed, the same amount of catalyst as lost is continuously charged to keep the catalyst concentration constant.
ウレタン化合物と溶媒は、予め調合し、反応系へ仕込ん
でも良い。The urethane compound and the solvent may be prepared in advance and charged to the reaction system.
触媒として酢酸マンガンを用いる場合、従来は酢酸マン
ガンのメタノールに対する溶解性の高さを利用してメタ
ノール溶液にして用いられていた。When manganese acetate is used as a catalyst, it has conventionally been used in the form of a methanol solution, taking advantage of the high solubility of manganese acetate in methanol.
溶解の主な目的は、触媒が固体または粘稠な物質である
時、これを溶液化して扱い易くするという点であるが、
メタノールの沸点に較べ反応系内の温度は高く、メタノ
ールが蒸発し触媒が析出することがあった。The main purpose of dissolution is to make the catalyst easier to handle when it is a solid or viscous substance by turning it into a solution.
The temperature in the reaction system was higher than the boiling point of methanol, and methanol sometimes evaporated and the catalyst precipitated.
そのメタノール溶液をさらに目的生成物であるジイソシ
アネート化合物に溶解して添加すればジイソシアネート
の沸点は高いので、触媒の析出防止に有効である。If the methanol solution is further dissolved in a diisocyanate compound, which is the target product, and added, since the boiling point of the diisocyanate is high, it is effective in preventing precipitation of the catalyst.
まず触媒をメタノールに溶かし、触媒の溶液を得る。First, the catalyst is dissolved in methanol to obtain a catalyst solution.
触媒とメタノールとの混合比率は、溶液が低粘度の均一
溶液となるような比かそれ以上の量のメタノールを用い
ることが必要である。The mixing ratio of the catalyst and methanol is such that the solution becomes a homogeneous solution with low viscosity, or it is necessary to use methanol in an amount greater than that.
メタノールの量が多いと、不経済である。A large amount of methanol is uneconomical.
触媒に対して用いるメタノールの重量比は触媒に応じて
選ばれるが通常触媒の0.2〜1000重量倍を用いる
のが好ましい。The weight ratio of methanol to the catalyst is selected depending on the catalyst, but it is usually preferable to use 0.2 to 1000 times the weight of the catalyst.
この時注意しなければならないことは、メタノールがイ
ソシアネート化合物と反応してウレタン化合物に戻らな
いようにすることである。At this time, care must be taken to prevent methanol from reacting with the isocyanate compound and returning to the urethane compound.
通常イソシアネート基をもつ化合物よりも、ウレタン基
をもつ化合物の方が融点、粘度が高い。Compounds with urethane groups usually have a higher melting point and viscosity than compounds with isocyanate groups.
即ち、イソシアネート化合物とメタノールが反応し尽く
しても粘度が高くならないような比率にするのが好まし
い。That is, it is preferable to set the ratio so that the viscosity does not increase even if the isocyanate compound and methanol are completely reacted.
また、ジイソシアネートよりメタノールが過剰となって
も、メタノールの希釈効果で粘度が低く、実施可能であ
るが、メタノール過剰の組成では反応系へ仕込んだ時メ
タノールの気化が激しいので加温等の処置が必要となる
ことがある。In addition, even if methanol is in excess of diisocyanate, the viscosity is low due to the dilution effect of methanol, so it can be carried out, but in a composition with excess methanol, methanol will evaporate rapidly when charged to the reaction system, so measures such as heating are required. It may be necessary.
ジイソシアネートに溶けない触媒が、メタノール溶解後
ジイソシアネートと混合して均一な液が得られる理由は
不明であるが、生成するウレタン結合が極性があり、触
媒に配位して可溶化する等の可能性が考えられる。The reason why a catalyst that is insoluble in diisocyanate is mixed with diisocyanate after dissolving in methanol to obtain a homogeneous liquid is unknown, but it is possible that the urethane bonds formed are polar and coordinate with the catalyst and become solubilized. is possible.
メタノールが好ましい理由は、分解で生成する物質であ
り、精製系を複雑にしなくて済む点である。The reason why methanol is preferable is that it is a substance produced by decomposition and does not require a complicated purification system.
反応溶媒が触媒を必要量溶かせば、溶媒溶液として仕込
めるが、反応溶媒は通常無極性で、溶解力が不充分であ
ることが多く、本方法が有効である。溶液の混合順序を
上記のようにする理由はマンガン化合物がジイソシアネ
ート化合物に溶解せずメタノールに溶解し易いためであ
る。If the reaction solvent dissolves the required amount of the catalyst, it can be prepared as a solvent solution, but the reaction solvent is usually nonpolar and often has insufficient dissolving power, so this method is effective. The reason why the solution is mixed in the above order is that the manganese compound does not dissolve in the diisocyanate compound but easily dissolves in methanol.
また、使用する蒸留塔の段数は、分解するウレタン化合
物や生成するジイソシアネート、溶媒の物性により選ば
れる。段数によらず、本方法は有効である。実際的には
1段〜100段相当の蒸留塔で好適に実施しうる。10
0段以上の塔は設備費が高価となる。Further, the number of stages of the distillation column to be used is selected depending on the physical properties of the urethane compound to be decomposed, the diisocyanate to be produced, and the solvent. This method is effective regardless of the number of stages. Practically speaking, it can be suitably carried out using a distillation column having 1 to 100 stages. 10
Equipment costs for towers with 0 or more stages are high.
蒸留塔への触媒液の仕込みは、塔内であればどこに仕込
んでも反応器中に仕込むのに比して効果は見られるが、
触媒溶液の仕込み位置より下部が反応ゾーンとなるので
、蒸溜塔における仕込み位置が低すぎるとモノイソシア
ネートの分解が不充分であるので好ましくない。Although charging the catalyst liquid into the distillation column anywhere within the column is more effective than charging it into the reactor,
Since the reaction zone is located below the charging position of the catalyst solution, it is not preferable if the charging position in the distillation column is too low because decomposition of the monoisocyanate will be insufficient.
逆に、蒸溜塔における仕込み位置が高すぎると、触fl
&溶液中のモノイソシアネートが留出するので、かえっ
て不利であり、バランスする最適位置を、製造するジイ
ソシアネートに応じて選択する。On the other hand, if the charging position in the distillation tower is too high, the catalytic
& Since the monoisocyanate in the solution is distilled out, it is rather disadvantageous, so the optimal position for balance should be selected depending on the diisocyanate to be produced.
また、目的生成物であるジイソシアネート化合物に溶媒
や未反応原料の混入する量が低くなるよう、反応器から
発生する蒸気を還流器つきの蒸留塔に導き、ジイソシア
ネート化合物に富んだ留分が塔の上部において得られる
ような構造を有する反応装置を用いて行うと、ジイソシ
アネート化合物の精製が容易となり特に有利である。In addition, in order to reduce the amount of solvent and unreacted raw materials mixed into the diisocyanate compound, which is the target product, the steam generated from the reactor is led to a distillation column equipped with a reflux device, and the fraction rich in diisocyanate compounds is transferred to the upper part of the column. It is particularly advantageous to use a reaction apparatus having a structure such as that obtained in , since purification of the diisocyanate compound becomes easy.
また、溶媒中に経時的に高沸点副生物が生成しこの副生
物が製品であるジイソシアネート化合物のイソシアネー
ト基と付加反応を起こし、そのためイソシアネート化合
物の収率が低下する。In addition, high-boiling byproducts are generated in the solvent over time, and these byproducts undergo an addition reaction with the isocyanate groups of the diisocyanate compound that is the product, resulting in a decrease in the yield of the isocyanate compound.
これを防ぐ方法として1反応器中の粗液混合物を連続的
に抜き出してフラッシュ蒸発させて、フラッシュ蒸発器
の缶残である高沸点副生物を除去すると同時に、蒸発し
た高沸点溶媒リッチの混合気を凝縮させて、凝縮された
溶媒と未反応のウレタン化合物、製品であるジイソシア
ネート化合物などの混合液を反応器へ戻すことにより行
う。As a method to prevent this, the crude liquid mixture in one reactor is continuously withdrawn and flash evaporated to remove high boiling point by-products, which are the residue of the flash evaporator, and at the same time, the mixture rich in high boiling point solvent is released. This is done by condensing the solvent and returning the mixture of the condensed solvent, unreacted urethane compound, and product diisocyanate compound to the reactor.
勿論フラッシュ蒸溜に変えて蒸溜塔を用いた蒸溜で高沸
点副生物を除去しても差し支えない。Of course, high-boiling byproducts may be removed by distillation using a distillation column instead of flash distillation.
このとき、触媒も抜き出される高沸点副生物に同伴され
て失われるので、相当分を反応系に追加仕込みする。At this time, the catalyst is also lost along with the high-boiling byproducts that are extracted, so a corresponding amount is added to the reaction system.
触媒を回収して再使用することも可能であるが。Although it is possible to recover and reuse the catalyst.
本発明の方法で用いる触媒は比較的安価で、また。The catalyst used in the process of the invention is relatively inexpensive;
使用量も少ないので、使い捨てにしてもそれほどコスト
アップにはならない。Since the amount used is small, the cost will not increase much even if it is disposable.
なお、熱分解反応においては触媒だけでなく。In addition, in thermal decomposition reactions, not only catalysts are used.
助触媒を用いるとイソシアネート化合物の収率が著しく
向上する。The use of a cocatalyst significantly improves the yield of isocyanate compounds.
用いられる助触媒としては亜リン酸トリスチルが特に好
ましい。Particularly preferred cocatalyst used is tristylphosphite.
亜リン酸トリスチルの具体例としては亜リン酸トリエチ
ル、亜リン酸トリブチルなどの亜リン酸トリアルキルエ
ステル、亜リン酸トリフェニル。Specific examples of tristylphosphite include phosphite trialkyl esters such as triethyl phosphite and tributyl phosphite, and triphenyl phosphite.
亜すン酸トリト・リルなどの亜リン酸トリアリールエス
テルなどが挙げられる。Examples include phosphorous acid triaryl esters such as tritolyl sulfite.
中でも亜リン酸トリフェニルのような高沸点のエステル
が反応中の揮散が少ないので好ましい。Among these, esters with a high boiling point such as triphenyl phosphite are preferred because they are less likely to volatilize during the reaction.
亜リン酸トリスチル使用する場合、その添加量はマンガ
ン化合物に対して0.01〜10000重量倍であり、
0.01重量倍未満の場合には添加する効果がなく、逆
に10000重量倍を越えても効果がそれ以上向上しな
いので好ましくない。When using tristyl phosphite, the amount added is 0.01 to 10,000 times the weight of the manganese compound,
If the amount is less than 0.01 times by weight, there is no effect of adding it, and if it exceeds 10,000 times by weight, the effect will not improve any further, which is not preferable.
本発明の塩素または塩素化合物を10ppm以下しか含
有していないジイソシアネート化合物は以上のようにし
て得られる。The diisocyanate compound of the present invention containing 10 ppm or less of chlorine or a chlorine compound can be obtained as described above.
(発明の効果)
塩素分を10ppm以下しか含有していないジイソシア
ネート化合物を用いることによってウレタン塗料あるい
はその他のポリウレタン工業製品の耐蝕性が向上する。(Effects of the Invention) Corrosion resistance of urethane paints or other polyurethane industrial products is improved by using a diisocyanate compound containing 10 ppm or less of chlorine.
また、塩素イオンによってウレタン化触媒が阻害される
こともない。Further, the urethanization catalyst is not inhibited by chlorine ions.
したがって、触媒使用量を減少させることが可能である
。その結果として、ポリウレタン中のアミン、金属塩等
の含有量が低下するためポリウレタンの耐候性、耐湿性
および耐熱性が向上する。Therefore, it is possible to reduce the amount of catalyst used. As a result, the content of amines, metal salts, etc. in the polyurethane is reduced, so that the weather resistance, moisture resistance, and heat resistance of the polyurethane are improved.
以下に実施例を示し、さらに詳しく本発明を説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.
[合成例−1]
イソホロンジアミン85g1ジメチルカーボネ〜ト36
0gを撹拌器をセットした丸底フラスコに仕込み、撹拌
、窒素気流下70℃に昇温した。[Synthesis Example-1] Isophoronediamine 85g 1 dimethyl carbonate 36
0 g was placed in a round bottom flask equipped with a stirrer, stirred, and heated to 70° C. under a nitrogen stream.
次にナトリウムメチラートの28%メタノール溶液8.
9gを10分間で滴下、さらに50分熟成後反応粗液を
ガスクロマトグラフィーで分析したところ、イソホロン
ジアミンに対応するジウレタン化合物、すなわち、イソ
ホロンシカ−バメートがイソホロンジアミンに対する収
率で91%生成していることを確認した。Next, a 28% methanol solution of sodium methylate8.
9 g was added dropwise over 10 minutes, and after further aging for 50 minutes, the reaction crude liquid was analyzed by gas chromatography, and it was found that a diurethane compound corresponding to isophorone diamine, that is, isophorone cicabamate, was produced in a yield of 91% based on isophorone diamine. I confirmed that there is.
[合成例−2]
ジメチルカーボネート360gを撹拌機を備えた丸底フ
ラスコに仕込み、攪拌しながら窒素気流下で70℃に昇
温した。[Synthesis Example-2] 360 g of dimethyl carbonate was charged into a round bottom flask equipped with a stirrer, and the temperature was raised to 70° C. under a nitrogen stream while stirring.
次に上記フラスコ中ヘナトリウムメチラートの28%メ
タノール溶液8.9gおよびイソホロンジアミン85.
を2機の仕込みポンプにより均等な仕込み速度で2時間
かけて仕込んだ。Next, in the above flask, 8.9 g of a 28% methanol solution of hesodium methylate and 85 g of isophorone diamine.
was charged over 2 hours at an even feeding speed using two feeding pumps.
この間反応粗液温度は70℃に保った。During this time, the temperature of the reaction crude liquid was maintained at 70°C.
さらに、仕込み終了後、同温度で3時間熟成し。Furthermore, after the preparation is completed, it is aged for 3 hours at the same temperature.
その後リン酸で中和した反応粗液をガスクロマトグラフ
ィーで分析したところイソホロンジアミンに対応するジ
ウレタン化合物1すなわち、イソホロンシカ−バメート
がイソホロンジアミンに対する収率で99%、および消
費されたジメチルカーボネートに対する収率99%で生
成していることを確認した。Gas chromatography analysis of the reaction crude solution neutralized with phosphoric acid revealed that the yield of diurethane compound 1 corresponding to isophorone diamine, that is, isophorone cicabamate, was 99% relative to isophorone diamine, and the yield relative to the consumed dimethyl carbonate was 99%. It was confirmed that it was generated at a rate of 99%.
[合成例−3コ
合成例−11合成例−2と同様の装置で以下の反応を行
った。[Synthesis Example 3 Synthesis Example 11 The following reaction was carried out in the same apparatus as Synthesis Example 2.
70℃に保持されたジメチルカーボネート723.1g
が仕込まれている反応器中にヘキサメチレンジアミン1
21.1g、ナトリウムメチラートの28%メタノール
溶液17.3gを4分割したものを30分毎に滴下させ
ながら仕込んだ。723.1 g of dimethyl carbonate held at 70°C
Hexamethylene diamine 1 is placed in a reactor containing
21.1 g of sodium methylate and 17.3 g of a 28% methanol solution were divided into four portions and added dropwise every 30 minutes.
滴下終了後、更に1時間70℃で熟成し、1/10規定
H(do4で滴定し、メチラート分の補正を行った結果
、99.6%の転化率でアミンが転化していることを確
認した。After completion of the dropwise addition, the mixture was further aged at 70°C for 1 hour, titrated with 1/10N H (do4), and as a result of correction for methylate, it was confirmed that the amine had been converted at a conversion rate of 99.6%. did.
その後859もリン酸7.5gで中和した反応粗液をガ
スクロマトグラフィーで分析したところ。After that, 859 was also neutralized with 7.5 g of phosphoric acid and the crude reaction solution was analyzed by gas chromatography.
1.6ビス(メトキシカルボニルアミノ)ヘキサンがジ
アミンに対して98.4%の収率で生成していることを
確認した。It was confirmed that 1.6bis(methoxycarbonylamino)hexane was produced at a yield of 98.4% based on the diamine.
実施例−1
還流器つきガラス製10段オルダーショー塔に300m
gフラスコをセットし、新日鉄化学製す−ム5900溶
媒(部分水添トリフェ一ル)]000g酢酸マンガン4
水物0.05gを仕込み、減圧下に加熱、缶液が230
℃で沸とうするよう減圧度を調整した。Example-1 300 m in a 10-stage Aldershaw tower made of glass with a reflux device
Set a flask and add Nippon Steel Chemical Co., Ltd. Sum 5900 solvent (partially hydrogenated triphenyl)] 000 g manganese acetate 4
Pour 0.05g of water and heat under reduced pressure until the can liquid reaches 230g.
The degree of vacuum was adjusted to boil at ℃.
次に1,6−ビス(メトキシカルボニルアミノ)−ヘキ
サンを流動する温度に熱媒で加温した二重管式滴下漏斗
より60 g/ Hrの速度でフラスコに滴下した。Next, 1,6-bis(methoxycarbonylamino)-hexane was dropped into the flask at a rate of 60 g/Hr from a double-pipe dropping funnel heated with a heating medium to a fluidizing temperature.
仕込み開始後、塔内にヘキサメチレンジイソシアネート
に富む液が上がって来たので、これを1゜6−ビス(メ
トキシカルボニルアミノ)−ヘキサンの滴下速度に見合
う留出速度で塔頂より留出させた。After the start of charging, a liquid rich in hexamethylene diisocyanate rose into the column, so this was distilled from the top of the column at a distillation rate commensurate with the dropping rate of 1°6-bis(methoxycarbonylamino)-hexane. .
2時間運転後、イソシアネートの発生がなくなるまで留
出を続けた後、運転を停止した。After 2 hours of operation, distillation was continued until no isocyanate was generated, and then the operation was stopped.
仕込んだ1,6−ビス(メトキシカルボニルアミノ)−
ヘキサンに対し溜出液中に55%収率のへキサメチレン
ジイソシアネート(HDI)および19%収率のモノイ
ソシアネートの存在が確認された。Charged 1,6-bis(methoxycarbonylamino)-
The presence of hexamethylene diisocyanate (HDI) with a yield of 55% and monoisocyanate with a yield of 19% with respect to hexane was confirmed in the distillate.
実施例−2
20段オルダーショー塔をセットした200m1!容量
のガラスリボイラーを用いて、3−メトキシカルボニル
アミノメチル−3,5,5−)ジメチル−1−メトキシ
カルボニルアミノシロクヘキサン(略称イソホロンシカ
−バメート、略記号(■PDc)の連続分解を行なった
。Example-2 200m1 with 20-stage Aldershaw tower set! Continuous decomposition of 3-methoxycarbonylaminomethyl-3,5,5-)dimethyl-1-methoxycarbonylaminosiloxane (abbreviated as isophorone cica-bamate, abbreviated as (■PDc) was carried out using a large capacity glass reboiler. .
溶媒としてはm−ターフェニルを用いた。m-terphenyl was used as a solvent.
リボイラーに最初200m[のm−ターフェニルと対m
−ターフェニル10ppm相当の無水酢酸マンガンを仕
込み、10To r rの減圧下線とう状態になる迄加
熱した。The first 200 m [m-terphenyl and m
- Manganese acetate anhydride equivalent to 10 ppm of terphenyl was charged and heated until the underlined state was reached under a reduced pressure of 10 Torr.
次いでIPDC59,0重量%、m−ターフェニル41
.0重量%の混合液を120g/Hrの速度で仕込んだ
。Then IPDC 59.0% by weight, m-terphenyl 41
.. A 0% by weight mixed solution was charged at a rate of 120 g/Hr.
I PDCのm−ターフェニル溶液はオルダーショー塔
の下から5段目に仕込んだ。The m-terphenyl solution of I PDC was charged to the fifth stage from the bottom of the Aldershaw tower.
蒸留塔塔頂部より生成物であるイソホロンジイソシアネ
ート(略記号:IPD[)を抜き取り、反応器液面が一
定となる様な缶出液抜取速度で運転を行なった。The product, isophorone diisocyanate (abbreviation: IPD), was withdrawn from the top of the distillation column, and the reactor was operated at a bottoms withdrawal rate such that the liquid level of the reactor remained constant.
[全塩素含有量の測定]
得られたイソシアネート化合物中の全塩素含有量はAS
TM D−1638の方法に基づいて測定した。[Measurement of total chlorine content] The total chlorine content in the obtained isocyanate compound is AS
It was measured based on the method of TM D-1638.
実施例−2で得られたインホロンジイソシアネート中の
全塩素含有量は0.2ppmであった。The total chlorine content in the inphorone diisocyanate obtained in Example-2 was 0.2 ppm.
一方、ホスゲン法で製造されたイソホロンジイソシアネ
ート市販品中の全塩素含有量を同様にして測定した結果
、245ppmであることが確認された。On the other hand, the total chlorine content in a commercial product of isophorone diisocyanate produced by the phosgene method was measured in the same manner and was found to be 245 ppm.
また、実施例−1で得られたヘキサメチレンジイソシア
ネート中の全塩素含有量も0.2ppmであった。Further, the total chlorine content in the hexamethylene diisocyanate obtained in Example-1 was also 0.2 ppm.
Claims (2)
徴とするジイソシアネート化合物。(1) A diisocyanate compound characterized by having a chlorine content of 10 ppm or less.
である請求項(1)記載の化合物。(2) The compound according to claim (1), wherein the diisocyanate is isophorone diisocyanate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13347689A JPH02311452A (en) | 1989-05-26 | 1989-05-26 | Diisocyanate compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13347689A JPH02311452A (en) | 1989-05-26 | 1989-05-26 | Diisocyanate compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02311452A true JPH02311452A (en) | 1990-12-27 |
Family
ID=15105671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13347689A Pending JPH02311452A (en) | 1989-05-26 | 1989-05-26 | Diisocyanate compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02311452A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19754748B4 (en) * | 1997-12-10 | 2004-04-29 | Gras, Rainer, Dipl.-Chem. Dr. | Process for the preparation of a blocked lacquer polyisocyanate and its use for PUR lacquers |
EP2418198A1 (en) | 2006-08-01 | 2012-02-15 | Basf Se | Pentamethylene-1,5-diisocyanate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539750A (en) * | 1976-07-10 | 1978-01-28 | Bayer Ag | Process for preparing diisocyanate diphenyl methane isomer adjusted content of chlorinated compound |
JPS54163527A (en) * | 1978-06-13 | 1979-12-26 | Mitsubishi Chem Ind | Production of esters of carbabic acid |
-
1989
- 1989-05-26 JP JP13347689A patent/JPH02311452A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS539750A (en) * | 1976-07-10 | 1978-01-28 | Bayer Ag | Process for preparing diisocyanate diphenyl methane isomer adjusted content of chlorinated compound |
JPS54163527A (en) * | 1978-06-13 | 1979-12-26 | Mitsubishi Chem Ind | Production of esters of carbabic acid |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19754748B4 (en) * | 1997-12-10 | 2004-04-29 | Gras, Rainer, Dipl.-Chem. Dr. | Process for the preparation of a blocked lacquer polyisocyanate and its use for PUR lacquers |
EP2418198A1 (en) | 2006-08-01 | 2012-02-15 | Basf Se | Pentamethylene-1,5-diisocyanate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5087739A (en) | Circulation process for the production of aliphatic and cycloaliphatic diisocyanates | |
JP3382289B2 (en) | Multi-step method for continuous production of organic polyisocyanates | |
JPH0573737B2 (en) | ||
JPH0574584B2 (en) | ||
EP0323514B1 (en) | Process for preparing isocyanate compounds | |
EP3808732A1 (en) | Method for preparing aliphatic isocyanates | |
JP4499506B2 (en) | Multi-step process for continuously producing alicyclic diisocyanates | |
US7307186B2 (en) | Multistage continuous preparation of cycloaliphatic diisocyanates | |
JPH0780830B2 (en) | Method for producing isocyanate compound | |
HU209125B (en) | Process for separating isocyanic acid from mixture of isocyanic acid and ammonia | |
JP2006036778A (en) | Multi-process method for continuously producing alicyclic diisocyanate | |
US8871969B2 (en) | Process for the production of polyisocyanates | |
US5914428A (en) | Process for preparation of isocyanate compounds | |
JP4201881B2 (en) | Aromatic urethane synthesis method | |
JPS63183553A (en) | Preparation of cyclohexylmono- and -urethane by adding methylcarbamate to limonene, isocyanate derived therefrom, method and composition | |
JP2004262835A (en) | Method for producing aromatic isocyanate | |
JPH02311452A (en) | Diisocyanate compound | |
US5789614A (en) | Process for preparation of aliphatic diisocyanate compounds | |
JPH06172292A (en) | Production of diisocyanate compound | |
US7482481B2 (en) | Method for producing isocyanates | |
JP2005336190A (en) | Method for continuous multi-process production of alicyclic diisocyanate | |
JP2804132B2 (en) | Purification method of carbamate | |
US3859323A (en) | Preparation of 4,4'-methylenebis (cyclohexylisocyanate) | |
EP1721893A1 (en) | Method for producing isocyanate compound | |
JP2997501B2 (en) | Composition for urethane resin production |