[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02290959A - Plasma spraying device - Google Patents

Plasma spraying device

Info

Publication number
JPH02290959A
JPH02290959A JP1107442A JP10744289A JPH02290959A JP H02290959 A JPH02290959 A JP H02290959A JP 1107442 A JP1107442 A JP 1107442A JP 10744289 A JP10744289 A JP 10744289A JP H02290959 A JPH02290959 A JP H02290959A
Authority
JP
Japan
Prior art keywords
plasma
laser beam
plasma jet
thermal spraying
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1107442A
Other languages
Japanese (ja)
Other versions
JPH0564708B2 (en
Inventor
Tsutomu Oki
勉 大木
Katsunori Muraoka
克紀 村岡
Tsuyoshi Shinoda
篠田 強志
Nobuo Tajima
田島 伸夫
Masamichi Koga
古賀 正実知
Hiroshi Takigawa
浩 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1107442A priority Critical patent/JPH02290959A/en
Publication of JPH02290959A publication Critical patent/JPH02290959A/en
Publication of JPH0564708B2 publication Critical patent/JPH0564708B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To effectively carry out plasma spraying by observing the density of the particles of thermal spraying material passing through plasma with a laser beam and providing a means for determining the optimum amt. of a carrier gas using the observed value. CONSTITUTION:The diameter of a laser beam 26 is increased by a laser beam expanding device of convex lenses 21 and 22, and a plasma jet 15 is irradiated with the laser beam 26. The beam 26 is controlled by a condensing device 23, the scattered light is cut at the focus point by an aperture 24, and the light intensity is measured by a light receiving sensor 25. The light intensity is attenuated when the thermal spraying material 18 flies in the plasma jet 15. The attenuation factor is measured by the sensor 25 and stored in a signal intake device 27. The signal is then transformed in an Abelian transformer 29 to clear the number distribution density of the particles of the material 18 in the plasma jet 15. The amt. of the carrier gas for the material is controlled using the result, and the number density of the particles of the material flying in the plasma jet 15 is maximized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラズマジェット中の溶射材料の粒子数密度分
布を観測し、プラズマシェットの中央に溶射材料か集中
するように溶射材料の搬送ガス量を制御するプラズマ溶
射装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention observes the particle number density distribution of the sprayed material in the plasma jet, and adjusts the amount of carrier gas of the sprayed material so that the sprayed material is concentrated in the center of the plasma jet. The present invention relates to a plasma spraying device that controls.

[従来の技術] 一般に、プラズマ溶射は、部品材料表面に耐摩耗性、耐
熱性、耐食性を与えるための金属、セラミック、あるい
はサーメットを被覆する方法として知られており、「工
業加熱J Vo.25, No.5, P8〜P14に
具体的な説明がなされている。プラズマ溶射は通常、第
5図に示す装置構成で後述するような態様で行われてい
る。第5図において1はプラズマ溶射ガン本体で、主に
カソ一ド(以下タングステン電極という)2と、アノー
ド(以下水冷銅電極)3と、プラズマガス供給口4およ
び溶射材料供給口5,6で構成される。タングステン電
極2と水冷銅電極3は絶縁体7によって電気的に分離さ
ね、タングステン電極2は直流電源8の負極に、水冷銅
電極3は正極にそれぞれ接続されている。9はプラズマ
ガス(通常はアルゴン、ヘリウム、水素、窒素など)を
貯蔵し、プラズマガス供給口に送給するガスボンへであ
り、10及び12は溶射材料をためておく気密性のホッ
パー、1l及びl3は溶射材料をそれぞれの溶射材料供
給口5.6へ送給するための搬送ガス(Ar等)ボンベ
である。
[Prior Art] Generally, plasma spraying is known as a method for coating metal, ceramic, or cermet to give wear resistance, heat resistance, and corrosion resistance to the surface of component materials, and is described in "Industrial Heating J Vol. 25 , No. 5, P8 to P14. Plasma spraying is usually carried out in the manner described later using the apparatus configuration shown in Fig. 5. In Fig. 5, 1 indicates plasma spraying. The gun body is mainly composed of a cathode (hereinafter referred to as a tungsten electrode) 2, an anode (hereinafter referred to as a water-cooled copper electrode) 3, a plasma gas supply port 4, and thermal spray material supply ports 5 and 6.The tungsten electrode 2 and The water-cooled copper electrode 3 is electrically separated by an insulator 7, and the tungsten electrode 2 is connected to the negative electrode of a DC power source 8, and the water-cooled copper electrode 3 is connected to the positive electrode. 9 is a plasma gas (usually argon, helium , hydrogen, nitrogen, etc.) and supplies it to the plasma gas supply port. 10 and 12 are airtight hoppers for storing thermal spraying materials, and 1l and 13 are gas cylinders for storing thermal spraying materials, respectively. This is a carrier gas (Ar, etc.) cylinder for supplying to the port 5.6.

」ニ記の装置において、ます、プラズマガスボンベ9か
らプラズマガス供給口4を通してプラズマガスを供給し
、直流電源8によりタングステン電V52と水冷銅電礪
3の間にプラズマアークを発生させる。このアークとプ
ラズマガスとの熱交換により、プラズマシエット15と
なってプラズマ溶射ガン!より噴射する。被溶射母材1
4は予めその溶射面をブラスト等を施し、所定の位置に
設置する。その後、溶射材料供給口5、6からはホッパ
−10、12内の溶射材料を搬送ガスボンへ11、13
がらのガスにより上記のプラズマジェット15中に供給
し、被溶射母材I4に溶射されて、溶射被膜19が禎層
ざれる。
In the apparatus described in (d), first, plasma gas is supplied from the plasma gas cylinder 9 through the plasma gas supply port 4, and a plasma arc is generated between the tungsten electric V52 and the water-cooled copper electric cell 3 by the DC power supply 8. Through heat exchange between this arc and the plasma gas, it becomes Plasma Ciet 15, a plasma spray gun! Spray more. Base material to be sprayed 1
In step 4, the sprayed surface is subjected to blasting or the like in advance, and then installed at a predetermined position. Thereafter, the thermal spraying material in the hoppers 10, 12 is transferred from the thermal spraying material supply ports 5, 6 to the conveying gas cylinders 11, 13.
The gas is supplied to the plasma jet 15 and sprayed onto the base material I4 to be thermally sprayed to form a thermally sprayed coating 19.

ここで満足できる溶射被膜の品質を達成するためには、
溶射材料供給口5、6から投入された溶射材料がプラズ
マジェットの中央を飛行し,かつ十分溶融する時間が必
要てある。なぜならプラズマジェットの温度はプラズマ
ジェットの周辺部に行くにつれて急激に低下するため、
・周辺部を飛行する溶射材料は被溶射母材に達するまで
の時間内に溶融できずに未溶融のまま被溶射母材上に積
層し、被膜品質を低下させるためである。
In order to achieve satisfactory thermal spray coating quality,
It is necessary for the thermal spraying material introduced from the thermal spraying material supply ports 5 and 6 to fly through the center of the plasma jet and to have enough time to melt. This is because the temperature of the plasma jet decreases rapidly toward the periphery of the plasma jet.
- This is because the thermal spray material flying in the peripheral area cannot be melted within the time it takes to reach the base material to be sprayed, and is deposited unmelted on the base material to be sprayed, degrading the quality of the coating.

またここで溶射に用いられるプラズマガスの流量、プラ
ズマガスに用いるアルゴンとヘリウムまたはアルゴンと
水素の混合比、ならびに投入電力は溶射材料毎に異なる
。何故ならばプラズマジェットの密度や速度が違うこと
で、各々の条件毎に溶射材料の入り方も違クて来るため
である。それ故に搬送ガス量が多すぎるときは溶射材料
がプラズマジェットを突き抜けてしまうし、少なすぎる
ときはプラズマジェットに入りきれずはね返されてしま
う。
Further, the flow rate of the plasma gas used for thermal spraying, the mixing ratio of argon and helium or argon and hydrogen used in the plasma gas, and the input power differ depending on the thermal spraying material. This is because the density and speed of the plasma jet differ, so the way the sprayed material enters will also differ depending on each condition. Therefore, if the amount of carrier gas is too large, the sprayed material will pass through the plasma jet, and if it is too small, it will not be able to enter the plasma jet and will be repelled.

そこでこれまでは、溶射材料毎に異なる、プラズマガス
の流量や混合比及び投入電力の条件に合わせて、溶射材
料の搬送ガス量を経験に基づき変化させ、その際の溶射
被膜品質との関係で最適搬送ガス量を決定していた。そ
の最適搬送ガス量の決定のためにはサンプル溶射が数回
必要で、またサンプル溶射一回毎に被膜形状と被膜品質
の検査を行っていた。
Therefore, up until now, the amount of carrier gas for the thermal spraying material has been varied based on experience in accordance with the conditions of the plasma gas flow rate, mixing ratio, and input power, which differ for each thermal spraying material, and in relation to the quality of the thermally sprayed coating. The optimum amount of carrier gas was determined. In order to determine the optimum amount of carrier gas, sample spraying was required several times, and the coating shape and coating quality were inspected after each sample spraying.

[発明が解決しようとする課題] 上記溶射法においては、最適搬送ガス量を決定するだめ
のサンプル溶射一回毎に、被溶射母材の作製から溶射後
の被j摸形状と被膜品質の検査を行うため数日を必要と
している。そのため実際の溶射に至るまでに数回行うサ
ンプル溶射に要する労力と費用が多大なものとなフてし
まう問題点があった。
[Problems to be Solved by the Invention] In the above-mentioned thermal spraying method, each time a sample is sprayed to determine the optimum amount of carrier gas, the process from preparing the base material to be sprayed to inspecting the shape of the sprayed target and the coating quality after thermal spraying is carried out. It will take several days to complete the process. Therefore, there is a problem in that the labor and cost required for sample thermal spraying, which is performed several times before actual thermal spraying, becomes large.

本発明はこのような問題点を解決し、極めて効率的でか
つ安価なコストにてプラズマ溶射を実施することが可能
な装置を提供することを目的とする。
It is an object of the present invention to solve these problems and provide an apparatus that can perform plasma spraying extremely efficiently and at low cost.

[課題を解決するための手段コ 本発明は上記の目的を達成するため次のように構成して
なる。すなわち 1.プラズマジェット中に、搬送ガスにょり溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、プラズマジェットに対向
して、片側にはレーザ発振器とレーザビーム拡大装置を
設け、反対側にはレーザビーム集光装置とその焦点位置
にアパチャーと該アパチャー後方に受光センサーを設け
ると共に、信号取込装置、アーベル変換装置を設けたこ
とを特徴とするプラズマ溶射装置。
[Means for Solving the Problems] In order to achieve the above object, the present invention is constructed as follows. That is, 1. In a thermal spraying device that injects thermal spraying material into the plasma jet using a carrier gas, and then laminates the thermal spraying material melted by the heat of the plasma on the surface of the base material, a laser oscillator is installed on one side facing the plasma jet. and a laser beam expanding device, and on the opposite side, a laser beam focusing device, an aperture at its focal position, a light receiving sensor behind the aperture, and a signal acquisition device and an Abelian conversion device. Plasma spray equipment.

2.プラズマジェット中に、搬送ガスにより溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、プラズマジェットに対向
して、片側にはレーザ発振器、レーザビーム拡大装置、
ハーフミラーを設け、反対側には全反射ミラーを設け、
全反射ミラーで反射さわた後ハーフミラーで折曲げられ
たレーザビームの通過位置にレーザビーム集光装置とそ
の焦点位置にアパチャーと該アパチャー後方に受光セン
サーを設けると共に、信号取込装置、アーベル変換装置
を設けたことを特徴とするプラズマ溶射装置。
2. In a thermal spraying device that injects thermal spraying material using a carrier gas during a plasma jet and laminates the thermal spraying material melted by the heat of the plasma on the surface of a base material, a laser oscillator is installed on one side facing the plasma jet, laser beam expander,
A half mirror is installed, and a total reflection mirror is installed on the opposite side.
A laser beam focusing device is provided at the passing position of the laser beam that is reflected by the total reflection mirror and then bent by the half mirror, an aperture is provided at the focal point of the laser beam, and a light receiving sensor is provided behind the aperture, as well as a signal acquisition device and an Abelian transformer. A plasma spraying device characterized by being equipped with a device.

3.プラズマジェット中に、搬送ガスにより溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、観測された溶射材料の粒
子密度分布を用いて、溶射材料の搬送ガス量をA節する
ための制御装置を設けたことを特徴とする、上記1項あ
るいは2項記載のプラズマ溶射装置。
3. Using the observed particle density distribution of the sprayed material in a thermal spraying device that injects the sprayed material with a carrier gas during a plasma jet and laminates the sprayed material melted by the heat of the plasma on the surface of the base material, 3. The plasma spraying apparatus according to item 1 or 2 above, further comprising a control device for controlling the amount of carrier gas for the thermal spraying material at node A.

である。It is.

[作川] 従って本発明の作用を第1図並びに第2図を用いて説明
する。すなわち、レーザ発振器20で作られたレーザビ
ーム26はレーザビーム拡大装置により、平行先のまま
直経が広げられた後、プラズマジェットに照射される。
[Sakukawa] Therefore, the operation of the present invention will be explained using FIGS. 1 and 2. That is, the laser beam 26 generated by the laser oscillator 20 is expanded in its direct meridian by a laser beam expansion device while remaining parallel, and then irradiated onto the plasma jet.

プラズマジェットを通過したレーザビームは透過後その
ままか又は全反射ミラー30とハーフミラー3lで反射
された後レーザービーム集光装置て絞られ、その焦点位
置に設置されたアパチャー24で計測誤差となる散乱光
がカットされ、その光強度が受光センサー25で計測さ
れる。プラズマジェット15中を溶射材料X8が飛行し
ているときは、レーザビーム15か溶射材料により遮光
されてその光強度が減衰する。この減衰率を受光センサ
ー25で計測し信号取込装置27内に記憶され、その後
アーベル変換装置29内てアーベル変換を行うことによ
り、プラズマジェット中の溶射材料の粒子数密度分布が
明らかとなる。その結果を用いてプラズマジェット中心
部分て溶射材料の粒子数密度分布か最大となるように溶
射材料の搬送ガス量を制御する。又は制御装置28と流
調弁l6、l7の組合せにより、プラズマジェット中心
部分の溶射材料の粒子数密度か最大となるように搬送ガ
ス量が制御される。
The laser beam that has passed through the plasma jet is transmitted either as it is or after being reflected by the total reflection mirror 30 and the half mirror 3l, it is focused by a laser beam focusing device, and is scattered by an aperture 24 installed at the focal point position, which causes measurement errors. The light is cut off, and the light intensity is measured by the light receiving sensor 25. When the thermal spray material X8 is flying in the plasma jet 15, the laser beam 15 is blocked by the thermal spray material and its light intensity is attenuated. This attenuation rate is measured by the light receiving sensor 25, stored in the signal acquisition device 27, and then subjected to Abelian transformation in the Abelian transformation device 29, thereby clarifying the particle number density distribution of the sprayed material in the plasma jet. Using the results, the amount of carrier gas for the sprayed material is controlled so that the particle number density distribution of the sprayed material is maximized at the center of the plasma jet. Alternatively, the amount of carrier gas is controlled by a combination of the control device 28 and the flow control valves 16 and 17 so that the particle number density of the sprayed material in the central portion of the plasma jet is maximized.

[実施例] 以下に本発明の実施の一例を図面に基づいて説明する。[Example] An example of implementation of the present invention will be described below based on the drawings.

第1図においてレーザ発振器20から射出されたレーザ
ビーム26は、凸レンズ21と凸レンズ22を組合わせ
たレーザビーム拡大装置により、平行光のままその直径
がプラズマジェットの断面積以上に拡大される。ここで
レーザ発振器20は連続発振でもパルス発振でも構わな
い。またレーザビーム拡大装置は平行光のままその直径
がプラズマジェットの断面禎以上に拡大されるものであ
ればレンズ単体、ミラー単体またはそれらの組合せであ
っても構わない。レーザビームの直径は、例えばプラズ
マジェットの断面積の平均が2 0+++mであればそ
の断面禎に変動かあっても計測できるように、3 0m
m以上が望ましい。
In FIG. 1, a laser beam 26 emitted from a laser oscillator 20 is expanded in diameter to a diameter greater than the cross-sectional area of the plasma jet while remaining a parallel beam by a laser beam expansion device that combines a convex lens 21 and a convex lens 22. Here, the laser oscillator 20 may be continuous oscillation or pulse oscillation. Further, the laser beam enlarging device may be a single lens, a single mirror, or a combination thereof, as long as the diameter of the parallel beam is expanded to be larger than the cross-sectional diameter of the plasma jet. For example, if the average cross-sectional area of the plasma jet is 20+++ m, the diameter of the laser beam is 30 m, so that measurements can be made even if the cross-sectional area varies.
m or more is desirable.

拡大されたレーザヒームはプラズマジェット15を透過
し、レーザビーム集光装置である凸レンズ23により絞
られる。レーザビーム集光装置はレンズ単体、ミラー単
体またはそれらの組合せであっても構わない。凸レンズ
23の焦点位置には、溶射材料によるレーザビーム26
の散乱光が計測値に影習を及ぼさないように遮光するた
めのアパチャー24が設置さわている。ここでアパチャ
ー24は表面か艶消しの黒色で、中央に直径1mm程度
のビンホールを開けた薄い金属板である。アバチャ−2
4を通過したレーザ光の強度は受光センサー25で電気
信号に変化され信号取込装置27に記憶される。この受
光センサー25は光強度を電気信号に変換するものなら
どのようなものでも構わない。
The expanded laser beam passes through the plasma jet 15 and is focused by a convex lens 23, which is a laser beam focusing device. The laser beam focusing device may be a single lens, a single mirror, or a combination thereof. At the focal position of the convex lens 23, a laser beam 26 made of thermal spray material is placed.
An aperture 24 is installed to block the scattered light from affecting the measured values. Here, the aperture 24 is a thin metal plate with a matte black surface and a via hole with a diameter of about 1 mm in the center. Abacha-2
The intensity of the laser beam that has passed through the sensor 4 is converted into an electrical signal by the light receiving sensor 25 and stored in the signal acquisition device 27. This light receiving sensor 25 may be of any type as long as it converts light intensity into an electrical signal.

プラズマジェットl5中に溶射材料1Bを投入した場合
、その溶射材料18により遮光されてレーザ光強度が減
衰する。その減衰量は溶射材料の密度および通過距離と
相関かあるため、レーザ光が溶射材料密度の高い所を長
い距離通過するほどレーザ光強度の減衰率か大きくなる
。プラズマジェット15中に溶射材料l8を投入する前
と後の計測結果を第3図(b)に示す。計測されたレー
ザ光強度の減衰率ヲ用イて、アーベル変換装置29内で
アーベル変換(ある物理量ε(r)が回転対称性を持っ
ていてしかも半径rだけの関数のとき、観測量1 (y
)からもとのε(『)を求める変換)を行うと、第4図
に示すような溶射材料の粒子数密度分布が得られる。こ
の結果を用いて手動で搬送ガス量を調整し、プラズマジ
ェットの中心部分の粒子数密度が最大となるようにする
。またはこの結果を制御装置28に取り込み、流調弁1
6. 17に開閉の信号を出すことで搬送ガス量を調節
し、プラズマ中心部分の粒子数密度が最大となるように
制御する。
When the thermal spray material 1B is introduced into the plasma jet 15, the thermal spray material 18 blocks light and the laser beam intensity is attenuated. Since the amount of attenuation is correlated with the density of the sprayed material and the distance traveled, the longer the laser beam passes through a place where the density of the sprayed material is high, the greater the attenuation rate of the laser light intensity becomes. FIG. 3(b) shows the measurement results before and after introducing the thermal spray material 18 into the plasma jet 15. Using the measured attenuation rate of the laser light intensity, the Abelian transformation device 29 converts the observed quantity 1 (when a certain physical quantity ε(r) has rotational symmetry and is a function of only the radius r, y
) to obtain the original ε('), the particle number density distribution of the thermal spray material as shown in FIG. 4 is obtained. Using this result, the amount of carrier gas is manually adjusted so that the particle number density at the center of the plasma jet is maximized. Alternatively, this result is taken into the control device 28 and the flow control valve 1
6. The amount of carrier gas is adjusted by issuing an opening/closing signal to 17, and the particle number density in the central part of the plasma is controlled to be maximum.

プラズマジェットヘレーザビームを照射する方法として
は第2図に示すように、全反射ミラー30とハーフミラ
ー3lを用いる方法でも良い。具体的にはレーザ発振器
20から射出されたレーザビーム26は、凸レンズ2I
と凸レンズ22を組合せたレーザビーム拡大装置により
、平行光のままその直径がプラズマジェットの断而積以
上に拡大され、ハーフミラー31を透過し、プラズマジ
ェットl5に照射され、プラズマジェットに対向して置
かれた全反射ミラーで反射の後ハーフミラーで更に反射
され、レーザビーム集光装置である凸レンズ23により
絞られる。ここでハーフミラーは光を照射したときに光
量の半分が照射面で反射し残り半分か照射面を透過する
ものである。
As a method of irradiating the plasma jet laser beam, a method using a total reflection mirror 30 and a half mirror 3l, as shown in FIG. 2, may be used. Specifically, the laser beam 26 emitted from the laser oscillator 20 passes through the convex lens 2I.
A laser beam expanding device that combines a convex lens 22 and a laser beam enlarges the diameter of the collimated light to be larger than the absolute volume of the plasma jet, transmits through the half mirror 31, irradiates the plasma jet 15, and then faces the plasma jet. After being reflected by the placed total reflection mirror, it is further reflected by a half mirror, and focused by a convex lens 23, which is a laser beam focusing device. Here, when a half mirror is irradiated with light, half of the amount of light is reflected by the irradiated surface and the remaining half is transmitted through the irradiated surface.

凸レンズ23の焦点位置には、アパチャ−24か設置さ
れ、アパチャー24を通過したレーザ光の強度は受光セ
ンサー25で電気信号に変換されイ8号取込装置27に
記憶される。記憶された信号はアーベル変換装置29内
でアーベル変換され、溶射材料の粒子数密度分布が得ら
える。この結果を用いて手動で搬送ガス量を調整し、プ
ラズマジェットの中心部分の粒子数密度か最大となるよ
うにする。またはこの結果を制御装置28に取り込み、
流調弁+6.l7に開閉の信号を出すことで搬送ガス量
を調節し、プラズマ中心部分の粒子数密度が最大となる
ように制御する。
An aperture 24 is installed at the focal point of the convex lens 23, and the intensity of the laser beam passing through the aperture 24 is converted into an electrical signal by a light receiving sensor 25 and stored in a No. 8 intake device 27. The stored signal is Abelian transformed in an Abelian transformation device 29 to obtain a particle number density distribution of the thermal spray material. Using this result, the amount of carrier gas is manually adjusted to maximize the particle number density in the center of the plasma jet. Or import this result into the control device 28,
Flow control valve +6. The amount of carrier gas is adjusted by sending an opening/closing signal to l7, and the particle number density in the central part of the plasma is controlled to be maximum.

[発明の効果] 以上説明したような本発明の構成のために、プラズマ中
を飛行する溶射材料の粒子密度を観測し、その値を用い
て最適搬送ガス量を決定することが可能となった。その
ためこれまで数回行っていてサンプル溶射用の被溶射母
材の作製と溶射後の被膜形状と被膜品質の検査がなくな
フたことで、費用と労力の削減が行われた。
[Effects of the Invention] Due to the configuration of the present invention as explained above, it has become possible to observe the particle density of the thermal spray material flying in the plasma and determine the optimum amount of carrier gas using that value. . This eliminated the need to prepare the sprayed base material for sample thermal spraying and inspect the coating shape and quality after thermal spraying, which had previously been done several times, resulting in cost and labor savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例である。第3図(a
)は計測システムの平面図、(b)はその計測結果であ
る。第4図はアーベル変換により計算された粒子数密度
分布を表すグラフである。第5図は従来のプラズマ溶射
法を説明する図である。 1・・・溶射ガン、2・・・タングステン電極、3・・
・水冷銅電極、4・・・プラズマガス供給口、5,6・
・・溶射材料供給口、7・・・絶縁体、8・・・直流電
源、9・・・プラズマガスボンへ、10. 12・・・
溶射材料ポッパ11, +3・・・搬送ガスボンベ、1
4・・・被溶射母材、15・・・プラズマジェット、1
6. 17・・・流調弁、18・・・溶射材料、19・
・・溶射被膜、2o・・・レーザ発振器、2+,22.
 23・・・レンズ、24・・・アパチャー、25・・
・受光センサー、26・・・レーザビーム、27・・・
信号取込装置、28・・・制御装置、29・・・アーベ
ル変換装置、3o・・・全反射ミラー、31・・・ハー
フミラー
FIGS. 1 and 2 show an embodiment of the present invention. Figure 3 (a
) is a plan view of the measurement system, and (b) is the measurement result. FIG. 4 is a graph showing the particle number density distribution calculated by Abelian transformation. FIG. 5 is a diagram illustrating the conventional plasma spraying method. 1... thermal spray gun, 2... tungsten electrode, 3...
・Water-cooled copper electrode, 4... Plasma gas supply port, 5, 6.
... Thermal spray material supply port, 7... Insulator, 8... DC power supply, 9... To plasma gas bomb, 10. 12...
Thermal spray material popper 11, +3... Carrier gas cylinder, 1
4... Base material to be thermally sprayed, 15... Plasma jet, 1
6. 17...Flow control valve, 18...Thermal spray material, 19.
...Thermal spray coating, 2o...Laser oscillator, 2+, 22.
23... Lens, 24... Aperture, 25...
・Light receiving sensor, 26... Laser beam, 27...
Signal acquisition device, 28... Control device, 29... Abelian conversion device, 3o... Total reflection mirror, 31... Half mirror

Claims (1)

【特許請求の範囲】 1、プラズマジェット中に、搬送ガスにより溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、プラズマジェットに対向
して、片側にはレーザ発振器とレーザビーム拡大装置を
設け、反対側にはレーザビーム集光装置とその焦点位置
にアパチャーと該アパチャー後方に受光センサーを設け
ると共に、信号取込装置、アーベル変換装置を設けたこ
とを特徴とするプラズマ溶射装置。 2、プラズマジェット中に、搬送ガスにより溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、プラズマジェットに対向
して、片側にはレーザ発振器、レーザビーム拡大装置、
ハーフミラーを設け、反対側には全反射ミラーを設け、
全反射ミラーで反射された後ハーフミラーで折曲げられ
たレーザビームの通過位置にレーザビーム集光装置とそ
の焦点位置にアパチャーと該アパチャー後方に受光セン
サーを設けると共に、信号取込装置、アーベル変換装置
を設けたことを特徴とするプラズマ溶射装置。 3、プラズマジェット中に、搬送ガスにより溶射材料を
投入し、プラズマの熱で溶融された溶射材料を母材の表
面に積層する溶射装置に於て、観測された溶射材料の粒
子密度分布を用いて、溶射材料の搬送ガス量を調節する
ための制御装置を設けたことを特徴とする、請求項1あ
るいは2記載のプラズマ溶射装置。
[Claims] 1. In a thermal spraying device that injects thermal spraying material into a plasma jet using a carrier gas, and then laminates the thermal spraying material melted by the heat of the plasma on the surface of a base material, a device facing the plasma jet is used. A laser oscillator and a laser beam expansion device are installed on one side, and a laser beam focusing device and an aperture at its focal position and a light receiving sensor are installed behind the aperture on the other side, as well as a signal acquisition device and an Abelian transformation device. A plasma spraying device characterized by: 2. In a thermal spraying device that injects thermal spraying material using a carrier gas into a plasma jet and then laminates the thermal spraying material, which is melted by the heat of the plasma, on the surface of the base material, a laser beam is installed on one side facing the plasma jet. Oscillator, laser beam expander,
A half mirror is installed, and a total reflection mirror is installed on the opposite side.
A laser beam focusing device is provided at the passing position of the laser beam that is reflected by the total reflection mirror and then bent by the half mirror, an aperture is provided at the focal point of the laser beam, and a light receiving sensor is provided behind the aperture, as well as a signal acquisition device and an Abelian transformer. A plasma spraying device characterized by being equipped with a device. 3. Using the observed particle density distribution of the sprayed material in a thermal spraying device that injects the sprayed material with a carrier gas into a plasma jet and then layers the sprayed material, which is melted by the heat of the plasma, on the surface of the base material. 3. The plasma spraying apparatus according to claim 1, further comprising a control device for adjusting the amount of carrier gas for the spraying material.
JP1107442A 1989-04-28 1989-04-28 Plasma spraying device Granted JPH02290959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107442A JPH02290959A (en) 1989-04-28 1989-04-28 Plasma spraying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107442A JPH02290959A (en) 1989-04-28 1989-04-28 Plasma spraying device

Publications (2)

Publication Number Publication Date
JPH02290959A true JPH02290959A (en) 1990-11-30
JPH0564708B2 JPH0564708B2 (en) 1993-09-16

Family

ID=14459256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107442A Granted JPH02290959A (en) 1989-04-28 1989-04-28 Plasma spraying device

Country Status (1)

Country Link
JP (1) JPH02290959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601235A (en) * 1993-12-04 1997-02-11 United Kingdom Atomic Energy Authority Aerosol generator
EP1479788A1 (en) * 2003-05-23 2004-11-24 Sulzer Metco AG Hybrid process for coating a substrate by thermal application of the coating
WO2009008478A1 (en) * 2007-07-10 2009-01-15 National University Corporation Gunma University Acoustic measurement device and acoustic measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601235A (en) * 1993-12-04 1997-02-11 United Kingdom Atomic Energy Authority Aerosol generator
EP1479788A1 (en) * 2003-05-23 2004-11-24 Sulzer Metco AG Hybrid process for coating a substrate by thermal application of the coating
WO2009008478A1 (en) * 2007-07-10 2009-01-15 National University Corporation Gunma University Acoustic measurement device and acoustic measurement method
JP2009019911A (en) * 2007-07-10 2009-01-29 Gunma Univ Apparatus and method for measuring sound
US8107061B2 (en) 2007-07-10 2012-01-31 National University Corporation Gunma University Acoustic measurement device and acoustic measurement method

Also Published As

Publication number Publication date
JPH0564708B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US4596718A (en) Vacuum plasma coating apparatus
US8809780B2 (en) Electron beam layer manufacturing using scanning electron monitored closed loop control
CN104364416B (en) Filtering cathode arc deposited equipment and method
WO2020062341A1 (en) Laser additive apparatus and additive manufacturing method therefor
CN107218896B (en) The method for measuring vacuum ion plating and plasma spray coating plated film film thickness and uniformity
Yoshida et al. Integrated fabrication process for solid oxide fuel cells using novel plasma spraying
KR20150053806A (en) Method for automated superalloy laser cladding with 3d imaging weld path control
US6146714A (en) Method of forming metal, ceramic or ceramic/metal layers on inner surfaces of hollow bodies using pulsed laser deposition
EP0625401B1 (en) Laser system and use of the laser system
JP3457855B2 (en) FIB assist gas introduction device
JPH02290959A (en) Plasma spraying device
Friis et al. Investigation of particle in-flight characteristics during atmospheric plasma spraying of yttria-stabilized ZrO 2: Part 1. Experimental
CN107462592A (en) Bimodulus successively measuring system
JPH0450381B2 (en)
US4048348A (en) Method of applying a fused silica coating to a substrate
CN108977743A (en) The film build method of sputtered films of bismuth
US3691341A (en) Improvements to the controlling of focussing of electronic bombardment
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
JP2004138451A (en) Method for manufacturing gas sensor element
JPS6366900B2 (en)
Berndt The adhesion of flame and plasma sprayed coatings
Chvojka et al. Ion generation from Al-laser-produced plasma
JPH03253551A (en) Laser spraying method and device
KR20030083134A (en) Method and apparatus for generating nanoparticles
Dalaee Enhancment in deposition rate of laser DMD