JPH02303587A - Device and method for cleaning water - Google Patents
Device and method for cleaning waterInfo
- Publication number
- JPH02303587A JPH02303587A JP12232989A JP12232989A JPH02303587A JP H02303587 A JPH02303587 A JP H02303587A JP 12232989 A JP12232989 A JP 12232989A JP 12232989 A JP12232989 A JP 12232989A JP H02303587 A JPH02303587 A JP H02303587A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- hollow fiber
- water purification
- purification device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 143
- 238000000034 method Methods 0.000 title claims description 14
- 238000004140 cleaning Methods 0.000 title description 2
- 239000012528 membrane Substances 0.000 claims abstract description 112
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 238000009835 boiling Methods 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims abstract description 7
- 239000012510 hollow fiber Substances 0.000 claims description 58
- 238000000746 purification Methods 0.000 claims description 36
- 239000000126 substance Substances 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 23
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 13
- 229910052801 chlorine Inorganic materials 0.000 claims description 13
- 239000000460 chlorine Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 230000010412 perfusion Effects 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 150000002366 halogen compounds Chemical class 0.000 claims description 6
- 238000004332 deodorization Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims 2
- 238000012423 maintenance Methods 0.000 abstract description 4
- 229910052736 halogen Inorganic materials 0.000 abstract 2
- 150000002367 halogens Chemical class 0.000 abstract 2
- 238000010992 reflux Methods 0.000 abstract 2
- 230000001877 deodorizing effect Effects 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- 235000019645 odor Nutrition 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009849 vacuum degassing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 230000009965 odorless effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 230000009967 tasteless effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- LFYXNXGVLGKVCJ-FBIMIBRVSA-N 2-methylisoborneol Chemical compound C1C[C@@]2(C)[C@](C)(O)C[C@@H]1C2(C)C LFYXNXGVLGKVCJ-FBIMIBRVSA-N 0.000 description 1
- LFYXNXGVLGKVCJ-UHFFFAOYSA-N 2-methylisoborneol Natural products C1CC2(C)C(C)(O)CC1C2(C)C LFYXNXGVLGKVCJ-UHFFFAOYSA-N 0.000 description 1
- GZSOSUNBTXMUFQ-NJGQXECBSA-N 5,7,3'-Trihydroxy-4'-methoxyflavone 7-O-rutinoside Natural products O(C[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](Oc2cc(O)c3C(=O)C=C(c4cc(O)c(OC)cc4)Oc3c2)O1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1 GZSOSUNBTXMUFQ-NJGQXECBSA-N 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 101710104624 Proline/betaine transporter Proteins 0.000 description 1
- 102100033213 Teneurin-1 Human genes 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- LFHISGNCFUNFFM-UHFFFAOYSA-N chloropicrin Chemical compound [O-][N+](=O)C(Cl)(Cl)Cl LFHISGNCFUNFFM-UHFFFAOYSA-N 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- GZSOSUNBTXMUFQ-YFAPSIMESA-N diosmin Chemical compound C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)O1 GZSOSUNBTXMUFQ-YFAPSIMESA-N 0.000 description 1
- 229960004352 diosmin Drugs 0.000 description 1
- IGBKNLGEMMEWKD-UHFFFAOYSA-N diosmin Natural products COc1ccc(cc1)C2=C(O)C(=O)c3c(O)cc(OC4OC(COC5OC(C)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 IGBKNLGEMMEWKD-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 235000005686 eating Nutrition 0.000 description 1
- 235000006694 eating habits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 108010063973 teneurin-1 Proteins 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、飲用、食用に用いられる上水の浄水装置とシ
わけ脱臭装置に関し、特に水中に含有する揮発性ハロゲ
ン化合物及び塩素臭や黴臭さの原因物質などを除去する
装置及び方法に関する。本発FIAFiま次、隔膜真空
脱気型の脱臭浄水装置に関する0本発明は例えば家庭用
、飲食業向け、食品製造業向けなどの上水の脱臭浄水用
として好適である。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a water purification device and a deodorization device for clean water used for drinking and eating, and in particular to a device for eliminating volatile halogen compounds, chlorine odor, and mold contained in water. The present invention relates to a device and method for removing odor-causing substances. The present invention relates to a diaphragm vacuum deaeration type deodorizing water purification device.The present invention is suitable for use in deodorizing and purifying tap water, for example, for household use, the restaurant industry, and the food manufacturing industry.
近年、都市への人口集中や排水の増加により、河川や湖
沼での富栄養化が進み、上水道原水の水質が愚化し、上
水道水の、藻類、m類に由来する1奥などの悪臭や塩素
臭の増加が甚だしい、一方、世社グルメ時代などといわ
れる様に国民の食生活は豊に&シ、飲料水についても所
謂「おいしい友に対する要求が強まっている。一方、上
水への塩素添加量の増加に伴う、発癌性と云われるトリ
ハロメタンの増加や、地下水のトリクロロエチレンその
他の低沸点ハロゲン化合物による汚染が社会問題になっ
ておシ、「安心して飲める水」に対する要望が強い。In recent years, due to the concentration of population in cities and the increase in wastewater, eutrophication of rivers and lakes has progressed, and the quality of raw water for drinking water has deteriorated. On the other hand, people's eating habits have become richer and richer, as is said to be the era of gourmet food, and there has been an increasing demand for delicious drinking water.On the other hand, the addition of chlorine to tap water As the amount of water increases, the increase in trihalomethanes, which are said to be carcinogenic, and the contamination of groundwater by trichlorethylene and other low-boiling halogen compounds have become social problems, and there is a strong demand for ``water that is safe to drink.''
このような背景のもとに、家庭用や飲食店向けの浄水装
置の普及が目覚しいが、現在発売されているこれらの浄
水装置は全て活性炭などによる吸着タイプか、吸着と濾
過などを組み合わせ九タイプである。これらのタイプは
、臭気の除去を主目的としておシ、トリハロメタンやト
リクロロエチレンなどの低沸点ハarン化合物に対する
除去能力には劣るものであ−)念。また、さらに大規模
な装置まで含めても、実際上上水中に極微1浴存する低
沸点(揮発性)へログ/化合物の有効な除去方法は知ら
れていないのが実情である。Against this background, the popularity of water purification devices for home use and restaurants has been remarkable, but all of these water purification devices currently on the market are either adsorption types using activated carbon, or nine types that combine adsorption and filtration. It is. Although these types are mainly used to remove odors, they are inferior in their ability to remove low-boiling point compounds such as trihalomethane and trichloroethylene. Furthermore, even if larger-scale equipment is included, the reality is that there is no known effective method for removing low-boiling point (volatile) compounds that exist in tap water.
まな、脱臭の見地からすると、これらの浄水装置におい
ては、吸着剤の寿命が短く、1ケ月a度で脱臭効果が無
くなる次め、吸着剤の頻繁な交換が必要であシ、維持管
理に手間がかかる上、維持コストも高くつくという欠点
を有してl/に7jsま九、無味無臭の有害物質に対し
ては、気が付かないうちに除去能力が落ち、知らすに摂
取を続ける危険があった。From a deodorizing perspective, the lifespan of the adsorbent in these water purification devices is short, and the deodorizing effect disappears after a month, and the adsorbent needs to be replaced frequently, making maintenance and management time-consuming. It has the disadvantage of being expensive to maintain and maintain, and its ability to remove tasteless and odorless harmful substances decreases without you noticing, and there is a danger that you may continue to ingest them. .
本発fJAは、上水1ctまれるトリハロメタンなどの
健康に有害な低沸点ハロゲン化合物に対する優れた除去
効果をもち、しかも維持管理に手間がかからず、維持コ
ストが安価である、隔膜真空脱気方式に基づく浄水装置
及び浄水方法を提供することに′hる。The developed fJA has an excellent removal effect on low-boiling halogen compounds harmful to health such as trihalomethane contained in 1 ct of tap water, and is easy to maintain and has low maintenance costs. The present invention aims to provide a water purification device and a water purification method based on the method.
本発明は、tR素透過速度が1刈0−’〔cm’/C1
1l” g m @e +ydig )以上である疎水
性の中空糸膜をハウジングに組み込んだ膜モジ、−ルと
、真空Iングとから構成され、中空糸膜の一方の側に処
理すべき水を流し、他方の側を真空ポンプにて減圧する
ことを特徴とする脱臭浄水装置にあシ、また、換モジ。In the present invention, the tR elementary permeation rate is 0-'[cm'/C1
It consists of a membrane module incorporating a hydrophobic hollow fiber membrane with a diameter of 1l" gm @e + ydig) or more into a housing, and a vacuum ring, and the water to be treated is placed on one side of the hollow fiber membrane. This is a deodorizing water purification device that uses a vacuum pump to reduce the pressure on the other side.
−ルが、中空糸膜の内側に被処理給水を流し、中空糸の
外側とハウジングとの空間部を減圧する内部4流型であ
って、中空糸の内径が20〜350μmであることを特
徴とする脱臭浄水装置にめシ、また、膜モジ、−ルが、
組込まれる中空糸膜が中空糸膜同士i九は他の糸条とK
よって組織されたシート状物の重畳体または収束体の状
態、もしくは中空糸膜同士または他の糸条とによって組
織された3次元編組体の状態でハウジング内に組み込ま
れており、中空糸膜外側とハクソングの閏の空間に被処
理給水を流し、中空糸膜の内側を減圧する外部fi流屋
であることを特徴とする脱臭浄水装置にあり、i光、中
空糸膜が、特定の構造と特性を持つことを特徴とする脱
臭浄水装置にあシ、また、真空ポンプの81類と、中空
糸膜の種類、特性が特定の組み合わせでるることを特徴
とする脱臭浄水装置にあシ、また、酸素透過速度がlX
l0−5(i/i。- The module is an internal four-flow type that flows the feed water to be treated inside the hollow fiber membrane and reduces the pressure in the space between the outside of the hollow fiber and the housing, and the inner diameter of the hollow fiber is 20 to 350 μm. The deodorizing water purification device is equipped with a membrane module and a membrane module.
Hollow fiber membranes to be incorporated are connected to each other (i9) to other yarns (K)
Therefore, it is incorporated into the housing in the state of a stack or convergence of organized sheet-like materials, or in the state of a three-dimensional braided body organized by hollow fiber membranes or with other threads, and the outside of the hollow fiber membrane is It is a deodorizing water purification device characterized by an external FI flow chamber that flows the feed water to be treated through the leap space of the hollow fiber membrane and reduces the pressure inside the hollow fiber membrane. A deodorizing water purification device characterized by having certain characteristics, and a deodorizing water purification device characterized by a specific combination of type 81 of vacuum pumps and hollow fiber membrane types and characteristics, and , oxygen permeation rate is lX
l0-5(i/i.
1・e、mHg〕以上である疎水性の中空糸膜をハウジ
ングに組み込んだ膜モジ、−ルにおける中空糸膜の一方
のIIK処理すべき水を流し、他方の*t−真空ポング
にて減圧することによ〕、水から低沸点ハロゲン化合物
または塩素臭、微臭などの悪臭原因物質を膜モジュール
系外へ除去する方法にある。In a membrane module in which a hydrophobic hollow fiber membrane of 1.e, mHg or higher is incorporated into a housing, the water to be treated with IIK is passed through one of the hollow fiber membranes, and the pressure is reduced using a vacuum pump on the other side. The present invention is a method for removing low-boiling point halogen compounds or substances that cause malodors such as chlorine odor and slight odor from water to the outside of the membrane module system.
本発明を、その要部についてさらに詳しく論じると、本
発明に使用する膜は、気体の透過速度の代表値である酸
素透過速度が、25℃においてlXl0−5(m”(5
TP)7cm” 、 so e s mHg )以上で
あることが必要である。水からの除去対象が酸素や炭酸
ガスなどの気体の場合には、膜の酸素透過速度がlXl
0−’ (alM”(STP)7m” r s@ewm
Hg ]程度であっても実用的レベルの除去が可能であ
るが、本発明の目的には不十分であシ、lXl0−’
(yg” (5TP)/W” l I@ e txHg
)未満の場合には、低沸点へ112rン化合物や悪臭物
質の除去速度が非実用的な程度に遅くなる。Discussing the main parts of the present invention in more detail, the membrane used in the present invention has an oxygen permeation rate, which is a representative value of gas permeation rate, at 25°C.
TP) 7 cm", soe s mHg) or more. If the object to be removed from water is a gas such as oxygen or carbon dioxide, the oxygen permeation rate of the membrane must be 1
0-' (alM”(STP)7m” r s@ewm
Although it is possible to remove at a practical level even if the amount is as low as 1X10-'
(yg” (5TP)/W” l I@e txHg
), the removal rate of low boiling point compounds and malodorous substances becomes impractically slow.
本発明の朕は、疎水性であることが必要である。In the present invention, it is necessary that the material be hydrophobic.
膜が親水性である場合には、膜内部に水が浸入して悪臭
物質などの除去速度が激減する上、水が膜を貫通透過す
るため、隔膜の用を成さない。即ち本発明に用いる膜は
、部分的には親水性部を含んで良いが、水が液体のまま
透過すること無く、揮発性物質のみが透過する膜である
。このような材質としては、例えばポリ4−メチルベ/
テン−1゜ポリエチレン、ポリエチレン等のポリオレフ
ィンや、−リッツ化ビニリデン、ポリテトラ70ロエチ
レン、PFA等の7ツ木系ポリマー、ポリアセタール、
ppo 、pps等のIリエーテルやポリチオエーテル
、Iす塩化ビニル、Iり塩化ピニリrン等の含塩素ポリ
マー、その他、ポリエーテルエーテルケトン、ポリスル
ホン、Iリエーテルスルホン、シリコン樹脂などが例示
できるが、その他の共重合体であってもよい。If the membrane is hydrophilic, water will enter the membrane and the rate of removal of malodorous substances will be drastically reduced, and water will permeate through the membrane, rendering the diaphragm useless. That is, the membrane used in the present invention may partially contain a hydrophilic portion, but is a membrane through which only volatile substances can pass through without allowing water to pass therethrough in the form of a liquid. Examples of such materials include poly 4-methyl base/
Ten-1° polyolefins such as polyethylene and polyethylene, 7-wood polymers such as vinylidene litz, polytetra 70 ethylene, and PFA, polyacetal,
Illustrative examples include I-reathers and polythioethers such as ppo and pps, chlorine-containing polymers such as I-vinyl chloride, I-trichloropinyline, polyetheretherketone, polysulfone, I-reathersulfone, silicone resin, etc. Other copolymers may also be used.
本発明に好ましい膜タイプは、まず、m累/窒素の分離
係数が10以上の不均質膜または複合膜である。tR素
/S1素の分離係数とは、酸素透過速度を窒素透過速度
で除したものである。隔膜が連通孔戯の多孔質膜であれ
ば、al素/窒素の分離係数の値はα935となる。酸
素/窒素の分−係数が10以上であることは、膜に非多
孔質層が存在することを意味する。隔膜を長期間使用し
ても水の漏洩が生じないという点で、多孔質膜よシネ均
質膜または複合膜が優れている。このような膜は、例え
ば特開昭59−196706、特開昭59−59209
、特開昭57−122906、特開昭63−27443
3などに記載の方法で製造することができる。このよな
、非多孔質層を持つ膜の場合には、素材によっては選択
透過性が現れる場合があるが、除去を目的とする対象物
質の透過性のよい素材を選択使用することができる0本
発明においては、Iす4−メチルインテン−1を素材と
する不均質膜が優れ次特性を示す。Preferred membrane types for the present invention are firstly heterogeneous membranes or composite membranes having a separation coefficient of m/nitrogen of 10 or more. The separation coefficient of tR element/S1 element is the oxygen permeation rate divided by the nitrogen permeation rate. If the diaphragm is a porous membrane with open pores, the value of the al/nitrogen separation coefficient will be α935. An oxygen/nitrogen fraction factor of 10 or more means that a non-porous layer is present in the membrane. Porous membranes, cine homogeneous membranes, and composite membranes are superior to porous membranes in that water does not leak even after long-term use. Such films are disclosed in, for example, Japanese Patent Application Laid-open No. 59-196706 and Japanese Patent Laid-open No. 59-59209.
, JP-A-57-122906, JP-A-63-27443
It can be manufactured by the method described in 3. In the case of such a membrane with a non-porous layer, selective permeability may appear depending on the material, but it is possible to select and use a material that has good permeability to the target substance to be removed. In the present invention, a heterogeneous film made of I-4-methylinthene-1 exhibits excellent properties.
本発明に好ましい膜のもう1つのタイプは、連通孔型の
多孔質膜であり、バブルポイントが1.0(kg/cm
” G :) 以上のものである。ここで云うバブルポ
イントは、ASTM、F’−316に準じ、湿潤液とし
て、表面張力が17〜19 dyn/cmの低粘度シリ
コンオイルを使用して測定した値である。バブルポイン
トが工、0〔階/an’ G ]未満であると、膜材質
が疎水性でろっても水が細孔内に侵入し易くなる。Another type of membrane preferred for the present invention is a continuous pore type porous membrane with a bubble point of 1.0 (kg/cm
"G:) The bubble point referred to here was measured according to ASTM F'-316 using low viscosity silicone oil with a surface tension of 17 to 19 dyn/cm as the wetting liquid. If the bubble point is less than 0 [an'G], water will easily penetrate into the pores even if the membrane material is hydrophobic and weak.
膜が連通孔型の多孔質膜である場合には、膜の気体透過
速度は不均質膜や複合膜に比べて高いことが必要であシ
、lXl0−4 (am” (8TP)/c11” w
see + txHg ]以上であることが好ましい
、このような膜は、例えば特公昭56−52123、特
公昭60−14844、特開昭56−56202などに
記載されている方法によって製造することができる。When the membrane is a porous membrane with open pores, the gas permeation rate of the membrane needs to be higher than that of a heterogeneous membrane or a composite membrane, and the gas permeation rate of the membrane must be higher than that of a heterogeneous membrane or a composite membrane. lol
see + txHg ] or more, such a membrane can be produced, for example, by methods described in Japanese Patent Publication No. 56-52123, Japanese Patent Publication No. 60-14844, Japanese Patent Application Laid-open No. 56-56202, and the like.
本発明の膜の形状は中空糸状である。中空糸膜はフィル
ム状の膜に比べて装置体積当シの膜面積が大きく取れる
ため装置が小屋化できるなどの長所がある。本発明にお
ける中空糸の寸法は、内部に水を流す場合(内部層fl
fli)IICは内径が20〜350μmであり、80
〜200μmが好ましい。The membrane of the present invention has a hollow fiber shape. Compared to film-like membranes, hollow fiber membranes have the advantage of allowing a larger membrane area per device volume, allowing the device to be built into a shed. The dimensions of the hollow fiber in the present invention are determined when water is allowed to flow inside (inner layer fl
fli) IIC has an inner diameter of 20 to 350 μm, and
~200 μm is preferred.
20A!1未満では製造に困−を来すし、350μmを
越えると膜面積当シの除去効率が著しく悪化する。本発
明において、モジュールが内部潅流型である場合には、
中空糸の内径は膜の透過速度以上Kti’な因子であシ
、中空糸内径を小さくする程、除去対象物質の残留濃度
を低くすることができる。20A! If it is less than 1, it will be difficult to manufacture, and if it exceeds 350 μm, the removal efficiency per membrane area will deteriorate significantly. In the present invention, when the module is an internal perfusion type,
The inner diameter of the hollow fiber is a factor greater than or equal to the permeation rate of the membrane, Kti', and the smaller the inner diameter of the hollow fiber, the lower the residual concentration of the substance to be removed.
中空糸外部に水を流す場合(外部潅流)Kは、中空糸の
寸法は内部潅流の場合はど重要な因子ではないが、外径
50〜1000趨が好ましい、50μm未満では製造に
困難を来すし、1000μmを越えると体積効率が悪化
する。In the case of flowing water outside the hollow fiber (external perfusion), the dimensions of the hollow fiber are not an important factor in the case of internal perfusion, but an outer diameter of 50 to 1000 is preferable, and if it is less than 50 μm, it will be difficult to manufacture. When the thickness exceeds 1000 μm, the volumetric efficiency deteriorates.
中空糸膜はハウジングに組み込んだ形状(モジュールと
称する)で用いる。中空糸内部に水を流す使用法(内部
潅流)の場合には、モジュール形状は特に限定されず、
例えば第2図に示したような、人口腎臓に一般的な形状
のものが使用できる。The hollow fiber membrane is used in the form of a housing (referred to as a module). In the case of usage in which water flows inside the hollow fiber (internal perfusion), the module shape is not particularly limited;
For example, a shape commonly used for artificial kidneys as shown in FIG. 2 can be used.
即ち、原水は給水口(8)よ)モジュールに導入され、
樹脂で封止(6)された中空糸膜の端面から束状に装填
された中空糸膜(5)の内側に接して流れ、排出口(9
)より処理水となって排出される。−万、中空糸膜の外
側と)sウジング(7)の間の空間を、吸引口(10)
から真空4ンプによ)減圧する。That is, raw water is introduced into the module via the water inlet (8),
It flows from the end face of the hollow fiber membrane sealed (6) with resin to the inside of the hollow fiber membrane (5) loaded in a bundle, and flows through the discharge port (9).
) is discharged as treated water. - 10,000, the space between the outside of the hollow fiber membrane and the) suction port (10)
Reduce the pressure (by vacuum 4 pump).
中空糸外部に水を流す使用法(外部潅流)の場合には、
中空糸の充填ムラなどの原因による水の偏流(チャンネ
リング)が生じて除去効率が低下するのを防ぐために、
中空糸を、中空糸同士または他の糸条とによって組織さ
れたフート状愉の重畳体または収束体の状態、もしくは
中空糸同士または他の糸条とによって組織された3次元
編組体の状態でハウノング内に組み込むことが必要であ
る。この具体例は、例えば特願昭63−255938、
特11111fi63−257364、特開昭52−1
43974などに記載されている。−例を第3図に示す
。給水口(8)よシモジュールに導入された原水は、第
4図のように廉状に編組され、積層して充填され九中空
糸m(5)の外表面に捩して流れ、排出口(9)よ)処
理水となって排出される。一方、中空糸膜の内側を、吸
引口(10)から真空ポンプにより減圧する。In the case of usage in which water flows outside the hollow fiber (external perfusion),
In order to prevent the removal efficiency from decreasing due to uneven water flow (channeling) caused by uneven filling of hollow fibers, etc.
The hollow fibers are in the state of a superimposed body or convergence body of foot-like structures organized by hollow fibers or with other threads, or in the state of a three-dimensional braided body organized by hollow fibers or with other threads. It is necessary to incorporate it into Haunong. Specific examples of this include, for example, Japanese Patent Application No. 63-255938,
Special 11111fi63-257364, Japanese Patent Publication No. 52-1
43974, etc. - An example is shown in FIG. The raw water introduced into the module through the water inlet (8) is braided in a straight manner as shown in Fig. 4, is laminated and filled, twists and flows over the outer surface of the nine hollow fibers (5), and flows through the outlet. (9)) It is discharged as treated water. On the other hand, the inside of the hollow fiber membrane is depressurized from the suction port (10) using a vacuum pump.
本発明の浄水器の原理は、被処理水を膜を介して減圧さ
れ次気相とを接触させることによシ水中に含有される揮
発性の悪臭物質や有害物質を気相側へ除去するものであ
るbその際の減圧度は好ましく Fi60 Torr以
下、よシ好ましくは40 Tc1rr以下である。本発
明では、減圧手段として真空ポンプを用いる。一般に真
空ポンプとしては、油回転真空ポンプ、ピストン製、水
封式、ドライ型、ダイア7クム盟などが知られておシ、
任意のものを使用できるが、減圧度、寿命、耐水蒸気性
などの点から、脣に水封式真空ポンダ及びガスパラスト
ポンプ(一般的KFiガスパラストパルプを備えた油回
転式真空I7りが適している。The principle of the water purifier of the present invention is that the water to be treated is depressurized through a membrane and brought into contact with the gas phase, thereby removing volatile malodorous substances and harmful substances contained in the water to the gas phase. The degree of pressure reduction at that time is preferably 60 Torr or less, more preferably 40 Tc1rr or less. In the present invention, a vacuum pump is used as the pressure reducing means. Generally speaking, as vacuum pumps, there are oil rotary vacuum pumps, piston pumps, water ring types, dry types, and 7-diameter pumps.
Any type can be used, but water-ring type vacuum ponder and gas palust pump (oil rotary vacuum I7 equipped with general KFi gas palust pulp) are suitable in terms of degree of pressure reduction, lifespan, water vapor resistance, etc. ing.
水封式真空d:/fは、高い真空度まで減圧することが
できないが、水蒸気の大量吸入が可能であ夛、オイルの
定期的な交換が不用であると云う九長所があシ、特に隔
膜として水蒸気透atの大きい多孔質膜を用いる場合に
適している。水封式真空4/fはま九、水中から除去さ
れ九有害物質が、封水の排水と共に排出される之め空気
中に撒き紋らされることがない。この九め油回転真空ポ
ンプを用いる場合のように、排気ガスの洗浄、ト2ッグ
、吸着操作などが不用になる。このように、浄水装置用
の真空4ングとして、水封式ポンダは籍に適し九もので
ある。iた、アスピレータに比べて排気量が大きく、処
理水量が毎分1リットル以上の規模の浄水装置に適する
。The water ring type vacuum d:/f cannot reduce the pressure to a high degree of vacuum, but it has nine advantages: it can suck in a large amount of water vapor, and it does not require periodic oil changes. This is suitable when a porous membrane with high water vapor permeability is used as the diaphragm. The water seal type vacuum 4/F removes harmful substances from the water and discharges them when the water seal drains, so they are not dispersed into the air. There is no need for exhaust gas cleaning, toggling, suction operations, etc. as in the case of using this oil rotary vacuum pump. In this way, the water ring type ponder is suitable as a vacuum ring for water purification equipment. In addition, the displacement is larger than that of an aspirator, making it suitable for water purification devices that can process water at a rate of 1 liter per minute or more.
理論的考察によれば、減圧手段として水封式ポンプを用
い、かつ封水に被処理水を分流して用いた場合には、封
水からも除去対象の揮発性物質が気相へ移行するため、
膜の表裏における分圧差が生じず、膜上透過して除去さ
れないことが推定される。しかしながら、実際には有効
に除去されることは予想されざる庸くべきことである。According to theoretical considerations, when a water ring pump is used as a pressure reduction means and the water to be treated is diverted to the seal water, the volatile substances to be removed from the seal water also transfer to the gas phase. For,
It is presumed that there is no partial pressure difference between the front and back sides of the membrane, and that the substance does not permeate through the membrane and be removed. However, in reality, effective removal is unexpected and should be expected.
ガスバラストポンプは、定期的なオイル交換を必要とす
る欠点があるが、高り真空度まで減圧できる特徴がある
ため除去効果が高く、また多少の水蒸気吸入に耐える0
%に隔膜として酸素/窒素の分虐係数が10以上である
ような不均質膜や複合膜を用いると、これらの膜は水蒸
気の透過速度が低いため、水の沸点以下まで減圧しても
多量の水蒸気が透過することはなく、ガスバラストポン
プの特長が十分に発揮される。ガスバラストポンプの代
わ)に、ガスパラストパルプを持たない通常の油回転式
真空Iングを用い、別にガスパラストパルプを設けるこ
とは、単に2者を分層したものであり、これも本発明に
含まれる。Gas ballast pumps have the disadvantage of requiring periodic oil changes, but they have the ability to reduce pressure to a high degree of vacuum, so they have a high removal effect, and they can withstand some water vapor inhalation.
If a heterogeneous membrane or a composite membrane with an oxygen/nitrogen partition coefficient of 10 or more is used as a diaphragm, these membranes have a low water vapor permeation rate, so even if the pressure is reduced to below the boiling point of water, a large amount of water vapor will be released. Water vapor does not pass through the pump, allowing the gas ballast pump to take full advantage of its features. Using an ordinary oil rotary vacuum I ring without gas ballast pulp (instead of a gas ballast pump) and providing a separate gas ballast pulp is simply separating the two, and this is also within the scope of the present invention. included.
本浄水装置の構成は、741図に示したよりに、膜モゾ
、−ル(1)と真空ボンf(2)とから傅成され、中空
糸膜の一方の側に処理すべき水を流し、他方の側を真空
ポンプにて減圧することを特徴とする。必要に応じ、給
水口側にシャットパルプ又は流量調節パル2(3)を、
ま九処理水#出口にパルf(4)を設けることができる
。本浄水装置からの浄化水出口は、蛇口、ホースその他
、利用に適した形態とすることができる。The configuration of this water purification device is as shown in Fig. 741, and is made up of a membrane membrane (1) and a vacuum tube (2), and the water to be treated is passed through one side of the hollow fiber membrane. It is characterized by reducing the pressure on the other side using a vacuum pump. If necessary, install a shut pulp or flow rate adjustment pal 2 (3) on the water inlet side.
A pal f (4) can be provided at the #9 treated water outlet. The purified water outlet from the water purification device can be in the form of a faucet, hose, or other suitable form for use.
本発明で水から除去される対象物質は、揮発性有害物質
、特に低沸点ハロゲン化合物である。例えばクロロホル
ム、プロモノクロロメタン、ソグロモクロロメタン、ブ
ロモホルム、四塩化炭素、ト!J/DHエチレン、テト
ラクロロエチレン、LLI −トリハロメタン・クロロ
ピクリンなどを挙げることができる。これらの物質は吸
着盤の浄水器では除去効率が悪いものであったが、本発
明は、これらの物質を有効に除去することができる。The target substances to be removed from water in the present invention are volatile hazardous substances, especially low-boiling halogen compounds. For example, chloroform, promonochloromethane, sogromochloromethane, bromoform, carbon tetrachloride, and! Examples include J/DH ethylene, tetrachloroethylene, and LLI-trihalomethane chloropicrin. Although suction cup water purifiers have poor removal efficiency for these substances, the present invention can effectively remove these substances.
本発明で水から除去される悪臭原因物質としては、例え
ば、塩素、オゾン、2〜メチルイソボルネオール、ジオ
スミン、アミン類、アンモニア等が挙げられる。しかし
、除去対象はこれらの既知の物質に限らず、物質名が同
定されていない悪臭原因物質も含まれる。除去され得る
物質には、沸点が水より高いものも含まれるが1本発明
の装置によシ有効に除去されることは驚くべきことであ
る。Examples of malodor-causing substances that can be removed from water in the present invention include chlorine, ozone, 2-methylisoborneol, diosmin, amines, and ammonia. However, the objects to be removed are not limited to these known substances, but also include odor-causing substances whose names have not been identified. It is surprising that substances that can be removed, including those with boiling points higher than water, can be effectively removed by the apparatus of the present invention.
本発明は、これまで吸着タイプしか知られていなかった
脱臭浄水装置として、隔膜真空脱気タイグで有効な性能
を持ち得ることを見出し喪ものである。ここで振シ返り
てみるに、Ni6編式の真空脱気装置によシ、低沸点ノ
・ログン化合物や悪臭原因物質のような揮発性物質を水
中よシ除去することは、公知である様に見える。しかし
ながら、悪臭物質を検知限界以下にまで除去するために
は、多くの場合残留濃度がppmオーダー以下、物によ
ってはPPbオーダーa度にまで除去する必要がある。The present invention is based on the discovery that a diaphragm vacuum degassing type can have effective performance as a deodorizing water purification device, which until now has only been known as an adsorption type. Looking back, it seems to be well known that volatile substances such as low-boiling point compounds and odor-causing substances can be removed from water using a Ni6 type vacuum deaerator. It looks like. However, in order to remove malodorous substances to below the detection limit, it is necessary to remove the residual concentration to below the ppm order in many cases, and in some cases to the PPb order a degree.
またトリハロメタンのような発癌性物質を規制値以下に
するには、やはD ppbオーダーまで除去する必要が
ある。これまで知られていた隔膜真空脱気法においては
、気体の除去は別として、常温で液体である様な物質を
除去対象として、残存濃度をpp−オーダー以下の極め
て微量まで除去し得ることは知られていす、このような
用途に使用し得ることは知られていなかった。また隔膜
真空脱気方式による脱臭装置f社知られていなか−)九
0本発明は、隔膜や装置の構成その他の条件によりては
、水から、常温で液体であるような低蒸気圧物質をpp
mppオーダー以下で除去し得ること、及び明かな脱臭
効果を持つことを見出し、発明を完成させたものである
。Furthermore, in order to bring carcinogenic substances such as trihalomethane below regulatory limits, it is necessary to remove them to the order of D ppb. In the diaphragm vacuum degassing method known so far, apart from removing gas, it has not been possible to remove substances that are liquid at room temperature to extremely trace amounts of residual concentration below pp-order. However, it was not known that it could be used for such purposes. In addition, there is no known deodorizing device using a diaphragm vacuum degassing method (90) The present invention can extract low vapor pressure substances that are liquid at room temperature from water depending on the diaphragm, the configuration of the device, and other conditions. pp
The inventors completed the invention by discovering that it can be removed at mpp order or less and that it has a clear deodorizing effect.
本発明の浄水装置は、水の脱臭に優れた性能をもち、通
常上水や地下水に混入しがちな悪臭物質や揮発性の有害
物質に対して高い除去能力を持つものである。The water purification device of the present invention has excellent performance in deodorizing water, and has a high ability to remove malodorous substances and volatile harmful substances that tend to be mixed into tap water or underground water.
本発明は、吸着量の浄水装置に比べて、トリハロメタン
などの有害物質を有効に除去することが可能であシ、細
菌繁殖を防ぐために吸着剤に添加され九銀イオンの溶用
が生じることもない。また、気が付かないうちに吸着剤
の除去能力が落ち、無味無臭の有害物質を知らずに摂取
し続けると云りた危険性もない、このように、本発明は
安全画においてこれまでの浄水装置に比べて優れ次もの
である。The present invention is capable of effectively removing harmful substances such as trihalomethane compared to adsorption water purification devices, and it is also possible to remove nine silver ions, which are added to the adsorbent to prevent bacterial growth, from dissolving. do not have. In addition, there is no danger that the removal ability of the adsorbent will decrease without you noticing, and you will continue to ingest tasteless and odorless harmful substances.In this way, the present invention is superior to conventional water purification devices in terms of safety. It is better than the next one.
本発明はまfe、吸着量の浄水装置に比べて吸着剤など
の消耗部品を頻繁に取り替える手間がかからず、消耗部
品の費用も不要でりシ維持コストがかからないといった
特長を持つ。The present invention has the advantage that it does not require frequent replacement of consumable parts such as adsorbent, and there is no cost for consumable parts, and there is no maintenance cost, compared to adsorption water purification devices.
これらの特長によシ、本発明の浄水器は、家庭用、飲食
店向き、および食品工業向杖の浄水装置として好適なも
のである。Because of these features, the water purifier of the present invention is suitable as a water purifier for home use, restaurants, and the food industry.
以下実施例によシ、本発明をさらに具体的に説明するが
、これらの例によシ本発明が限定されるものではない。EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.
実施例1
メルトインデックス26のポリ4−メチルペンテン−1
を用いて紡糸温度290℃、ドラフト200で溶融紡糸
を行い、得られ九中空糸状中間体を、200℃、定長、
60秒の熱処理、25℃、延伸倍率(DR)L2の冷延
伸、150℃、DR−L5の熱延伸、および180℃、
DR−α9の熱固定を行うことKよ)、外径252趨、
内径200趨の中空糸膜を得た。この膜を走査型電子顕
微鏡観察したところ、中空糸膜の内外両表面共に、直径
約0. I Itmの細孔が多数観測された。水銀yl
laシメータによ〕測定した平均孔径は、α0811a
であった。この膜の内側に、701エタノール(水溶液
)をα5 kli/ex”GO正圧力導入すると、エタ
ノールは200 cxa”7m” 、 mi鳳の速度で
透過した。このことから、この換は内外表面を連結する
細孔を有することが分かる。ma液としてシリコンオイ
ル(PETRARCHBYBTEMB社製、P8−03
6、表面張力18 dyQ/3、粘度L 5 dt )
をもちいて測定したバブルポイント(ム8TM、F−3
16による)は、10 #/cs”G (測定限界)以
上でありた。Example 1 Poly4-methylpentene-1 with melt index 26
Melt spinning was carried out at a spinning temperature of 290°C and a draft of 200 using
Heat treatment for 60 seconds, cold stretching at 25°C, draw ratio (DR) L2, hot stretching at 150°C, DR-L5, and 180°C,
Please heat set the DR-α9), outer diameter 252,
A hollow fiber membrane with an inner diameter of 200 mm was obtained. When this membrane was observed under a scanning electron microscope, both the inner and outer surfaces of the hollow fiber membrane had a diameter of about 0. Many I Itm pores were observed. mercury
The average pore diameter measured with a la simeter is α0811a
Met. When 701 ethanol (aqueous solution) was introduced into the inside of this membrane under α5 kli/ex"GO positive pressure, the ethanol permeated at a rate of 200 cxa"7 m", mi. From this, this exchange connects the inner and outer surfaces. Silicone oil (manufactured by PETRACHBYBTEMB, P8-03) was used as the ma liquid.
6. Surface tension 18 dyQ/3, viscosity L 5 dt)
Bubble point measured using (Mu8TM, F-3
16) was greater than 10 #/cs"G (measurement limit).
tiこの膜の気体−気体系での気体透過速度(ム8TM
、F−316、Dry法による)は、酸素透過速IE
(Qo2) &20 X 10−’ (3I’ (8T
P)15I” 、 I@@t5LH11;〕、窒素透過
速度(QN2) & 42 X 10−5(同単位〕、
酸lA/窒素の分離係数はα936でありた。tiThe gas permeation rate of this membrane in the gas-gas system (Mu8TM
, F-316, by Dry method) is the oxygen permeation rate IE
(Qo2) &20 X 10-'(3I' (8T
P) 15I", I@@t5LH11;], nitrogen permeation rate (QN2) & 42 X 10-5 (same unit),
The acid lA/nitrogen separation factor was α936.
この膜を第2図に示した形の、内表面積12 m”のモ
ゾ、−ルに組み、第1図に示した浄水装置を構成した。This membrane was assembled into a mole having an inner surface area of 12 m'' as shown in FIG. 2 to construct the water purification device shown in FIG.
但し、パルプ(4)は設けていない。However, pulp (4) is not provided.
真空ポ/fとして、水対式真空ポング(神戸製鋼製、8
W25−8屋、排気量450 4/f!lim 、減圧
度32 Torr)を用いた。As the vacuum pump/f, a water-pair vacuum pump (manufactured by Kobe Steel, 8
W25-8 shop, displacement 450 4/f! lim, vacuum degree of 32 Torr).
この浄水装置を上水道に接続し、パルf(3)Kて処理
水量が毎分3す、トルになるよう胴節し喪、原水で感じ
られた塩素臭は処理水では感じられず、DPD比色分析
法によれば、原水の塩素mixα7 pprmが約α3
PPIIに減少していた。また原水として、 10
pptの2−メチルイソlルネオールを添加した蒸留水
を用い、毎分3リツトルで処理した水の官能試験の結果
は、原水の墨汁臭は、処理水ではほとんど感じられなか
りた。This water purification device was connected to the water supply system, and the system was operated so that the amount of water treated was 3 torr per minute. According to the color analysis method, the chlorine mix α7 pprm of raw water is about α3
It had decreased to PPII. Also, as raw water, 10
A sensory test of water treated at 3 liters per minute with distilled water to which ppt of 2-methylisoluneol was added showed that the ink odor of the raw water was hardly felt in the treated water.
さらに、原水として、クロロホルム及びトリクaaエタ
ンを添加した蒸留水を用い九試験を行りた。原水及び毎
分3す、トルで処理した水をガスクロマトグラフ法(上
水試験方法1985年版、岩本敬治編集、日本水道協会
発行、482頁)で測定したところ、りpロホルムは、
a15ppmがα03 ppmに、トリクロはエチレン
はα19 ppmかへ04 ppmに減少していた。Furthermore, nine tests were conducted using distilled water to which chloroform and tric aa ethane were added as raw water. When raw water and water treated at 3 s/min were measured using gas chromatography (Water Test Methods 1985 Edition, edited by Keiji Iwamoto, published by Japan Water Works Association, p. 482), riproform was found to be
A15ppm decreased to α03ppm, and tricloyl and ethylene decreased to α19ppm to α04ppm.
実施例2
中空糸膜として、4リグiピレン多孔質属(Iリグクス
ナックス社、X−10、孔径α2〜α3xα4 tns
)を用いたほかは、実施例1と同じ浄水装置を製作し
、実施例1と同様の試験を行った。この膜の実測値は、
外径268μm、内径207μm。Example 2 As a hollow fiber membrane, 4 rig ipyrene porous genus (Irigkusnax Co., Ltd., X-10, pore size α2~α3xα4 tns
) was used, but the same water purification device as in Example 1 was manufactured, and the same tests as in Example 1 were conducted. The actual value of this film is
Outer diameter 268μm, inner diameter 207μm.
パルf4インドλ5 kl/cs”G、気体透過特性は
QO2−&77 X 10−’(3” (s’rp)、
”ex” * see + mHg)、酸素/窒素分離
係数はα933であった。原水で感じられ次塩素臭は処
理水ではほとんど感じられず、DPD比色分析の結果も
、原水の塩素濃度α7 ppmが約α4 ppmに減少
してい良、また2−メチルイソIルネオールに関して、
実施例1と同様の試験を行ったところ、原水で感じられ
九墨汁臭は、処理水ではほとんど感じられなかりた。さ
らに、クロロホルム及びトリクロロエチレンに関して、
実施例1と同じ試験を行り次ところ、クロロホルムは、
α17 ppmがα05 pprmに、トリクロロエチ
レンはα2 G ppmmがα06 ppm K減少し
ていた。Pal f4 India λ5 kl/cs"G, gas permeation characteristics are QO2- & 77 X 10-'(3"(s'rp),
"ex"*see+mHg), the oxygen/nitrogen separation factor was α933. The hypochlorine odor that can be felt in the raw water is hardly felt in the treated water, and the results of DPD colorimetric analysis show that the chlorine concentration in the raw water has decreased from α7 ppm to approximately α4 ppm, and regarding 2-methylisoIluneol,
When the same test as in Example 1 was conducted, the nine ink ink odor that was felt in the raw water was almost not felt in the treated water. Furthermore, regarding chloroform and trichlorethylene,
The same test as in Example 1 was conducted, and chloroform was
α17 ppm decreased to α05 pprm, and α2 G ppmm of trichlorethylene decreased by α06 ppm K.
実施例3
メルトインデックス26のポリ4−メチルペンテ/−1
を用いて紡糸温度290℃、ドラフト300で溶融紡糸
を行い、得られた中空糸状中間体を、210℃、延伸倍
率(DR)Ll、処理時間5秒の熱処理、25℃、DR
履L2の冷延伸、150℃、DR−140熱延伸、およ
び180℃、DR−α9の熱固定を行うことにより、外
径213μm、内径167μmの中空糸膜を得九。この
膜を走査型電子顕微鏡*St、たところ、中空糸膜の内
表面に、直径約α1趨の細孔が多数観測されたが外表面
にはほとんど存在しなかった。この膜の内側に、70チ
エタノール(水溶液)をα5 #/cm”Gの圧力で導
入したが、エタノールの透過は認められなかった。この
ことから、この膜は内外表面を連結する細孔を有しない
ことが分かる。またこの膜の気体−気体系での気体透過
速度は、酸素透過速度(QO2)L51X10−’ (
clR’ (137P)151” 、 m @ e m
ailg ]、窒素透過速度(QN2)λ80X10−
5(同単位〕で、酸素/窒素の分離係数はユ97であっ
た。Example 3 Poly 4-methylpente/-1 with melt index 26
Melt spinning was performed using a spinning temperature of 290°C and a draft of 300, and the obtained hollow fiber intermediate was heat-treated at 210°C, drawing ratio (DR) Ll, treatment time 5 seconds, 25°C, DR.
A hollow fiber membrane having an outer diameter of 213 μm and an inner diameter of 167 μm was obtained by performing cold stretching of shoe L2, hot stretching of DR-140 at 150°C, and heat setting of DR-α9 at 180°C. When this membrane was subjected to a scanning electron microscope *St, many pores with a diameter of approximately α1 were observed on the inner surface of the hollow fiber membrane, but almost none were present on the outer surface. Although 70% ethanol (aqueous solution) was introduced into the inside of this membrane at a pressure of α5 #/cm"G, no permeation of ethanol was observed. From this, this membrane has pores that connect the inner and outer surfaces. In addition, the gas permeation rate of this membrane in a gas-gas system is oxygen permeation rate (QO2) L51X10-' (
clR'(137P)151", m @ em
ailg], nitrogen permeation rate (QN2) λ80X10-
5 (same unit), and the oxygen/nitrogen separation coefficient was 97.
この膜を第2図に示した形の、内表面積13m8のモジ
ュールに組み、真空ポンプの封水が存在しない事以外は
実施例1と同様の浄水装置を構成した。真空ポンプとし
てガスパラストパルプを有する油回転真空ポンプ(真空
機工襄、GCD −135XA型、排気fit 135
4/m1m 、減圧度L 5 Torr)を用い九。This membrane was assembled into a module having an inner surface area of 13 m8 as shown in FIG. 2, and a water purification device similar to that of Example 1 was constructed, except that there was no water seal for the vacuum pump. Oil rotary vacuum pump with gas palust pulp as a vacuum pump (Shinku Kikou, GCD-135XA type, exhaust fit 135
4/m1 m, degree of vacuum L 5 Torr).
この浄水装置を用いて、実施例1と同様の試験を行った
。塩素に関しては、DPD法では原水の0、7 ppm
がα6 ppmまで減少したに留まり九が、原水で感じ
られた塩素臭は、処理水では感じられなかった。2−メ
チルイソ〆ルネオールに関しても、原水で感じられ九墨
汁臭は、処理水ではほとんど感じられなかり九。また、
クロロホルムは、α15 pprxがα02 ppmに
、トリクロロエチレンは119 ppmがα03 pp
mに減少していた。A test similar to that in Example 1 was conducted using this water purifier. Regarding chlorine, the DPD method reduces the concentration of chlorine to 0.7 ppm in raw water.
However, the chlorine odor felt in the raw water was not felt in the treated water. As for 2-methyliso〆reneol, the black ink odor that can be felt in the raw water is almost invisible in the treated water. Also,
For chloroform, α15 pprx becomes α02 ppm, and for trichlorethylene, 119 ppm becomes α03 ppm.
It had decreased to m.
実施例4
実施例3で用い次ものと同じ中空糸膜を、第4図に示す
ように、30デニールのポリエステル糸を経糸として、
絡み織夛によシ、中空糸密度25本/国、経糸密度1本
/aRの、第4図のような、原状シートを形成した。こ
のシートを直径3mの多数の穴を設けた・中イノに5j
層して巻き付け、ノ・ウノングに装填し、端部をポリウ
レタン樹脂により封止することKよシ、第3図に示した
モジュールとした。モジュールの有効膜面積(中空糸外
表面積)は&8m!であった。このモジュールを用い、
第1図のような浄水装置を構成した。但し、真空ポンプ
の封水は存在せず、i九パルf(3)は設けていない。Example 4 The same hollow fiber membrane as that used in Example 3 was used as shown in FIG. 4, using 30 denier polyester yarn as the warp.
An original sheet as shown in FIG. 4 was formed with a tangled weave, a hollow fiber density of 25/aR, and a warp density of 1/aR. This sheet has many holes with a diameter of 3m.
The module was layered and wound, loaded into a tube, and the ends were sealed with polyurethane resin to form the module shown in FIG. 3. The effective membrane area (hollow fiber outer surface area) of the module is &8m! Met. Using this module,
A water purification device was constructed as shown in Figure 1. However, there is no water seal for the vacuum pump, and the i9pal f(3) is not provided.
この浄水装置にて、パルf(4)にて流量調節をおこな
ったこと以外は実施例1と同様の試験をおこなった。そ
の結果、塩素濃度はα7ppmかへ6 ppmに低下し
たに留まったが、官能試験ではほとんど塩素^が感じら
れなかった。また、2−メチルインゲルネオールKかん
しても、原水で感じられた墨汁臭は、6理水ではほとん
ど感じられなかった。さらに、原水中のクロロホルム(
α15ppm)はα02 ppmK、)リクnoエチレ
ン(0,18ppm )はα03 ppmまで除去され
た。With this water purifier, the same test as in Example 1 was conducted except that the flow rate was adjusted using Pal f (4). As a result, the chlorine concentration was only reduced to 6 ppm from α7 ppm, but in the sensory test, almost no chlorine was felt. In addition, with regard to 2-methylingelneol K, the black ink odor that was felt in the raw water was hardly felt in the 6-ration water. In addition, chloroform (
α15 ppm) was removed to α02 ppmK, and ethylene (0.18 ppm) was removed to α03 ppm.
瓜図面の簡単な説明
第1図は本発明の実施例を示すもので、浄水器の構成を
示す概念図、第2図は実施例で用いる内部層I51!m
の膜モジュールの、部分縦断面正面図、第3図は実施例
で用いる外部4流星の族モジュールの、縦断面正面図、
第4図は中空糸シートの形状の概念図である。Brief explanation of the melon drawings Fig. 1 shows an embodiment of the present invention, and is a conceptual diagram showing the structure of a water purifier, and Fig. 2 shows an internal layer I51 used in the embodiment! m
FIG. 3 is a vertical cross-sectional front view of the external four-meteor group module used in the example.
FIG. 4 is a conceptual diagram of the shape of the hollow fiber sheet.
図中の符号は以下のとおシである。The symbols in the figure are as follows.
1・・・膜モゾユ〜ル、2・・・真空ポンプ、3・・・
/4ルグ、4・・・パルプ、5・・・中空糸膜、6・・
・樹脂封止部、7・・・ハウジング、8・・・給水口、
9・・・処理水排出口、10・・・吸引口、11・・・
多孔ノ母イブ、12・・・網。1... Membrane module, 2... Vacuum pump, 3...
/4 Lug, 4...Pulp, 5...Hollow fiber membrane, 6...
・Resin sealing part, 7... Housing, 8... Water supply port,
9... Treated water outlet, 10... Suction port, 11...
Porous mother Eve, 12...net.
13・・・経糸。13... Warp.
代理人 弁理士 高 橋 勝 利 第1図 第2図 第4図Agent: Patent Attorney Katsutoshi Takahashi Figure 1 Figure 2 Figure 4
Claims (1)
^2、sec、cmHg〕以上である疎水性の中空糸膜
をハウジングに組み込んだ膜モジュールと、真空ポンプ
とから構成され、中空糸膜の一方の側に処理すべき水を
流し、他方の側を真空ポンプにて減圧することを特徴と
する浄水装置。 2、水の脱臭装置である請求項1記載の浄水装置。 3、膜モジュールが、中空糸膜の内側に被処理給水を流
し、中空糸の外側とハウジングとの空間部を減圧する内
部潅流型であって、中空糸の内径が20〜350μmで
あることを特徴とする請求項1または2記載の浄水装置
。 4、膜モジュールが、組込まれる中空糸膜が中空糸膜同
士または他の糸条とによって組織されたシート状物の重
畳体または収束体の状態、もしくは中空糸膜同士または
他の糸条とによって組織された3次元編組体の状態でハ
ウジング内に組み込まれており、中空糸膜外側とハウジ
ングの間の空間に被処理給水を流し、中空糸膜の内側を
減圧する外部潅流型であることを特徴とする請求項1ま
たは2記載の浄水装置。 5、中空糸状隔膜が、バブルポイントが1.0〔kg/
cm^2G〕以上である連通孔型の多孔質膜である、請
求項1、2、3、または4記載の浄水装置。 6、中空糸状隔膜が、酸素/窒素の分離係数が1.0以
上である不均質膜または複合膜である、請求項1、2、
3、または4記載の浄水装置。 7、真空ポンプが、水封式真空ポンプである請求項5ま
たは6記載の浄水装置。 8、真空ポンプが、ガスバラストバルブを備えた油回転
式真空ポンプである請求項6記載の浄水装置。 9、酸素透過速度が1×10^−^5〔cm^3/cm
^2、cmHg〕以上である疎水性の中空糸膜をハウジ
ングに組み込んだ膜モジュールにおける中空糸膜の一方
の側に処理すべき水を流し、他方の側を真空ポンプにて
減圧することにより、水から低沸点ハロゲン化合物また
は塩素臭、微臭などの悪臭原因物質を膜モジュール系外
へ除去する浄水方法。[Claims] 1. Oxygen permeation rate is 1×10^-^5 [cm^3/cm]
It consists of a membrane module that incorporates a hydrophobic hollow fiber membrane in a housing with a hydrophobic hollow fiber membrane of ^2, sec, cmHg] or more, and a vacuum pump. A water purification device characterized by reducing the pressure using a vacuum pump. 2. The water purification device according to claim 1, which is a water deodorization device. 3. The membrane module is an internal perfusion type that flows the feed water to be treated inside the hollow fiber membrane and reduces the pressure in the space between the outside of the hollow fiber and the housing, and the inner diameter of the hollow fiber is 20 to 350 μm. The water purification device according to claim 1 or 2. 4. In the membrane module, the hollow fiber membranes to be incorporated are in the state of a stack or convergence of sheet-like materials organized by hollow fiber membranes or with other fibers, or by hollow fiber membranes or with other fibers. It is built into the housing in the form of an organized three-dimensional braided body, and is an external perfusion type in which the feed water to be treated flows through the space between the outside of the hollow fiber membrane and the housing, reducing the pressure inside the hollow fiber membrane. The water purification device according to claim 1 or 2. 5. The hollow fiber diaphragm has a bubble point of 1.0 [kg/
5. The water purification device according to claim 1, wherein the water purification device is a communicating pore type porous membrane having a diameter of 1 cm^2G] or more. 6. Claims 1 and 2, wherein the hollow fiber diaphragm is a heterogeneous membrane or a composite membrane having an oxygen/nitrogen separation coefficient of 1.0 or more.
3 or 4. The water purification device according to 4. 7. The water purification device according to claim 5 or 6, wherein the vacuum pump is a water ring vacuum pump. 8. The water purification device according to claim 6, wherein the vacuum pump is an oil rotary vacuum pump equipped with a gas ballast valve. 9. Oxygen permeation rate is 1 x 10^-^5 [cm^3/cm]
By flowing the water to be treated on one side of the hollow fiber membrane in a membrane module in which a hydrophobic hollow fiber membrane with a pressure of 2, cmHg or more is incorporated into the housing, and reducing the pressure on the other side with a vacuum pump, A water purification method that removes low-boiling point halogen compounds, chlorine odor, faint odor, and other odor-causing substances from water outside the membrane module system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12232989A JPH02303587A (en) | 1989-05-16 | 1989-05-16 | Device and method for cleaning water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12232989A JPH02303587A (en) | 1989-05-16 | 1989-05-16 | Device and method for cleaning water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02303587A true JPH02303587A (en) | 1990-12-17 |
Family
ID=14833277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12232989A Pending JPH02303587A (en) | 1989-05-16 | 1989-05-16 | Device and method for cleaning water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02303587A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03213188A (en) * | 1990-01-12 | 1991-09-18 | Takeshi Nitami | City water purification device |
WO1994003397A1 (en) * | 1992-08-07 | 1994-02-17 | Miura Co., Ltd. | Improvement to membrane type deaerator |
JPH0655162A (en) * | 1991-04-17 | 1994-03-01 | Nitto Denko Corp | Method for degassing circulating cooling water |
JPH0747353A (en) * | 1994-06-06 | 1995-02-21 | Takeshi Nitami | Water purification method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60118284A (en) * | 1983-11-30 | 1985-06-25 | Nitto Electric Ind Co Ltd | Pure water preparing method |
JPS6220693B2 (en) * | 1981-02-20 | 1987-05-08 | Shindo Denshi Kogyo Kk | |
JPS63264127A (en) * | 1987-04-22 | 1988-11-01 | Dainippon Ink & Chem Inc | Porous membrane type gas-liquid contact device |
-
1989
- 1989-05-16 JP JP12232989A patent/JPH02303587A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6220693B2 (en) * | 1981-02-20 | 1987-05-08 | Shindo Denshi Kogyo Kk | |
JPS60118284A (en) * | 1983-11-30 | 1985-06-25 | Nitto Electric Ind Co Ltd | Pure water preparing method |
JPS63264127A (en) * | 1987-04-22 | 1988-11-01 | Dainippon Ink & Chem Inc | Porous membrane type gas-liquid contact device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03213188A (en) * | 1990-01-12 | 1991-09-18 | Takeshi Nitami | City water purification device |
JPH0655162A (en) * | 1991-04-17 | 1994-03-01 | Nitto Denko Corp | Method for degassing circulating cooling water |
JPH0738982B2 (en) * | 1991-04-17 | 1995-05-01 | 日東電工株式会社 | Circulating cooling water degassing method |
WO1994003397A1 (en) * | 1992-08-07 | 1994-02-17 | Miura Co., Ltd. | Improvement to membrane type deaerator |
US5584914A (en) * | 1992-08-07 | 1996-12-17 | Miura Co., Ltd | Membrane deaerator apparatus |
JPH0747353A (en) * | 1994-06-06 | 1995-02-21 | Takeshi Nitami | Water purification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1098691A1 (en) | Antimicrobial semi-permeable membranes | |
US20230054094A1 (en) | Method and system for preparing dialysis fluid from raw water | |
JPH119902A (en) | Module for liquid deaeration | |
JPH02303587A (en) | Device and method for cleaning water | |
JP2019510623A (en) | Bioreactor assembly | |
KR20170112589A (en) | Catridge filter of multilayer type and directly water purifier comprising the same | |
JPH06335623A (en) | Deaerating film and deaerating method | |
JPH0330889A (en) | Water purifier and water purifying method | |
JPH09299947A (en) | Reverse osmotic membrane spiral element and treating system using the same | |
JPH0380983A (en) | Gas-liquid contact type water purifying apparatus and method | |
KR20200073633A (en) | Interated type complex filter module for separating water purifier | |
JPH0243518Y2 (en) | ||
JP2004154169A (en) | Method of manufacturing water for dialysis and device of manufacturing water for dialysis | |
CN221619080U (en) | Membrane module, filter element and purifying equipment | |
JP2001170622A (en) | Desorption method for absorptive substance, concentrator and concentration method | |
JPH07313972A (en) | Portable water purifier and usage of the same | |
US20170291144A1 (en) | Point-of-use water purifier with polysulfone hollow fibres | |
CN221422119U (en) | Water supply system | |
CN218810460U (en) | Whole-house direct drinking filtering system | |
JP2000225304A (en) | Adsorber | |
CN220091024U (en) | Breathable RO membrane group | |
KR200242686Y1 (en) | A drinking water purifier | |
CN112957919B (en) | Water treatment system and water treatment process with graded filtration | |
JPH0386217A (en) | Water purifier | |
CN213060302U (en) | Reverse osmosis membrane structure for water treatment |