[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02296723A - Manufacture of thin film superconductor - Google Patents

Manufacture of thin film superconductor

Info

Publication number
JPH02296723A
JPH02296723A JP1118942A JP11894289A JPH02296723A JP H02296723 A JPH02296723 A JP H02296723A JP 1118942 A JP1118942 A JP 1118942A JP 11894289 A JP11894289 A JP 11894289A JP H02296723 A JPH02296723 A JP H02296723A
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
temperature
temp
film superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1118942A
Other languages
Japanese (ja)
Other versions
JPH07106902B2 (en
Inventor
Hideaki Adachi
秀明 足立
Shigenori Hayashi
重徳 林
Tsuneo Mitsuyu
常男 三露
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118942A priority Critical patent/JPH07106902B2/en
Publication of JPH02296723A publication Critical patent/JPH02296723A/en
Publication of JPH07106902B2 publication Critical patent/JPH07106902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having high critical temp. by forming a conjugate oxide thin film having an Nd2CuO4 type crystal structure by a magnetron sputtering apparatus and thereafter subjecting it to heat treatment under specified conditions. CONSTITUTION:An oxide thin film essentially composed of an Nd2CuO4 type structure is formed onto a substrate with an oxide ceramic sintered body expressed by general formula of (A1-yBy)2CuX4 as a target (where A denotes at least one kind among Nd, Sm and Pr, B denotes at least one kind of Ce and Th and X denotes at least one kind of O and F as well as 0<=y<=0.2 is regulated) by a high frequency planar magnetron sputtering method. This thin film is subjected to heat treatment at 800 to 1200 deg.C in the air or in an oxidizing atmosphere and is thereafter rapidly cooled to a room temp. within 5min. Next, the film is subjected to heat treatment in the temp. range of 400 to 1100 deg.C for about 30min in a vacuum atmosphere of <=10<-1>torr and is cooled to room temp. within 5 min by Ar gas. The superconductor thin film of good quality having high critical temp. can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高臨界温度を持つ酸化物超電導体の薄膜製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a thin film of an oxide superconductor having a high critical temperature.

従来の技術 高い超電導転移温度を持つ酸化物超電導体として、Ba
−La−Cu−0系の超電導体が発見された[シ゛エイ
・ジー・へ゛トリルフ アント° ケー・ニー・ミュラ
ー、 (ファイトシュリフト・フユア・フィシ゛−ヶ 
ヘ゛−) −コンテ゛ンスト マター(J、G、Bed
norzand  K、A、Muller、(Zeはs
hrlft  fur Physlk B)−Cond
ensed  Matter、vol、11i4,18
9−193(198ft))コ。  これ以来数々の新
しい酸化物超電導体が発見されるに至った。
Conventional technology Ba is an oxide superconductor with a high superconducting transition temperature.
-La-Cu-0 system superconductor was discovered [K.N. Muller,
) -Content Matter (J, G, Bed
norzand K, A, Muller, (Ze is s
hrlft fur Physlk B)-Cond
ensed Matter, vol, 11i4, 18
9-193 (198ft)). Since then, many new oxide superconductors have been discovered.

ところで最近、これら従来の酸化物超電導体とは常電導
状態における電荷輸送担体が異なる、Nd−Ce−Cu
−0に代表されるNd2CuOa型結晶構造の新しい酸
化物超電導体が発見された [ワイ・トクラ、エイチ・
タカキ゛ アント° ニス・ウチク° 、 (ネイチ+
−)  Y、Tokura、  H。
By the way, recently, Nd-Ce-Cu, which has a different charge transport carrier in the normal conductive state from these conventional oxide superconductors, has been developed.
A new oxide superconductor with an Nd2CuOa type crystal structure represented by -0 has been discovered [Y. Tokura, H.
Takaki Ant° Nis Uchiku°, (Neichi+
-) Y, Tokura, H.

Takagl  and  S、Uchida、(Na
ture)vol、337,345−347(1989
)]。この種の材料の超電導機構の詳細は明らかではな
いが、転移温度がさらに高くなる可能性があり、また新
しいデバイスの実現等の有望な応用が期待される。
Takagl and S, Uchida, (Na
ture) vol, 337, 345-347 (1989
)]. Although the details of the superconducting mechanism of this type of material are not clear, the transition temperature may be even higher, and promising applications such as the realization of new devices are expected.

発明が解決しようとする課題 しかしながら、Nd−Ce−Cu−0系の材料は、現在
の技術では主として焼結という過程でしか形成できない
ため、セラミックの粉末あるいはプロ。
Problems to be Solved by the Invention However, with the current technology, Nd-Ce-Cu-0 based materials can only be formed mainly through the process of sintering, so they cannot be formed using ceramic powder or ceramics.

りの形状でしか得られない。一方、この種の材料を実用
化する場合、薄膜状に加工することが強く要望されてい
るが、従来の技術では、良好な超電導特性を有する薄膜
作製は非常に困難とされている。
It can only be obtained in this shape. On the other hand, when this type of material is to be put to practical use, there is a strong desire to process it into a thin film, but with conventional techniques, it is extremely difficult to produce a thin film with good superconducting properties.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 主成分が、Nd5CuOA型結晶構造の(AI−、B、
)2CuXaで表わされる複合酸化物の超電導薄膜を作
製するための本発明の製造方法は、薄膜を堆積させた後
、10分の1気圧以下の減圧下で、400℃から110
0℃の範囲の温度で熱処理して得るというものである。
Means for solving the problem The main components are (AI-, B,
) The manufacturing method of the present invention for producing a superconducting thin film of a composite oxide represented by 2CuXa is to deposit the thin film and then heat it from 400°C to 110°C under a reduced pressure of 1/10 atm or less.
It is obtained by heat treatment at a temperature in the range of 0°C.

ここで、AはNd、  Sm、  Prのうちの少なく
とも一種、BはCe+  Thのうちの少なくとも一種
、Xは0(酸素)、F(フッ素)のうちの少なくとも一
種の元素を示す。またyは、0≦y≦0.2の範囲の数
値である。
Here, A represents at least one element selected from Nd, Sm, and Pr, B represents at least one element selected from Ce+Th, and X represents at least one element selected from 0 (oxygen) and F (fluorine). Moreover, y is a numerical value in the range of 0≦y≦0.2.

作用 本発明者らはこのNd2CuOa型結晶構造の酸化物超
電導体薄膜に対して、熱処理条件と出現する超電導性の
関係について詳細に調べた。従来この種のセラミックス
材料の熱処理条件としては、アルゴンと酸素の混合ガス
を用い、酸素分圧を低くした上記ガスを流しながら(1
気圧)、約1000℃程度で行なうのがよいとされてい
た。しかしながらこの熱処理においては、100時間程
の長時間が必要とされた。本発明者らはこの種の薄膜に
おいて最適熱処理条件を探索した結果、10分の1以下
の減圧下での熱処理を行なえば、以外にもわずか1分か
ら1時間程度の時間で良好な超電導性が得られることを
発見した。この理由は現在のところ明らかではないが、
体積が少なく表面積の多い薄膜独自の形状が、減圧下で
の熱処理に対して非常に効果的に働き、短時間で超電導
性出現の要件を満たしたものと考えられる。このように
減圧下で超電導性が出現するという製法は、薄膜成膜プ
ロセスをそのまま利用できるという点で非常に有効で、
例えばこの種の薄膜を成膜した後そのまま蒸着用真空容
器の中で加熱してもよいし、また後で他の膜を積層させ
る際にその蒸着用真空容器の中で蒸着する前に加熱して
超電導性を得ることもできる。減圧状態の圧力としては
10分の1気圧以下で効果が現われたが、特に10”T
orr以下であればIOK以上の温度でゼロ抵抗を示す
超電導薄膜が得られることを確認した。また熱処理温度
も400〜1100℃とした場合に超電導性出現に効果
があったが、特に800〜900℃の熱処理温度では完
全にゼロ抵抗となる温度が20に程度で確認され、再現
性もすぐれていた。
Effect The present inventors investigated in detail the relationship between the heat treatment conditions and the superconductivity that appears in this oxide superconductor thin film having the Nd2CuOa type crystal structure. Conventionally, as the heat treatment conditions for this type of ceramic material, a mixed gas of argon and oxygen was used, and while flowing the above gas with a low oxygen partial pressure (1
It was thought that it is best to carry out the process at a temperature of about 1000°C (atmospheric pressure). However, this heat treatment required a long time of about 100 hours. The present inventors searched for the optimal heat treatment conditions for this type of thin film, and found that if heat treatment is performed under a reduced pressure of less than 1/10, good superconductivity can be achieved in just 1 minute to 1 hour. I discovered that I can get it. The reason for this is currently not clear, but
It is thought that the unique shape of the thin film, which has a small volume and a large surface area, is very effective in heat treatment under reduced pressure and satisfies the requirements for the appearance of superconductivity in a short period of time. This manufacturing method in which superconductivity appears under reduced pressure is extremely effective in that the thin film deposition process can be used as is.
For example, after forming this type of thin film, it may be heated directly in a vacuum chamber for deposition, or when another film is to be laminated later, it may be heated before being deposited in a vacuum chamber for deposition. It is also possible to obtain superconductivity. The effect appeared at a reduced pressure of 1/10 atmosphere or less, but especially at 10"T.
It was confirmed that a superconducting thin film exhibiting zero resistance at a temperature of IOK or higher can be obtained if the temperature is below orr. In addition, when the heat treatment temperature was set to 400 to 1100°C, it was effective for the appearance of superconductivity, but especially at the heat treatment temperature of 800 to 900°C, it was confirmed that the temperature at which completely zero resistance occurred was around 20°C, and the reproducibility was also excellent. was.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

Nd+、5sCea、+5Cu20xの酸化物セラミッ
クス焼結体をターゲットとして用い、チタン酸ストロン
チウム(100)面の基体上に、高周波プレナーマグネ
トロンスバッタにより薄膜作製を行なった。
Using a sintered oxide ceramic of Nd+, 5sCea, and +5Cu20x as a target, a thin film was fabricated on a substrate with a strontium titanate (100) surface by high-frequency planar magnetron scattering.

基体温度を650℃とし、スパッタ電力180W。The substrate temperature was 650°C, and the sputtering power was 180W.

スパッタガスは純アルゴン、ガス圧力3X10”Tor
rの条件のもとで、約1時間スパッタ蒸着することによ
り、約0.8μm厚の薄膜が得られた。成膜の後、薄膜
の組成を調べたところ、金属元素の比率はNd:  C
e:  Cu=1.84: o、ie:  1.0とほ
ぼ化学量論比になっていた。また薄膜の結晶構造は、X
線回折法によりC軸が基板に垂直に配向したNd2Cu
O4型の結晶構造が主体となっていることが判った。作
製したままの膜の電気抵抗は温度を下げるに従い増加す
る傾向を見せ、超伝導性の兆候が現れるのはきわめてま
れであった。
Sputtering gas is pure argon, gas pressure 3X10” Tor
A thin film with a thickness of about 0.8 μm was obtained by sputter deposition for about 1 hour under conditions of r. After the film was formed, the composition of the thin film was examined and the ratio of metal elements was Nd:C.
e: Cu=1.84: o, ie: 1.0, which was a nearly stoichiometric ratio. In addition, the crystal structure of the thin film is
Nd2Cu whose C axis is oriented perpendicular to the substrate by line diffraction method
It was found that the crystal structure was mainly O4 type. The electrical resistance of the as-prepared film showed a tendency to increase as the temperature was lowered, and signs of superconductivity were extremely rare.

薄膜作製後再び真空容器の中で加熱し、減圧下の熱処理
を行った。圧力は不純物ガスの影響を避けるため、8 
X 10−フTorrの高真空とした。900℃で30
分の熱処理後、サンプルエは真空中で自然冷却させ約3
0分で室温に戻し、サンプル2は1気圧のアルゴンガス
を導入して急速に冷却させ5分以内で室温に戻した。こ
れらの薄膜サンプルについての電気抵抗の温度依存性を
図に示す。
After the thin film was prepared, it was heated again in a vacuum container to perform heat treatment under reduced pressure. The pressure is set at 8 to avoid the influence of impurity gas.
A high vacuum of X 10-Torr was applied. 30 at 900℃
After heat treatment for 3 minutes, the sample was allowed to cool naturally in a vacuum for about 3 minutes.
The temperature was returned to room temperature in 0 minutes, and sample 2 was rapidly cooled by introducing 1 atm of argon gas and returned to room temperature within 5 minutes. The temperature dependence of electrical resistance for these thin film samples is shown in the figure.

曲線11は減圧熱処理後に自然冷却させたもの(サンプ
ル1)、曲線12は急速冷却させたもの(サンプル2)
である。このように成膜後に減圧熱処理を行なうことに
より確実にゼロ抵抗を示す超電導特性が出現するように
なった。しかも減圧熱処理後に急速に冷却させると、特
性がよいものが得られることも確認された。
Curve 11 is for natural cooling after vacuum heat treatment (sample 1), and curve 12 is for rapid cooling (sample 2).
It is. In this way, by performing a low-pressure heat treatment after film formation, superconducting properties that exhibit zero resistance reliably appear. Moreover, it was also confirmed that a product with good properties could be obtained by rapidly cooling it after the heat treatment under reduced pressure.

またこの減圧熱処理をする前に、薄膜の結晶性を完全な
ものとするため、酸素雰囲気中で熱処理を施す実験も行
なった。超電導特性を出現させるには減圧下の熱処理が
有効であったが、結晶性を向上させるにはある程度の酸
素を含む雰囲気中で800〜1200℃の温度での熱処
理が有効であることが判った。本実施例では空中110
0’C2時間の熱処理を行なうことにより、C軸のX線
回折強度が3倍程度強くなり、薄膜の結晶性が向上した
ことが確認された。空中熱処理後、サンプル3は炉中で
の自然冷却、サンプル4は炉から取り出して5分以内で
急速冷却させて室温まで戻し、前記と同様の900℃、
30分の減圧上熱処理を行なった後急速冷却させた。こ
れらの薄膜サンプルの特性も、図にあわせて示す。曲線
13は空中熱処理後に自然冷却して減圧上熱処理を施し
たもの(サンプル3)、曲線14は空中熱処理後に急速
冷却して減圧上熱処理を施したもの(サンプル4)であ
る。この特性より、減圧上熱処理の前に空中熱処理を行
なうことにより、超電導特性が向上していることが確認
される。特にこの空中熱処理後に急速冷却したサンプル
4は常電導状態の電気抵抗率自体も小さく、ゼロ抵抗温
度22Kを持つシャープな超電導転移を示した。
In addition, in order to perfect the crystallinity of the thin film, we also conducted an experiment in which heat treatment was performed in an oxygen atmosphere before performing this low-pressure heat treatment. Heat treatment under reduced pressure was effective for developing superconducting properties, but heat treatment at temperatures of 800 to 1200°C in an atmosphere containing a certain amount of oxygen was found to be effective for improving crystallinity. . In this example, 110 in the air
It was confirmed that by performing the heat treatment for 2 hours at 0'C, the C-axis X-ray diffraction intensity increased about three times, and the crystallinity of the thin film improved. After the air heat treatment, sample 3 was naturally cooled in the furnace, and sample 4 was rapidly cooled to room temperature within 5 minutes after being taken out of the furnace, and then heated to 900°C as described above.
After performing heat treatment under reduced pressure for 30 minutes, it was rapidly cooled. The characteristics of these thin film samples are also shown in the figure. Curve 13 is for air heat treatment followed by natural cooling and vacuum heat treatment (sample 3), and curve 14 is air heat treatment followed by rapid cooling and vacuum heat treatment (sample 4). This characteristic confirms that superconducting characteristics are improved by performing air heat treatment before heat treatment under reduced pressure. In particular, Sample 4, which was rapidly cooled after the air heat treatment, had a low electrical resistivity in the normal conductive state and exhibited a sharp superconducting transition with a zero resistance temperature of 22K.

以上のように、ゼロ抵抗温度20に程度の超電導を示す
(Nd、Ce)2cuo4薄膜を再現性よく製造する方
法が確立された。なおこの結果は、主成分がNd2Cu
Oa型結晶構造の(A+−、B、)2CuX4で表わさ
れる複合酸化物の薄膜において、A元素としてNd、5
IIl、Prのうちの少なくとも一種、B元素としてC
e、  Thのうちの少なくとも一種、X元素としてO
(酸素)、F(フッ素)のうちの少なくとも一種を用い
た場合にも同様に効果があることを確認した。ここでy
は、0≦yso、2の範囲の数値である。
As described above, a method for producing a (Nd,Ce)2cuo4 thin film exhibiting superconductivity at a zero resistance temperature of 20°C with good reproducibility has been established. Note that this result shows that the main component is Nd2Cu
In a thin film of a composite oxide represented by (A+-,B,)2CuX4 with an Oa type crystal structure, Nd and 5
At least one of III, Pr, and C as the B element
e, at least one of Th, O as X element
It was confirmed that a similar effect is obtained when at least one of (oxygen) and F (fluorine) is used. Here y
is a numerical value in the range of 0≦yso, 2.

発明の詳細 な説明したように、本発明により、良質で高性能なN 
d2Cuo 4型結晶構造の薄膜超電導体を再現性良く
得ることが可能となった。本発明の製造方法は、この種
の物質を用いたデバイス等の応用には必須であり、本発
明の工業的価値は大きい。
As described in detail, the present invention provides high quality and high performance N
It became possible to obtain a thin film superconductor with a d2Cuo type 4 crystal structure with good reproducibility. The manufacturing method of the present invention is essential for applications such as devices using this type of substance, and the industrial value of the present invention is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例にかかる薄膜超電導体の製造方法
において製造された薄膜超電導体の、電気抵抗の温度依
存性を示すグラフである。
The figure is a graph showing the temperature dependence of electrical resistance of a thin film superconductor manufactured by the method for manufacturing a thin film superconductor according to an embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)主成分が、Nd_2CuO_4型結晶構造の(A
_1_−_yB_y)_2CuX_4で表わされる複合
酸化物の薄膜を、10分の1気圧以下の減圧下で、40
0℃から1100℃の範囲の温度で熱処理して得る(こ
こで、AはNd、Sm、Prのうちの少なくとも一種、
BはCe、Thのうちの少なくとも一種、XはO(酸素
)、F(フッ素)のうちの少なくとも一種の元素を示す
。またyは、0≦y≦0.2の範囲の数値である)こと
を特徴とする薄膜超電導体の製造方法。
(1) The main component is (A
A thin film of a composite oxide represented by _1_-_yB_y)_2CuX_4 was heated at 40°C under a reduced pressure of 1/10 atm or less.
Obtained by heat treatment at a temperature in the range of 0°C to 1100°C (where A is at least one of Nd, Sm, and Pr;
B represents at least one element selected from Ce and Th, and X represents at least one element selected from O (oxygen) and F (fluorine). and y is a numerical value in the range of 0≦y≦0.2).
(2)雰囲気の圧力が、10^−^1Torr(〜10
^−^4気圧)以下であることを特徴とする請求項1記
載の薄膜超電導体の製造方法。
(2) The pressure of the atmosphere is 10^-^1 Torr (~10
2. The method for producing a thin film superconductor according to claim 1, wherein the pressure is 4 atm.) or less.
(3)熱処理温度が600℃から900℃の範囲である
ことを特徴とする請求項1記載の薄膜超電導体の製造方
法。
(3) The method for producing a thin film superconductor according to claim 1, wherein the heat treatment temperature is in the range of 600°C to 900°C.
(4)減圧下での熱処理後、5分以内で急激に室温に冷
却して得ることを特徴とする請求項1記載の薄膜超電導
体の製造方法。
(4) The method for producing a thin film superconductor according to claim 1, wherein the thin film superconductor is obtained by rapidly cooling to room temperature within 5 minutes after heat treatment under reduced pressure.
(5)減圧下での熱処理前に、空中あるいは酸化雰囲気
中で800℃から1200℃の範囲の温度で熱処理を施
すことを特徴とする請求項1記載の薄膜超電導体の製造
方法。
(5) The method for producing a thin film superconductor according to claim 1, characterized in that, before the heat treatment under reduced pressure, heat treatment is performed in air or in an oxidizing atmosphere at a temperature in the range of 800°C to 1200°C.
(6)空中あるいは酸化雰囲気中で800℃から120
0℃の範囲の温度で熱処理を施した後に、5分以内で急
激に室温に冷却して得ることを特徴とする請求項5記載
の薄膜超電導体の製造方法。
(6) 800℃ to 120℃ in air or oxidizing atmosphere
6. The method for producing a thin film superconductor according to claim 5, wherein the thin film superconductor is obtained by performing heat treatment at a temperature in the range of 0° C. and then rapidly cooling it to room temperature within 5 minutes.
JP1118942A 1989-05-12 1989-05-12 Method of manufacturing thin film superconductor Expired - Lifetime JPH07106902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118942A JPH07106902B2 (en) 1989-05-12 1989-05-12 Method of manufacturing thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118942A JPH07106902B2 (en) 1989-05-12 1989-05-12 Method of manufacturing thin film superconductor

Publications (2)

Publication Number Publication Date
JPH02296723A true JPH02296723A (en) 1990-12-07
JPH07106902B2 JPH07106902B2 (en) 1995-11-15

Family

ID=14749051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118942A Expired - Lifetime JPH07106902B2 (en) 1989-05-12 1989-05-12 Method of manufacturing thin film superconductor

Country Status (1)

Country Link
JP (1) JPH07106902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280424A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Bulk oxide superconducting material and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211678A (en) * 1989-02-10 1990-08-22 Sony Corp Manufacture of superconducting metallic oxide material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211678A (en) * 1989-02-10 1990-08-22 Sony Corp Manufacture of superconducting metallic oxide material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280424A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Bulk oxide superconducting material and method for manufacturing the same

Also Published As

Publication number Publication date
JPH07106902B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPH02296723A (en) Manufacture of thin film superconductor
JPS63310515A (en) Manufacture of superconductor membrane
JPH02252618A (en) Production of bi-based superconducting thin film
JPH01246107A (en) Superconducting thin film
JPH02311312A (en) Production of thin film superconductor
JPH0365502A (en) Preparation of superconductive thin film
US3988178A (en) Method for preparing superconductors
JP2567446B2 (en) Preparation method of superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH013009A (en) Superconducting materials and their manufacturing methods
JP2525852B2 (en) Preparation method of superconducting thin film
JPH03193603A (en) Formation of superconducting thin film
JPH07106904B2 (en) Method of manufacturing thin film superconductor
JPH02311396A (en) Thin-film superconductor and its production
JP2501616B2 (en) Preparation method of superconducting thin film
JP2501614B2 (en) Preparation method of superconducting thin film
JPS63248013A (en) Manufacture of superconductive composite oxide thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JPH01112614A (en) Manufacture of super conductive film
JPH0465306A (en) Oxide superconductor thin film
JPH0317253A (en) Production of thin-film superconductor
JPH0492816A (en) Production of thin-film superconductor
JPH02124713A (en) Production of superconducting thin film
JPH0264013A (en) Production of oxide superconducting thin film
JPH01246143A (en) Sputterling target and production of superconducting thin film therefrom