[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0230711B2 - - Google Patents

Info

Publication number
JPH0230711B2
JPH0230711B2 JP56174793A JP17479381A JPH0230711B2 JP H0230711 B2 JPH0230711 B2 JP H0230711B2 JP 56174793 A JP56174793 A JP 56174793A JP 17479381 A JP17479381 A JP 17479381A JP H0230711 B2 JPH0230711 B2 JP H0230711B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
melting point
weight
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56174793A
Other languages
Japanese (ja)
Other versions
JPS5875587A (en
Inventor
Jugoro Masuda
Shigeru Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP56174793A priority Critical patent/JPS5875587A/en
Priority to US06/437,765 priority patent/US4477515A/en
Priority to EP19820305773 priority patent/EP0078682B1/en
Priority to DE8282305773T priority patent/DE3268456D1/en
Priority to AT82305773T priority patent/ATE17380T1/en
Priority to EP19840105871 priority patent/EP0137101A1/en
Priority to CA000414493A priority patent/CA1172776A/en
Publication of JPS5875587A publication Critical patent/JPS5875587A/en
Publication of JPH0230711B2 publication Critical patent/JPH0230711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は詰綿材料に関するものである。 従来、防寒衣服や寝具類の詰綿で最も好ましい
ものとして天然ダウンが用いられている。ダウン
はそのすぐれた諸性質の故に世界中で重宝されて
いるのであるが、生産量が極めて限られているた
めに非常に高価なものとなつている。このため近
時これを人口的に生産せんとする試みがなされ始
めている。例えば天然ダウンにポリエステル繊維
を配合する方法、或にはポリエステル繊維にシリ
コン処理を施して使用する方法等が試みられてい
るが、これらはいづれも満足し得るものではな
く、天然ダウンの具有する他に類のないすぐれた
諸性質をもつ材料は未だ実現されていないのが現
状である。さらにこれらの人口材料は使用或いは
洗濯により、へたりを生じたり、材料同志が絡み
合つたり、綿切れを起こして側地の中で材料が一
方に片寄つたりし、しかもダウンのように軽く叩
くと再び元の状態に復することがない等、実用上
重大な欠陥をも有するのである。 一方、ふとん綿に関しては天然及び人造のふと
ん綿用繊維にセロフアンリボン状切断物を混合し
た混合綿が特公昭39−6330号公報に記載されてい
るが、側地内でふとん綿が片寄り易く、又片寄つ
た場合の復元性に欠けるばかりでなく、へたりも
充分に改善されず、所謂ダウン・ライクのものと
も言い難い。特に洗濯した場合綿の片寄り、及び
へたりをはじめとして諸性質の変化が大きく、例
えばダウン・ジヤケツト等の被服には使用し難
い。 本発明者等は斯様な従来の欠陥を排除すべく鋭
意研究の結果本発明を完成したものである。 本発明の目的は側地内で片寄り難く、又片寄つ
ても復元性に優れ、しかもへたりにくく、更に、
洗濯によつてへたりをはじめとする諸性質の変化
の少ない詰綿材料を提供するにある。他の目的は
使用に際しては嵩高性に富み、且つ適度の腰があ
り、感触もソフトな、軽量にして保温性にすぐれ
た詰綿材料を提供するにある。更に他の目的は収
納に当つて小さく折りたたみ易くてコンパクトに
収納でき、且つまたは再使用時には嵩回復にすぐ
れ、再び初期の特性をとり戻すことのできる詰綿
材料を提供するにある。 上記目的は、単糸繊度3〜10デニール、捲縮率
15%以上のポリエステル短繊維(A)90〜10重量%
と、単糸繊度がポリエステル短繊維(A)の繊度より
小さく且つ0.7〜4デニールで、捲縮率15%未満
のポリエステル短繊維(B)10〜90重量%とを配合混
綿して成る繊維と屈曲を与えたポリエステルフイ
ルム状構造素子(C)との混合物100重量部に対し、
前記繊維及びフイルム状構造素子(C)のいずれより
も20℃以上低い融点を有する低融点合成繊維を
100重量部以下配合してなる詰綿材料により達成
される。 本発明に適用される前記繊維としては、通常防
寒衣料、寝具類の中綿や断熱材等として用いられ
るポリエステル系繊維であり、ポリエステル系繊
維は各種力学的性質から見て本発明の繊維材料と
して用いるのに好適である。 本発明の諸効果を最大に発揮せしめるには、フ
イルム状構造素子を混合する繊維材料として繊度
が3〜10デニールで捲縮率が15%以上の繊維(A)90
〜10重量%と、繊度が繊維(A)のそれより小さく且
つ0.7〜4デニールで捲縮率が15%未満の合成重
合体から成る繊維(B)10〜90重量%を配合混綿した
ものを用いる繊維(A)と繊維(B)は夫々本詰綿材料の
嵩高性及び使用後のビートバツク性・保温性の向
上に寄与する。即ち、太繊度糸からなる繊維(A)は
ハリ、コシを有し、強い捲縮を持つため嵩高性を
強く発現する。また細繊度糸からなる繊維(B)の捲
縮率は高々15%以下、好ましくは10%以下であ
り、捲縮率零即ち、捲縮のないものも含めて通常
使用されていないような捲縮率の小さな領域の繊
維を用いる場合にのみ効果が充分発揮されるもの
で、特にコンパクトに収納していたものを再使用
する場合にこれを軽く叩くなど機械的な刺激或い
は振動を与えると繊維(B)が交絡部の滑材となつて
よく嵩が回復するなどの効果を示す。(ビート・
バツク)又、繊維度で捲縮率の小さな繊維(B)は繊
維(A)の交絡部間に位置する空隙の中に入り込み、
空隙により生じた空気室を細分化して空気の対流
を抑えるので保温性も向上せしめる。 又、繊維(A)と繊維(B)の配合比率によつても詰綿
材料の物性が変化し、本発明の効果を充分得るに
は繊維(A)を90〜10重量%、好ましくは80〜20重量
%、更に好ましくは70〜30重量%と、繊維(B)を10
〜90重量%、好ましくは20〜80重量%、更に好ま
しくは70〜30重量%とを配合する。 かかる配合比率とすることによつて、前記した
繊維(A)(B)の作用効果即ち適度な嵩高性・ビートバ
ツク性・保温性がバランスよく発揮される。 繊維(A)及び繊維(B)は一成分のみよりなるもので
あつても前記作用効果を奏するが、特に繊維(A)と
して粘度の異なる同種の重合体をサイドバイサイ
ドに複合した複合繊維を用いれば、スパイラル状
の捲縮が発現し、その結果、3次元的な構造とな
り嵩高性の向上に寄与する。更に、繊維(A)には中
空繊維を使用すれば捲縮を与え易く、しかも堅牢
であり、軽くて嵩高性にすぐれ保温性も良いため
特に好ましい。この場合通常中空率は5〜30%程
度である。 次に本発明に謂うフイルム状構造素子(C)とは、
一般に偏平糸・ラメ糸といわれるものでポリエス
テルから成る薄片状物であり、ポリエステルは力
学的性質等にすぐれていて特に好ましい。ここで
薄片状物とは縦、横の長さに比して厚さの薄いも
のであり、それらの寸法は本発明の詰綿材料に最
高の特性を与えるために適宜選択することができ
るが、通常入手できるものとしては概して5〜
200μ、好ましくは10〜80μ程度である。 これらの薄片状物は縦、横の長さの比が通常10
以上、特に15以上のものであり、前記ラメ糸・偏
平糸がこの範囲に含まれることは勿論である。そ
してこれらは後述のカーデイングを容易にし更
に、嵩高性を付与するため適宜屈曲させたり、捲
縮を与えたりして立体的に変形せしめる。 また、これら薄片状物は表面に金属蒸着したも
のを用いると赤外線反射作用があり、保温性向上
のため好ましく、特にアルミニウムを蒸着したも
のは赤外線反射率が高いので好適である。 本発明に適用するフイルム状構造素子は前記繊
維に対して1〜50重量部、好ましくは2〜30重量
部、さらに好ましくは3〜25重量部、特に好まし
くは4〜20重量部の割合で配合する。 フイルム状構造素子は主に嵩高性、圧縮性に関
連するため前記範囲より配合量が少ないと充分な
嵩高性、圧縮応力が得られず、又配合量が多くな
ると風合を劣化せしめる。 次に本発明に用いる低融点合成繊維とは后次の
熱処理工程での作業を容易にするため前記繊維及
びフイルム状構造素子よりも通常20℃以上、好ま
しくは30℃以上低い融点を持つ成分を少くとも一
部に有するものである。即ち、低融点合成繊維に
は上記の如き低融点成分単独から成るものの他、
低融点成分と、これとは上記温度差以上の高融点
を有する異質若しくは同質の重合体などを芯鞘型
等に複合した所謂コンジユゲート繊維をも含むの
である。 上記の低融点成分としてはポリエステル系、ポ
リアミド系、ポリアクリルニトリル系、ポリエチ
レン等のポリマーの他、各種変性乃至共重合した
ポリマーも含まれる。 低融点合成繊維の繊度は後記の如く熱融着に際
して、細いと接着密度が高くなり、又太いと接着
強度が大きくなるため繊度は通常1〜15デニー
ル、好ましくは1.5〜10デニールである。 本発明に適用する低融点合成繊維は前記繊維と
フイルム状構造素子との混合物100重量部に対し、
100重量部以下、好ましくは2〜50重量部、更に
好ましくは3〜40重量部、特に好ましくは4〜30
重量部配合混綿する。低融点合成繊維の配合量が
100重量部を越えると、詰綿材料が粗硬となるば
かりでなく、嵩高性等の他の物性が低下する。 本発明の繊維、フイルム状構造素子及び低融点
合成繊維を配合した詰綿材料は通常の方法で混綿
配合することができる。また、フイルム状構造素
子及び低融点合成繊維はその大きさにより前記繊
維と共にカーデイングすることもでき、場合によ
つては前記繊維のカード工程以後で配合すること
もできる。 通常のカード工程にこれら繊維を供するために
は、通常20〜200mm程度の繊維長(綿〜羊毛程度)
にカツトすればよく、この範囲内程度であればバ
イアスカツト等により繊維長にバラツキがあつて
もカード性等を損なうことはない。 配合した詰綿材料はウエツブ状としてばかりで
なく、ランダム繊維塊、例えばウエツブの配列を
乱したり、或いは機械、風力、又は人力で1〜10
cm程度の繊維塊に分離し、必要に応じてさらに丸
めて使用することができるが、これらのものは加
熱により低融点合成繊維を軟化、溶融せしめて繊
維材料等を接着固定する。この場合、温度は繊維
材料及びフイルム状構造素子のいづれの融点より
も低く、且つ低融点合成繊維の融点よりも高く設
定する。時間は低融点成分の組成、デニール、設
定温度等によつて変化するが、予めテトにより条
件を選定すくことができ、概してたかだか10分程
度である。尚、繊維塊として用いる場合に、ウエ
ツブ状で融着した後、これを繊維塊に分割しても
よい。 また、本発明の詰綿材料はその構成要素の一部
又は全部を配合前に或いは加熱融着後の詰綿材料
を、必要に応じて油剤、シリコン系、弗素系等の
平滑剤で処理するなどして、繊維間の静摩擦係数
を低下せしめることが好ましい。この場合、弾性
重合体や柔軟剤等を併用しても良い。 尚、本発明の詰綿材料はその使用に際して適当
な側地に包むなどして、布団などの寝操品や防寒
保温を必要とする衣服、或いは断熱を必要とする
各種産業資材用等に用いられるが、この場合本発
明の詰綿材料のみを単層又は積層して使用するこ
とがてきる。 本発明の詰綿材料の奏する効果として、一つに
はすぐれた着用性能や耐洗濯性がある。即ち、本
発明の詰綿材料は水洗濯でもへたりが少なく、ま
た詰綿が片寄つてもダウン同様原型に復し易い。 本発明の詰綿材料の奏する効果は、二つにはダ
ウンライクな物性を示すことである。即ち、まず
初期の嵩高性が挙げられる。通常、同重量の試料
を採ると、最も嵩が高いのは天然ダウンであり、
これに比較すると一般の詰綿材料は概して約半分
良いものでも7割程度の嵩に過ぎない。これに対
して本発明に係る詰綿材料は天然ダウンに優ると
も劣らない嵩高さえ得られないのである。 次に本発明の詰綿材料は天然ダウンと同様の高
圧縮性が得られる。天然ダウンは嵩高性にも拘ら
ず、逆に圧縮に要する荷重が小さくて済み、非常
に小さな容積に圧縮すくことができるので、これ
を収納する時に場所を取らない利点がある。 第三の効果は嵩復元性にある。上記のようにコ
ンパクトに収納した後再びこれを使用する時嵩が
充分回復しなければならない。長時間コンパクト
な形で収納しておくと詰綿は次第に歪み、復元力
が無くなつて来るため従来の詰綿では嵩回復が悪
い。この点ダウンの回復後の嵩高は初期の嵩高と
相侯つて至極良好である。特に手で叩くてどの機
械的な力を加えた時の回復性(ビートバツク性)
にすぐれているが、本発明の詰綿材料もまたビー
トバツク性を含む嵩回復性は従来の詰綿にないす
ぐれたものがある。 第四の効果は、保温性である。本発明の詰綿材
料は短繊維が細かに交絡しておりその結果、微細
な空隙部を多数有するので空気の対流が抑えら
れ、従来の詰綿材料に比べ保温性に優れる。 以下に実施例を挙げて本発明を具体的に説明す
るが、実施例中「部」は「重量部」を示す。また
各種測定評価は次の方法により行つた。 12cm角の側地2枚を重ね周囲を縫い合わせた袋
内に詰綿材料4gを詰めて測定試料とした。イン
ストロンにより上記試料を5mmまで圧縮し、この
状態で5分間放置した後徐重して無荷重下に5分
間放置し、再度圧縮した。この測定から、 初期嵩高:初回圧縮過程に於いて、初荷重
(1.3g/cm2)時の厚さ(mm) 圧縮応力:初回圧縮過程に於いて5mmまで圧縮
した直後の応力(g/cm2) 初期圧縮硬さ:初回圧縮過程に於いて、試料を
初荷重時の厚さから20mm圧縮した時の応力(g/
cm2)を求めた。 次に試料に70g/cm2の高荷重を24時間負荷した
後、徐重して5分間放置して自然回復せしめ、次
いで試料をタンブラー乾燥機にて5分間回転、振
動を与えてビートバツクせしめたものの初荷重時
の厚さを全回復嵩高(mm)とした。 洗濯後のビートバツク性:50cm角のツシヨンを
作成し、これを三等分する様にキルテイングし
た。このものをタンブラー型洗濯機により10分間
洗濯、3分間のすすぎを3回繰返した後遠心脱
水、乾燥した。このものの中綿の片寄りを軽く手
で叩いた時の復元性を視触覚的に判定し、優、
良、可、不可の四段階に評価した。 また、保温性はJIS−L−1079A法に準拠した
方法により目付400g/m2の試料を用いて測定し
た保温率(%)で表わした。 尚、繊維間静摩擦係数はレーダー法により測定
した。 実施例 1 相対粘度(ηrel)1.38のポリエチレンテレフタ
レートと同1.21のポリエチレンテレフタレートと
を1対1の比率でサイドバイサイド型に複合して
得た複合中空糸よりなる中空率16.5%、繊度5デ
ニール、捲縮率22.3%、繊維長65mmの短繊維(A)を
50部、繊度1.5デニール、捲縮率7.0%、繊維長38
mmのポリエステル短繊維(B)を50部、及び展延面積
が0.12cm2の短冊形(幅0.04cm、長さ3cm)で捲縮
を与えアルミニウム蒸着ポリエステルフイルム10
部混合したもの100部に融点が120℃のポリエステ
ルからなる繊度5デニール、繊維長38mmの低融点
合成繊維を第1表の如く配合したものをカーデイ
ングし、直径3cm程度の繊維塊に分割して後、
160℃で5分間加熱融着して得た詰綿材料をポリ
エステルの側地内に詰め各種測定を行つた結果を
第1表に示す。尚、上記繊維は平滑剤処理に摩擦
係数を0.18とした。
FIELD OF THE INVENTION The present invention relates to a cotton batting material. Conventionally, natural down has been used as the most preferable filling for cold-weather clothing and bedding. Although down is valued all over the world for its excellent properties, it is extremely expensive because its production is extremely limited. For this reason, attempts have recently begun to try to produce it artificially. For example, attempts have been made to mix natural down with polyester fibers, or to use silicone-treated polyester fibers, but none of these methods are satisfactory. At present, a material with unique and excellent properties has not yet been realized. Furthermore, when these artificial materials are used or washed, they tend to sag, become entangled with each other, or cause cotton to break, causing the material to shift to one side in the side fabric. It also has serious practical defects, such as the fact that it does not return to its original state when struck. On the other hand, regarding futon cotton, a blended cotton made by mixing natural and artificial futon fibers with cut cellophane ribbons is described in Japanese Patent Publication No. 39-6330, but the futon cotton tends to be uneven in the side fabric. Moreover, not only does it lack the ability to recover when it is lopsided, but it also does not sufficiently improve sagging, so it cannot be said to be a so-called down-like product. In particular, when washed, the cotton tends to shift and become stale, and other properties change significantly, making it difficult to use for clothing such as down jackets. The present inventors completed the present invention as a result of intensive research to eliminate such conventional defects. The purpose of the present invention is to prevent the material from shifting in the side area, to have excellent recovery properties even if it becomes lopsided, and to be resistant to deterioration.
An object of the present invention is to provide a stuffing material whose properties such as sag due to washing are less likely to change. Another object of the present invention is to provide a lightweight cotton filling material that is bulky, has a suitable elasticity, is soft to the touch, and has excellent heat retention properties. Still another object is to provide a stuffing material that can be easily folded into a small size for storage, and has excellent bulk recovery when reused, allowing it to regain its initial characteristics. The above purpose is to have a single yarn fineness of 3 to 10 denier and a crimp rate.
15% or more polyester staple fiber (A) 90-10% by weight
and 10 to 90% by weight of polyester staple fibers (B) having a single yarn fineness smaller than that of the polyester staple fibers (A) and having a denier of 0.7 to 4 and a crimp rate of less than 15%. For 100 parts by weight of the mixture with the polyester film-like structural element (C) that has been given bending,
A low melting point synthetic fiber having a melting point 20°C or more lower than either the fiber or the film-like structural element (C) is used.
This can be achieved by using a stuffing material containing 100 parts by weight or less. The fibers applicable to the present invention are polyester fibers which are usually used as batting and heat insulating materials for cold weather clothing and bedding, and polyester fibers are used as the fiber material of the present invention in view of various mechanical properties. It is suitable for In order to maximize the effects of the present invention, it is necessary to use fibers (A) 90 with a fineness of 3 to 10 deniers and a crimp rate of 15% or more as the fiber material to be mixed with the film-like structural element.
~10% by weight, fiber (B) made of a synthetic polymer with a fineness smaller than that of the fiber (A), 0.7 to 4 deniers, and a crimp rate of less than 15%. The fibers (A) and fibers (B) used each contribute to improving the bulkiness of the cotton stuffing material and the beat-back properties and heat retention properties after use. That is, the fiber (A) made of thick yarn has firmness and stiffness, and has strong crimp, so it exhibits strong bulkiness. In addition, the crimp rate of the fiber (B) made of fine yarn is at most 15% or less, preferably 10% or less, and the crimp rate is zero, that is, the crimp rate is zero, that is, the crimp rate is not normally used, including those without crimp. The effect is fully demonstrated only when using fibers with a small shrinkage ratio.In particular, when reusing items that have been stored compactly, applying mechanical stimulation or vibration such as lightly tapping them will damage the fibers. (B) acts as a lubricant at the intertwined parts and exhibits effects such as good bulk recovery. (beat·
Back) In addition, the fibers (B) with a small degree of crimp ratio enter into the voids located between the intertwined parts of the fibers (A),
It also improves heat retention by dividing the air chambers created by the voids and suppressing air convection. In addition, the physical properties of the stuffing material change depending on the blending ratio of fibers (A) and fibers (B), and to obtain the full effect of the present invention, the fiber (A) should be 90 to 10% by weight, preferably 80% by weight. ~20% by weight, more preferably 70-30% by weight, and 10% by weight of fiber (B)
-90% by weight, preferably 20-80% by weight, more preferably 70-30% by weight. By setting such a blending ratio, the effects of the fibers (A) and (B) described above, that is, appropriate bulkiness, beat-back properties, and heat retention properties are exhibited in a well-balanced manner. Even if the fibers (A) and fibers (B) are composed of only one component, the above-mentioned effects can be achieved, but in particular, if the fibers (A) are composite fibers in which polymers of the same type with different viscosities are composited side by side. , a spiral crimp appears, resulting in a three-dimensional structure that contributes to improved bulkiness. Furthermore, it is particularly preferable to use hollow fibers as the fibers (A) because they are easy to crimp, are strong, are lightweight, have excellent bulkiness, and have good heat retention. In this case, the hollowness ratio is usually about 5 to 30%. Next, the film-like structural element (C) referred to in the present invention is:
Generally referred to as flat yarn or lame yarn, it is a flaky material made of polyester, and polyester is particularly preferred because of its excellent mechanical properties. Here, the flaky material is thinner than its length and width, and these dimensions can be selected as appropriate to give the best properties to the stuffing material of the present invention. , typically 5~
It is about 200μ, preferably about 10 to 80μ. These flakes usually have a length to width ratio of 10.
Above, in particular, it is 15 or more, and it goes without saying that the lame yarn and flat yarn are included in this range. These are bent or crimped as appropriate to facilitate carding, which will be described later, and to provide bulkiness, thereby deforming them three-dimensionally. In addition, it is preferable to use these flakes having metal vapor-deposited on the surface because they have an infrared reflective effect and improve heat retention, and those having aluminum vapor-deposited are particularly preferable because they have a high infrared reflectance. The film-like structural element applied to the present invention is blended in an amount of 1 to 50 parts by weight, preferably 2 to 30 parts by weight, more preferably 3 to 25 parts by weight, particularly preferably 4 to 20 parts by weight, based on the fibers. do. A film-like structural element is mainly related to bulkiness and compressibility, so if the blending amount is less than the above range, sufficient bulkiness and compressive stress cannot be obtained, and if the blending amount is too large, the feel will deteriorate. Next, the low melting point synthetic fiber used in the present invention is a component that has a melting point lower than that of the fibers and film-like structural elements by usually 20°C or more, preferably 30°C or more, in order to facilitate the work in the subsequent heat treatment process. At least in part. That is, in addition to the low-melting point synthetic fibers consisting solely of low-melting point components as mentioned above,
It also includes a so-called conjugate fiber, which is a core-sheath type composite of a low melting point component and a different or similar polymer having a high melting point higher than the above temperature difference. The above-mentioned low melting point components include polymers such as polyester, polyamide, polyacrylonitrile, and polyethylene, as well as various modified or copolymerized polymers. The fineness of the low melting point synthetic fiber is usually 1 to 15 deniers, preferably 1.5 to 10 deniers, because the finer the fiber, the higher the adhesive density and the thicker the finer, the higher the adhesive strength when thermally bonding as described below. The low melting point synthetic fiber applied to the present invention contains 100 parts by weight of the mixture of the fiber and the film-like structural element.
100 parts by weight or less, preferably 2 to 50 parts by weight, more preferably 3 to 40 parts by weight, particularly preferably 4 to 30 parts by weight
Mix parts by weight of cotton. The amount of low melting point synthetic fiber is
If it exceeds 100 parts by weight, the stuffing material not only becomes coarse and hard, but also has other physical properties such as bulkiness. The stuffing material containing the fibers, film-like structural elements, and low-melting point synthetic fibers of the present invention can be blended by a conventional method. Furthermore, depending on their size, the film-like structural element and the low-melting point synthetic fiber can be carded together with the fibers, and in some cases, they can be blended after the fiber carding process. In order to use these fibers for the normal carding process, the fiber length is usually about 20 to 200 mm (about the same as cotton to wool).
If the fiber length is within this range, even if the fiber length varies due to bias cutting or the like, cardability etc. will not be impaired. The blended cotton stuffing material is not only formed into a web shape, but also formed into a random fiber mass, for example, by disturbing the arrangement of the web, or by machine, wind power, or human power.
It can be separated into fiber lumps of about cm size and further rolled up as needed for use, but in these cases, the low melting point synthetic fibers are softened and melted by heating, and the fiber materials etc. are bonded and fixed. In this case, the temperature is set lower than the melting point of both the fiber material and the film-like structural element, and higher than the melting point of the low-melting synthetic fiber. The time varies depending on the composition of the low melting point component, denier, set temperature, etc., but conditions can be selected in advance by TET, and it is generally about 10 minutes at most. When used as a fiber mass, the web may be fused and then divided into fiber mass. In addition, the stuffing material of the present invention may be treated with a smoothing agent such as an oil agent, silicone type, fluorine type, etc. before blending some or all of its constituent elements or after heating and fusing the stuffing material. It is preferable to lower the coefficient of static friction between the fibers. In this case, an elastic polymer, a softener, etc. may be used in combination. In addition, when the cotton filling material of the present invention is used, it can be wrapped in a suitable side material and used for sleeping goods such as futons, clothing that requires protection against cold temperatures, or various industrial materials that require insulation. However, in this case, only the stuffing material of the present invention can be used in a single layer or in a layered manner. One of the effects of the cotton filling material of the present invention is excellent wearing performance and washing resistance. That is, the stuffing material of the present invention does not easily set even when washed with water, and even if the stuffing becomes uneven, it easily returns to its original shape like down. Two effects of the cotton filling material of the present invention are that it exhibits down-like physical properties. That is, the initial bulkiness is mentioned first. Normally, when samples of the same weight are taken, the bulkiest material is natural down.
In comparison, general cotton filling materials, even if they are half as good, are only about 70% as bulky. On the other hand, the cotton stuffing material according to the present invention does not have a bulk that is even superior to, or comparable to, natural down. Next, the batting material of the present invention has high compressibility similar to that of natural down. Despite its bulkiness, natural down requires only a small load to compress and can be compressed into a very small volume, so it has the advantage of not taking up much space when stored. The third effect is bulk recovery. After being compactly stored as described above, the bulk must be sufficiently recovered when it is used again. When stored in a compact form for a long time, the cotton wadding gradually becomes distorted and loses its restoring power, so conventional cotton wadding has difficulty recovering its bulk. At this point, the bulk after recovery from down is extremely good in comparison with the initial bulk. Recovery performance (beat back performance) when mechanical force is applied, especially when hitting by hand
However, the wadding material of the present invention also has superior bulk recovery properties including beat-back properties, which are not found in conventional wadding materials. The fourth effect is heat retention. The cotton stuffing material of the present invention has short fibers finely intertwined, and as a result, has many fine voids, which suppresses air convection and provides superior heat retention compared to conventional cotton stuffing materials. The present invention will be specifically described below with reference to Examples, in which "parts" indicate "parts by weight". In addition, various measurements and evaluations were performed using the following methods. A measurement sample was prepared by filling 4 g of cotton stuffing material into a bag made by stacking two 12 cm square pieces of side fabric and sewing the periphery together. The sample was compressed to 5 mm using an Instron, left in this state for 5 minutes, then slowly weighed, left under no load for 5 minutes, and then compressed again. From this measurement, Initial bulk: Thickness (mm) at the initial load (1.3 g/cm 2 ) during the initial compression process Compressive stress: Stress immediately after compressing to 5 mm during the initial compression process (g/cm 2 ) 2 ) Initial compression hardness: In the initial compression process, the stress (g/
cm 2 ) was calculated. Next, a high load of 70 g/cm 2 was applied to the sample for 24 hours, the weight was gradually lowered, and the sample was allowed to recover naturally for 5 minutes.Then, the sample was rotated and vibrated for 5 minutes in a tumble dryer to cause it to beat back. The thickness of the object at the time of initial load was taken as the total recovery bulk (mm). Beat back properties after washing: A 50 cm square thread was created and quilted to divide it into three equal parts. This product was washed in a tumbler type washing machine for 10 minutes, rinsed for 3 minutes three times, and then centrifuged and dried. Visually and tactilely judged the resilience of this product when the unevenness of the batting was lightly tapped by hand.
It was evaluated in four stages: good, fair, and poor. Further, the heat retention property was expressed as a heat retention rate (%) measured using a sample with a basis weight of 400 g/m 2 by a method based on the JIS-L-1079A method. Incidentally, the coefficient of static friction between fibers was measured by the radar method. Example 1 A composite hollow fiber obtained by side-by-side composite of polyethylene terephthalate with a relative viscosity (ηrel) of 1.38 and polyethylene terephthalate with a relative viscosity (ηrel) of 1.21 at a ratio of 1:1, with a hollowness ratio of 16.5%, a fineness of 5 denier, and crimping. short fibers (A) with a ratio of 22.3% and a fiber length of 65 mm.
50 parts, fineness 1.5 denier, crimp rate 7.0%, fiber length 38
50 parts of polyester short fibers (B) with a diameter of 1.5 mm and a rectangular shape (width 0.04 cm, length 3 cm) with a spread area of 0.12 cm 2 are crimped to make an aluminum-deposited polyester film 10
A mixture of 100 parts of polyester with a melting point of 120°C, a fineness of 5 denier, a fiber length of 38 mm, and a low melting point synthetic fiber as shown in Table 1 was carded and divided into fiber lumps with a diameter of about 3 cm. rear,
Table 1 shows the results of various measurements carried out by stuffing the stuffing material obtained by heating and fusing at 160°C for 5 minutes into the polyester lining. The above fibers were treated with a smoothing agent to have a friction coefficient of 0.18.

【表】【table】

【表】 上記の結果から低融点繊維の配合量が特定範囲
内であれば洗濯後のビートバツク性にすぐれ、且
つまた初期嵩高性、圧縮性、風合も良好であるこ
とが判る。 また、実験No.1−4の試料について保温率を測
定したところ79.0%で保温性も良好であつた。 実施例 2 繊度4デニール、捲縮率18.3%、繊維長65mmの
ポリエステル短繊維(A)と繊度1.5デニール、捲縮
率8.3%、繊維長48mmのポリエステル短繊維(B)と
を第2表に示すように混合し、さらに展延面積が
0.05cm2の短冊形(幅0.02cm、長さ2.5cm)をしたア
ルミニウム蒸着ポリエステルフイルム5部を配合
したもの100部と低融点成分がポリエチレン(融
点125℃)、高融点成分がポリプロピレン(融点
170℃)からなる複合低融点繊維(3デニール、
64mm)20部とをカーデイングし、直径2cm程度に
まるめた繊維塊を150℃で3分間加熱、融着して
得た詰綿材料をナイロン側地内に詰め、各種測定
を行つた結果を第2表に示す。尚、上記繊維塊は
融着後平滑剤処理した。
[Table] From the above results, it can be seen that if the amount of low melting point fiber is within a specific range, the product will have excellent beat back properties after washing, and will also have good initial bulk, compressibility, and feel. Furthermore, when the heat retention rate of the sample of Experiment No. 1-4 was measured, it was 79.0%, indicating that the heat retention was good. Example 2 Polyester short fibers (A) with a fineness of 4 denier, a crimp rate of 18.3%, and a fiber length of 65 mm and polyester staple fibers (B) with a fineness of 1.5 denier, a crimp rate of 8.3%, and a fiber length of 48 mm are shown in Table 2. Mix as shown and further spread area.
100 parts of a mixture of 5 parts of aluminum vapor-deposited polyester film in the form of a 0.05cm2 rectangle (width 0.02cm, length 2.5cm), low melting point component is polyethylene (melting point 125℃), high melting point component is polypropylene (melting point
Composite low melting point fiber (3 denier,
64mm), carded 20 parts, rolled the fiber mass to about 2cm in diameter, heated it at 150℃ for 3 minutes, fused it, stuffed the stuffing material into the nylon lining, and performed various measurements. Shown in the table. The fiber mass was treated with a smoothing agent after being fused.

【表】 上記の結果から繊維材料として短繊維(A)及び短
繊維(B)を配合したものは洗濯後のビートバツク性
は勿論のこと、初期嵩高性、圧縮性、風合等にも
すぐれていることが判る。 実施例 3 実施例1と同様の複合中空糸よりなる繊度4デ
ニール、捲縮率22.1%、繊維長65mmのポリエステ
ル短繊維(A)30部、繊度1.3デニール、捲縮率4.7
%、繊維長38mmのポリエステル短繊維(B)70部、展
延面積0.5cm2の短冊形(幅0.1cm、長さ5cm)でく
の字形に屈曲を与えたポリエステルフイルムを第
3表に示す量配合したもの100部に対して高融点
成分(融点245℃)、低融点成分(融点110℃)が
共にポリエステルからなる複合低融点繊維(6デ
ニール、51mm)15部を混合したものをカーデイン
グし、170℃で3分間加熱融着した詰綿材料をポ
リエステル綿混側地内に詰め各種測定を行つた結
果を第3表に示す。尚、上記繊維は平滑剤で処理
し、摩擦係数を0.17とした。
[Table] From the above results, fiber materials containing short fibers (A) and short fibers (B) have excellent initial bulkiness, compressibility, texture, etc. as well as good beat-back properties after washing. I know that there is. Example 3 30 parts of polyester short fiber (A) made of the same composite hollow fiber as in Example 1, having a fineness of 4 denier, a crimp rate of 22.1%, and a fiber length of 65 mm, a fineness of 1.3 denier, a crimp rate of 4.7
%, 70 parts of polyester short fibers (B) with a fiber length of 38 mm, and a polyester film bent into a dogleg shape in a rectangular shape (width 0.1 cm, length 5 cm) with a spread area of 0.5 cm 2 are shown in Table 3. A mixture of 15 parts of a composite low melting point fiber (6 denier, 51 mm) consisting of polyester with both a high melting point component (melting point 245°C) and a low melting point component (melting point 110°C) per 100 parts of the blended material was carded. Table 3 shows the results of various measurements carried out by stuffing the stuffing material heat-fused at 170°C for 3 minutes into the polyester/cotton blend side fabric. The above fibers were treated with a smoothing agent to have a coefficient of friction of 0.17.

【表】 上記の結果からポリエステルフイルムを配合し
たものも洗濯後のビートバツク性は勿論のこと嵩
高性、圧縮性にすぐれていることが判る。 また、実験No.3−4の試料について保温率を測
定したところ77.6%で保温性も良好であつた。
[Table] From the above results, it can be seen that the products containing polyester film have excellent bulkiness and compressibility as well as beat-back properties after washing. Further, when the heat retention rate of the sample of Experiment No. 3-4 was measured, it was 77.6%, indicating that the heat retention was good.

Claims (1)

【特許請求の範囲】[Claims] 1 単糸繊度3〜10デニール、捲縮率15%以上の
ポリエステル短繊維(A)90〜10重量%と、単糸繊度
がポリエステル短繊維(A)の繊度より小さく且つ、
0.7〜4デニールで、捲縮率15%未満のポリエス
テル短繊維(B)10〜90重量%とを配合混綿して成る
繊維と屈曲を与えたポリエテスルフイルム状構造
素子(C)との混合物100重量部に対し、前記繊維及
びフイルム状構造素子(C)のいずれよりも20℃以上
低い融点を有する低融点合成繊維を100重量部以
下配合してなる詰綿材料。
1 90 to 10% by weight of polyester short fibers (A) with a single yarn fineness of 3 to 10 deniers and a crimp rate of 15% or more, and a single yarn fineness that is smaller than the fineness of the polyester short fibers (A), and
Mixture 100 of fibers made by blending 10 to 90% by weight of polyester staple fibers (B) with a denier of 0.7 to 4 and a crimp rate of less than 15% and a bent polyester film-like structural element (C) 100 A stuffing material comprising 100 parts by weight or less of a low melting point synthetic fiber having a melting point lower by 20°C or more than either the fibers or the film-like structural element (C).
JP56174793A 1981-10-29 1981-10-31 Padding material Granted JPS5875587A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56174793A JPS5875587A (en) 1981-10-31 1981-10-31 Padding material
US06/437,765 US4477515A (en) 1981-10-29 1982-10-27 Wadding materials
EP19820305773 EP0078682B1 (en) 1981-10-29 1982-10-29 Wadding materials
DE8282305773T DE3268456D1 (en) 1981-10-29 1982-10-29 Wadding materials
AT82305773T ATE17380T1 (en) 1981-10-29 1982-10-29 FILLING MATERIALS.
EP19840105871 EP0137101A1 (en) 1981-10-29 1982-10-29 Wadding materials
CA000414493A CA1172776A (en) 1981-10-29 1982-10-29 Wadding materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174793A JPS5875587A (en) 1981-10-31 1981-10-31 Padding material

Publications (2)

Publication Number Publication Date
JPS5875587A JPS5875587A (en) 1983-05-07
JPH0230711B2 true JPH0230711B2 (en) 1990-07-09

Family

ID=15984762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174793A Granted JPS5875587A (en) 1981-10-29 1981-10-31 Padding material

Country Status (1)

Country Link
JP (1) JPS5875587A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303359B2 (en) * 2009-05-25 2013-10-02 倉敷紡績株式会社 Stuffed cotton
JP2011017109A (en) * 2009-07-10 2011-01-27 Kurabo Ind Ltd Neck warmer

Also Published As

Publication number Publication date
JPS5875587A (en) 1983-05-07

Similar Documents

Publication Publication Date Title
US4477515A (en) Wadding materials
US4304817A (en) Polyester fiberfill blends
US4281042A (en) Polyester fiberfill blends
US5620541A (en) Method of making multilayer nonwoven thermal insulating batts
JPH02118149A (en) Preparation of bound polyester fiber ball
US5597427A (en) Method of making multilayer nonwoven thermal insulating batts
US4481256A (en) Wadding materials
JPH0230711B2 (en)
JPH0234626B2 (en)
JPS6343113B2 (en)
WO2003057962A2 (en) Bonded polyester fiberfill battings with a sealed outer surface having stretch capabilities
JPH0241354B2 (en)
JP3491292B2 (en) Cotton material for futon
EP0708852B1 (en) New fiberfill battings
JPH0241355B2 (en)
JPH0241356B2 (en)
JPH0434435B2 (en)
JPS6096287A (en) Padding material
KR860000833B1 (en) Wadding materials
JPH04222264A (en) Laminated nonwoven fabric and employment thereof
JPS59181183A (en) Padding material
MXPA96005502A (en) Blocks of fibrous material, thermal insulators, non-woven, of multiple ca
JP2000282370A (en) Hard cotton and sheet product
MXPA96005501A (en) Blocks of fibrous material, thermal insulators, non-woven, of multiple ca