[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02305428A - Solid electrolytic capacitor and manufacture thereof - Google Patents

Solid electrolytic capacitor and manufacture thereof

Info

Publication number
JPH02305428A
JPH02305428A JP12650089A JP12650089A JPH02305428A JP H02305428 A JPH02305428 A JP H02305428A JP 12650089 A JP12650089 A JP 12650089A JP 12650089 A JP12650089 A JP 12650089A JP H02305428 A JPH02305428 A JP H02305428A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolytic
oxide film
layer
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12650089A
Other languages
Japanese (ja)
Other versions
JP2741619B2 (en
Inventor
Yasunobu Roppongi
六本木 康伸
Yutaka Yokoyama
豊 横山
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP12650089A priority Critical patent/JP2741619B2/en
Publication of JPH02305428A publication Critical patent/JPH02305428A/en
Application granted granted Critical
Publication of JP2741619B2 publication Critical patent/JP2741619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To manufacture the title capacitor miniaturized and having excellent high-frequency characteristics by densely forming thin film comprising a conductive organic material by Langmuir-Blodgett's technique. CONSTITUTION:An insulating oxide film layer to be a dielectric layer 2 is formed on an electrode 1 comprising a metal displaying insulating oxide film forming activity. Then, one or more layers of Ni(dmit)2 complex 5 (LB film) using ammonium comprising at least one each of methyl radical and long-chain alkyl radicals as solid electrolyte layer as counteraction are laminated on the surface by Langmuir-Blodgett's(LB) technique and then an electric leading-out means (cathode lead) 7 and a counter electrode is provided on the outer surface. This LB thin film 5 is not only in a thin layer but also in high denseness and conductivity. Through these procedures, the title solid electrolytic capacitor miniaturized but in large capacitance and having excellent electrical characteristics can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は導電性の有機金属化合物薄膜を電解質として
用いた固体電解コンデンサおよびその製造方法に関する
The present invention relates to a solid electrolytic capacitor using a conductive organometallic compound thin film as an electrolyte, and a method for manufacturing the same.

【従来の技術】[Conventional technology]

固体電解コンデンサは、アルミニウム、タンタル、ニオ
ブなどの表面に絶縁性の酸化皮膜層が形成される皮膜形
成能の金属群、いわゆる弁金属を陽極に用い、この陽極
金属表面に誘電体となる絶縁性の酸化皮膜層を形成し、
この外面に電解質層を設け、更にその外部に陰橿引き出
しのための電極部を設けて構成されている。 固体電解質には、従来から二酸化マンガン、二酸化鉛な
どの金属酸化物あるいはテトラシアノキノジメタン錯塩
、ポリアセチレン、ポリピロールなどの導電ポリマーを
用いることが試みられている。これらの導電性化合物は
其なりの導電性を持−ち、固体電解コンデンサとしての
特性を具現化することができる。 ところで、近年の固体電解コンデンサは半導体製品との
組み合わせやチップ化の要請により、より小型、薄形化
そして電気特性の向上が求められている。しかしながら
従来の固体電解質の形成では、このような要請に充分対
応できないのが現状である。 このような観点から、最近では固体電解コンデンサの電
解質層の形成に、ラングミュアープロジェット法(LB
法)を用いて薄膜電解質層の形成が試みられている(例
えば、特開昭63−122207号公報、特開昭64−
10611号公報など)。 しかしながら、薄膜形成と電気的特性の向上とを同時に
実現することは必ずしも容易でない。特に薄膜として形
成される錯体化合物等の電導度が充分でないと、コンデ
ンサの損失、等個直列抵抗、高周波におけるインピーダ
ンス特性などに充分な値が得られない。また薄膜に欠損
があったり、緻密膜形成がおこなわれないと、短絡や漏
れ電流の増加などの弊害も出ることになる。
Solid electrolytic capacitors use a group of metals that have the ability to form a film, such as aluminum, tantalum, and niobium, on which an insulating oxide film layer is formed, so-called valve metals, as the anode. Forms an oxide film layer of
An electrolyte layer is provided on the outer surface of the electrolyte layer, and an electrode portion for drawing out the shade is further provided on the outside of the electrolyte layer. For solid electrolytes, attempts have been made to use metal oxides such as manganese dioxide and lead dioxide, or conductive polymers such as tetracyanoquinodimethane complex salts, polyacetylene, and polypyrrole. These conductive compounds have a certain degree of conductivity and can realize the characteristics of a solid electrolytic capacitor. By the way, solid electrolytic capacitors in recent years are required to be smaller, thinner, and have improved electrical characteristics due to demands for combination with semiconductor products and chip formation. However, the current situation is that conventional solid electrolyte formation cannot sufficiently meet these demands. From this point of view, the Langmuir-Projet method (LB) has recently been used to form the electrolyte layer of solid electrolytic capacitors.
Attempts have been made to form a thin film electrolyte layer using a method (for example, Japanese Patent Application Laid-open No. 122207/1983,
10611, etc.). However, it is not always easy to simultaneously form a thin film and improve electrical characteristics. In particular, if the conductivity of a complex compound formed as a thin film is insufficient, sufficient values cannot be obtained for capacitor loss, equal series resistance, impedance characteristics at high frequencies, etc. Furthermore, if there are defects in the thin film or if a dense film is not formed, problems such as short circuits and increased leakage current will occur.

【発明が解決しようとする課題】[Problem to be solved by the invention]

この発明は、有機電導錯体のラングミュア−プロジェッ
ト膜(LB膜)を固体電解質として用いたコンデンサお
よびその製造方法であって、小型、大容量化を図ると共
に、優れた電気特性の固体電解コンデンサを得ることを
目的としている。
The present invention relates to a capacitor using a Langmuir-Prodgett film (LB film), which is an organic conductive complex, as a solid electrolyte, and a method for manufacturing the same, which aims to reduce the size and increase the capacity, and to produce a solid electrolytic capacitor with excellent electrical characteristics. The purpose is to obtain.

【課題を解決するための手段】[Means to solve the problem]

この発明の固体電解コンデンサは、絶縁酸化皮膜形成能
のある金属を電極に用い、前記電極に誘電体層となる絶
縁酸化皮膜層を形成したものの表面に、固体電解質層と
して少なくとも1個のメチル基と複数の長鎖アルキル基
とからなるアンモニウムをカウンターカチオンとするN
 i  (dmit)。 錯体をラングミュアープロジェット法によって1層もし
くは複数層積層し、さらにその外面に対抗電極としての
電気的な引き出し手段を設けたことを特徴としている。 またこの発明の固体電解コンデンサの製造方法は、絶縁
酸化皮膜形成能のある金属を電極に用い、前記電極に誘
電体層となる酸化皮膜層を形成したものの表面に、長鎖
アルキルアンモニウムをカウンターカチオンとするN 
i (ditL)z  If体と飽和脂肪酸との混合物
を水面に展開させたものを、ラングミュアープロジェッ
ト法によって積層し、その後化学酸化もしくは電解酸化
処理を施すことによって導電性を高め、さらにその外面
に対抗陰極としての電気的な引き出し手段を設けたこと
を特徴としている。 導電性を呈するLB膜としては、既に10種以上の物質
系が報告されているが、大半は一次元の有機導体に属し
、導電スタックの欠陥等に対して極めて弱く、また−次
元特有の不安定性を有するために、長期的に安定度が要
求される固体電解コンデンサの電解質には適当でない。 これに対し、アクセプタとして〔金属) (d+ait
)zを用い、長鎖アルキルアンモニウムをカウンターカ
チオンとする錯体は、次元性の高い錯体を形成し、この
発明の目的に適合し得る。 このような錯体の製造方法としては、例えば5ynth
、 Net、、27.P2O3(198B)あるいはC
hemistryLetters P2S5−368 
(1989)などに記載がある。 金属dmiL錯体は、一般式: %式%) そしてカウンターカチオン側には少なくとも1個のメチ
ル基と複数の長鎖のアルキル基とからなるアンモニウム
によって錯体を構成する。 またこの発明では、金属元素Mはニッケルである。 カウンターカチオン側のアルキル基には、1個のメチル
基と例えばC=10程度の長鎖アルキル基を選択すれば
よい、また窒素原子の価数に応じ、2個または3個の上
記の長鎖アルキル基の結合が考えられ、各々アミンある
いは4級アンモニウムの形態がとり得る。このようなも
のとして具体的にはトリデシルメチルアンモニウムなど
が例示でき、この錯体の構造式を例示すると以下のとお
りとなる。 この錯体からLBIIIを形成するためには、この錯体
を例えばアラキン酸などの飽和脂肪酸との等モルの混合
液とし、この混合液を水面上に分散させてLB膜を形成
し、コンデンサの電極表面に定着させ、臭素ガス(Br
りなどのハロゲン中に曝して化学酸化をおこなうか、過
塩素酸リチウム(LiCffiO,)などの過酸化物の
水溶液中で電解酸化を行うことによって電導度を高め所
望の固体電解質を得ることができる。上述のプロセスに
より、上記トリデシルメチルの錯体の場合、例えばLB
膜を20層程度形成すると、 1.0ないし1.37s
/cmの電導率の薄膜が得られる。 電極表面へのLB膜の形成手段については、公知の手段
を用いることができるが、例えば第2図に示すように、
水槽10の水14の表面にNi(dmH)t  1f体
とアラキン酸などの飽和脂肪酸との混合物からなるLB
Bi12展開させ、予め水槽10に直角方向に浸漬しで
あるコンデンサ用の表面に誘電体酸化皮膜層が形成され
ているアルミニウム等からなる板状電極12を水槽lO
から引き上げることにより、板状電極12の表面にLB
I模11を定着させることができる。なお浮子13は、
LBIIxIIを板状電極12に円滑に定着させるため
に設置されており、板状電極12の引き上げに伴って浮
子14が板状電極12側に移動する。 LBBi12定着された電極12は上述したとおり、化
学酸化あるいは電解酸化の処理をおこない、所望の電導
度を得た後、その表面に対抗電極形成のための導電手段
を形成する。具体的には、導電錯体表面に金、銀、銅、
ニッケル、アルミニウムなどの金属を蒸着し直接電極と
して用いたり、金属微粒子粉を含む導電ペーストを介し
て、別途加工された金属板等の電極と電気的に接続をお
こなえばよい。 また必要に応じて、外部との電気的な接続部分を残して
、外装ケースへ収納したり、外装樹脂によって密閉を施
すことが可能である。
The solid electrolytic capacitor of the present invention uses a metal capable of forming an insulating oxide film as an electrode, and has at least one methyl group as a solid electrolyte layer on the surface of the electrode on which an insulating oxide film layer serving as a dielectric layer is formed. N with ammonium as a counter cation consisting of and multiple long-chain alkyl groups
i (dmit). It is characterized in that one or more layers of the complex are laminated by the Langmuir-Prodgett method, and furthermore, electrical extraction means as a counter electrode is provided on the outer surface of the complex. In addition, the method for manufacturing a solid electrolytic capacitor of the present invention uses a metal capable of forming an insulating oxide film as an electrode, and a long-chain alkyl ammonium is added to the surface of the electrode on which an oxide film layer serving as a dielectric layer is formed as a counter cation. N
i (ditL)z A mixture of the If form and saturated fatty acid is spread on the water surface and layered using the Langmuir-Prodgett method, and then chemical oxidation or electrolytic oxidation treatment is applied to increase the conductivity, and the outer surface is It is characterized by being provided with an electrical extraction means as a counter cathode. More than 10 types of material systems have already been reported as conductive LB films, but most belong to one-dimensional organic conductors, are extremely susceptible to defects in the conductive stack, and have concerns specific to the -dimensionality. Since it has a certain property, it is not suitable as an electrolyte for solid electrolytic capacitors, which require long-term stability. On the other hand, as an acceptor [metal] (d+ait
) z and a long-chain alkyl ammonium as a countercation forms a highly dimensional complex and can be suitable for the purpose of this invention. As a method for producing such a complex, for example, 5ynth
, Net, ,27. P2O3 (198B) or C
hemistry Letters P2S5-368
(1989) and others. The metal dmiL complex has a general formula: %Formula %) The complex is composed of ammonium consisting of at least one methyl group and a plurality of long-chain alkyl groups on the counter cation side. Further, in this invention, the metal element M is nickel. For the alkyl group on the counter cation side, one methyl group and a long chain alkyl group of, for example, about C=10 may be selected, and depending on the valence of the nitrogen atom, two or three of the above long chains may be selected. Bonding of alkyl groups is possible, and each can take the form of an amine or a quaternary ammonium. A specific example of such a compound is tridecylmethylammonium, and the structural formula of this complex is as follows. In order to form LBIII from this complex, this complex is mixed with an equimolar amount of a saturated fatty acid such as arachidic acid, and this mixture is dispersed on the water surface to form an LB film, and the electrode surface of the capacitor is and bromine gas (Br
The desired solid electrolyte can be obtained by increasing the electrical conductivity by performing chemical oxidation by exposing it to a halogen such as lithium perchlorate, or by performing electrolytic oxidation in an aqueous solution of peroxide such as lithium perchlorate (LiCffiO,). . By the process described above, in the case of the complex of tridecylmethyl, for example, LB
When about 20 layers of film are formed, it takes 1.0 to 1.37 seconds.
A thin film with a conductivity of /cm is obtained. As for the means for forming the LB film on the electrode surface, known means can be used, but for example, as shown in FIG.
LB consisting of a mixture of Ni(dmH)t 1f and saturated fatty acids such as arachidic acid is placed on the surface of the water 14 of the aquarium 10.
A plate-shaped electrode 12 made of aluminum or the like, which has been developed with Bi12 and has been immersed in a water tank 10 at right angles, and has a dielectric oxide film layer formed on its surface for a capacitor, is placed in a water tank 10.
LB is formed on the surface of the plate electrode 12 by pulling it up from the
The I pattern 11 can be fixed. Furthermore, the float 13 is
It is installed to smoothly fix LBIIxII to the plate-shaped electrode 12, and the float 14 moves toward the plate-shaped electrode 12 as the plate-shaped electrode 12 is pulled up. As described above, the electrode 12 on which the LBBi 12 is fixed is subjected to chemical oxidation or electrolytic oxidation to obtain a desired degree of conductivity, and then a conductive means for forming a counter electrode is formed on its surface. Specifically, gold, silver, copper,
A metal such as nickel or aluminum may be vapor-deposited and used directly as an electrode, or electrically connected to an electrode such as a separately processed metal plate via a conductive paste containing fine metal particles. Further, if necessary, it is possible to leave the electrical connection part with the outside and store it in an exterior case or seal it with exterior resin.

【作   用】[For production]

この発明によれば、電導度が付与された長鎖アルキルア
ンモニウムをカウンターカチオンとするN i  (d
mit)、  錯体のLB膜が固体電解質層として電極
の誘電体酸化皮膜層の上面に形成されることになる。 そしてこのLB薄膜は、極めて薄い層となるとともに、
緻密度が高くかつ高い電導度を示すので、固体電解コン
デンサとした場合、電気的特性に優れると共に、小型化
、薄形化が達成できる。
According to this invention, N i (d
mit), a complex LB film is formed as a solid electrolyte layer on top of the dielectric oxide film layer of the electrode. This LB thin film becomes an extremely thin layer, and
Since it has high density and high conductivity, when used as a solid electrolytic capacitor, it has excellent electrical characteristics and can be made smaller and thinner.

【実 施 例】【Example】

以下この発明を実施例にしたがって説明する。 第1図はこの発明の実施例の固体電解コンデンサの構造
をあられした断面図である。 まず電極として、高純度(99,99%)のアルミニウ
ム薄板1をを準備し、電解エツチングによる拡面化処理
の後、200vの電圧で陽極酸化処理によって、表面に
酸化アルミニウムの誘電体層2を電極lの一方の端部を
除いて形成した。この電極誘電体層2の未形成部3に陽
極リード4を溶接により接続した。 次にトリデシルアンモニウム−N i  (dmit)
z錯体とアラキン酸とのl:l混合液を水に展開させた
中へ前記電極lの誘電体層2の形成部を浸漬してから引
き上げて、電極箔表面へLB膜5を定着させた。LB膜
5の形成面積は25mm X 40mmであった。この
電極lを臭素ガス中に10分間曝し、化学酸化をおこな
い電導度を付与させた。この工程を20度繰り返し、L
B膜5を20層とした。 なおこの状態で表面のLB膜5の電導度を四端子法によ
って測定したところ、1.28S/cmの値であった。 次にこのLB膜5の表面に導電ペースト(日本アチソン
社製エレクトロダック)6を塗布し、陰極リード7を固
定した。このコンデンサ素子の外面を外装樹脂8でコー
トし素子部を密閉してコンデンサを完成させた。 次にこのコンデンサと比較のために、二酸化マンガンを
固体電解質としてコンデンサを作成して特性の比較をお
こなった。二酸化マンガンによるコンデンサは陽極アル
ミニウムにはこの発明のコンデンサと同一の仕様の電極
lを用い、同じ表面積に硝酸マンガン水溶液を塗布して
これを焼成して二酸化マンガンに変性させる工程を5度
繰り返し、その後カーボンペーストを塗布し、さらにそ
の外面に銀ペーストを塗布して陰極リードを接続させた
。 これら固体電解コンデンサの電気特性を調べた結果を以
下の表に示す。 この結果かられかるように、この発明の固体電解コンデ
ンサは、従来のものに比べて単位面積あたりの静電容量
値が高く、小型化、薄形化に有利なことがわかる。また
損失値や高周波における等個直列抵抗値が低いことは、
電解質層の電導度が高いことを示している。
The present invention will be explained below based on examples. FIG. 1 is a sectional view showing the structure of a solid electrolytic capacitor according to an embodiment of the present invention. First, a high-purity (99.99%) aluminum thin plate 1 is prepared as an electrode, and after surface enlargement treatment by electrolytic etching, a dielectric layer 2 of aluminum oxide is formed on the surface by anodizing treatment at a voltage of 200V. The electrode 1 was formed except for one end. An anode lead 4 was connected to the unformed portion 3 of the electrode dielectric layer 2 by welding. Next, tridecylammonium-N i (dmit)
The forming part of the dielectric layer 2 of the electrode 1 was immersed in a 1:1 mixed solution of the z complex and arachidic acid spread in water, and then pulled up to fix the LB film 5 on the surface of the electrode foil. . The formation area of the LB film 5 was 25 mm x 40 mm. This electrode 1 was exposed to bromine gas for 10 minutes to perform chemical oxidation and impart electrical conductivity. Repeat this process 20 times, L
The B film 5 had 20 layers. In this state, the electrical conductivity of the LB film 5 on the surface was measured by a four-terminal method, and the value was 1.28 S/cm. Next, a conductive paste (Electrodac, manufactured by Acheson Japan) 6 was applied to the surface of this LB film 5, and a cathode lead 7 was fixed thereon. The outer surface of this capacitor element was coated with exterior resin 8 and the element portion was sealed to complete the capacitor. Next, for comparison with this capacitor, we created a capacitor using manganese dioxide as a solid electrolyte and compared its characteristics. A manganese dioxide capacitor uses an electrode l with the same specifications as the capacitor of this invention for the aluminum anode, and repeats the process five times to apply a manganese nitrate aqueous solution to the same surface area and denature it into manganese dioxide by firing it. Carbon paste was applied, and silver paste was further applied to the outer surface to connect the cathode lead. The results of investigating the electrical characteristics of these solid electrolytic capacitors are shown in the table below. As can be seen from the results, the solid electrolytic capacitor of the present invention has a higher capacitance value per unit area than conventional capacitors, and is advantageous for miniaturization and thinning. In addition, the low loss value and equal series resistance value at high frequencies mean that
This indicates that the electrolyte layer has high conductivity.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、導電性有機物の薄
膜をLB法により、緻密かつ薄く形成できるので、従来
の固体電解コンデンサに比べ高周波特性などに優れると
ともに、小型化された固体電解コンデンサを得ることが
できる。
As described above, according to the present invention, a thin film of conductive organic material can be formed densely and thinly by the LB method, so that it is possible to create a solid electrolytic capacitor that is smaller and has superior high frequency characteristics compared to conventional solid electrolytic capacitors. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の固体電解コンデンサの実施例をあら
れす断面図、第2図はLB膜の形成方法を示す説明図で
ある。 1・・・電極、2・・・誘電体層、3・・・未形成部4
・・・陽極リード、5・・・LB膜 6・・・導電ペースト、7・・・陰極リード8・・・外
装樹脂。 第  1  図 第  2  図
FIG. 1 is a sectional view showing an embodiment of the solid electrolytic capacitor of the present invention, and FIG. 2 is an explanatory view showing a method of forming an LB film. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Dielectric layer, 3... Unformed part 4
... Anode lead, 5... LB film 6... Conductive paste, 7... Cathode lead 8... Exterior resin. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁酸化皮膜形成能のある金属を電極に用い、前
記電極に誘電体層となる絶縁酸化皮膜層を形成したもの
の表面に、固体電解質層として少なくとも1個のメチル
基と複数の長鎖アルキル基とからなるアンモニウムをカ
ウンターカチオンとするNi(dmit)_2錯体をラ
ングミュアープロジェット法によって1層もしくは複数
層積層し、さらにその外面に対抗電極としての電気的な
引き出し手段を設けたことを特徴とする固体電解コンデ
ンサ。
(1) A metal capable of forming an insulating oxide film is used as an electrode, and an insulating oxide film layer serving as a dielectric layer is formed on the electrode, and at least one methyl group and a plurality of long chains are formed as a solid electrolyte layer on the surface of the electrode. One layer or multiple layers of Ni(dmit)_2 complex with ammonium consisting of an alkyl group as a counter cation are laminated by the Langmuir-Prodgett method, and an electrical extraction means as a counter electrode is provided on the outer surface. Characteristic solid electrolytic capacitors.
(2)絶縁酸化皮膜形成能のある金属を電極に用い、前
記電極に誘電体層となる絶縁酸化皮膜層を形成したもの
の表面に、少なくとも1個のメチル基と複数の長鎖アル
キル基とからなるアンモニウムをカウンターカチオンと
するNi(dmit)_2錯体と飽和脂肪酸との混合物
を水面に展開させたものを、ラングミュアープロジェッ
ト法によって1層ないし複数層積層し、その後化学酸化
もしくは電解酸化処理を施すことによって電導度を高め
、さらにその外面に対抗電極としての電気的な引き出し
手段を設けることを特徴とする固体電解コンデンサの製
造方法。
(2) A metal capable of forming an insulating oxide film is used for the electrode, and at least one methyl group and a plurality of long-chain alkyl groups are formed on the surface of the electrode on which the insulating oxide film layer serving as the dielectric layer is formed. A mixture of Ni(dmit)_2 complex with ammonium as a countercation and saturated fatty acid is spread on the water surface, and one or more layers are laminated by the Langmuir-Prodgett method, and then chemical oxidation or electrolytic oxidation treatment is performed. 1. A method for manufacturing a solid electrolytic capacitor, which is characterized in that the conductivity is increased by coating the solid electrolytic capacitor with electrical conductivity, and further, electrical lead-out means as a counter electrode is provided on the outer surface of the solid electrolytic capacitor.
JP12650089A 1989-05-19 1989-05-19 Solid electrolytic capacitor and method of manufacturing the same Expired - Fee Related JP2741619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12650089A JP2741619B2 (en) 1989-05-19 1989-05-19 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12650089A JP2741619B2 (en) 1989-05-19 1989-05-19 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02305428A true JPH02305428A (en) 1990-12-19
JP2741619B2 JP2741619B2 (en) 1998-04-22

Family

ID=14936745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12650089A Expired - Fee Related JP2741619B2 (en) 1989-05-19 1989-05-19 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2741619B2 (en)

Also Published As

Publication number Publication date
JP2741619B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
TWI408711B (en) Metal capacitor and manufacturing method thereof
DE112014000883T5 (en) Capacitor with low equivalent series resistance
CN1539031A (en) Metal foil consiting of alloy of earth-acid metal and capacitor provided with the same
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
CN100468586C (en) Tantalum sintered body
JP3026817B2 (en) Method for manufacturing solid electrolytic capacitor
JP3463692B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPH02305428A (en) Solid electrolytic capacitor and manufacture thereof
KR101043935B1 (en) Production method of a capacitor
JPH08273983A (en) Aluminum solid capacitor
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JPS6334917A (en) Capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0763045B2 (en) Capacitor
JP3316896B2 (en) Capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JPS61163630A (en) Manufacture of solid electrolytic capacitor
JP3213700B2 (en) Manufacturing method of capacitor
JP3441095B2 (en) Solid electrolytic capacitors
JPH0312450B2 (en)
JP4241495B2 (en) Method and apparatus for producing conductive polymer
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JP2003264128A (en) Solid-state electrolytic capacitor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees