JPH0229603B2 - SANSOFUKASOCHI - Google Patents
SANSOFUKASOCHIInfo
- Publication number
- JPH0229603B2 JPH0229603B2 JP27394084A JP27394084A JPH0229603B2 JP H0229603 B2 JPH0229603 B2 JP H0229603B2 JP 27394084 A JP27394084 A JP 27394084A JP 27394084 A JP27394084 A JP 27394084A JP H0229603 B2 JPH0229603 B2 JP H0229603B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- blocks
- enriched air
- membrane
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 claims description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 44
- 239000001301 oxygen Substances 0.000 claims description 44
- 229910052760 oxygen Inorganic materials 0.000 claims description 44
- 238000000605 extraction Methods 0.000 claims description 5
- 239000012466 permeate Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002699 waste material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
[技術分野]
本発明は、大気より酸素富化装置を得るための
酸素富化装置に関するものである。さらに詳細に
は、窒素より速い速度で酸素を透過し得る酸素選
択透過性膜を具備した多数の膜エレメントを用い
て大気より酸素富化空気を得るための酸素富化装
置に関するものである。
[従来技術]
これまでの膜を用いた酸素富化装置では、内蔵
された膜エレメント数が一定の状態で運転される
ものがほとんどである。かかる富化装置において
は常温付近の温度で所定の酸素濃度まで富化され
た空気が得られるものの、夏期等の使用時の大気
温度が例えば30℃を越えると所定の濃度より大巾
に低い酸素富化空気しか得られないという欠点が
あつた。またこのように高い温度における運転状
態では、得られる富化空気の流量が過大となり、
必要量以外の余剰富化空気を廃棄せざるを得ない
という無駄があつた。
尚、富化空気を取り出す膜エレメント数を可変
とした酸素富化装置についての提案もあるが、そ
の場合には膜エレメント毎に制御弁を設けること
により使用する膜エレメント数を変化させるもの
である。かかる装置はその制御弁の構造が複雑で
且つ高価なものとなり、その運転時の操作も複雑
となる欠点がある。
特に医療用の酸素富化器においては、病院や家
庭において患者が使用するものであり、所定濃度
の酸素富化空気が必要とされ、さらには簡単な装
置でかつ操作性が容易で安定していることが望ま
れていた。
[発明の目的]
本発明は、上記の欠点を解消し、夏期等の大気
が高温の場合においても所定の酸素濃度の富化空
気が無駄なく安定して得られる富化装置を提供す
ることを目的としている。さらに本発明の他の目
的は、装置が非常に簡単で且つ操作性も容易な酸
素富化装置を提供することである。
[発明の構成]
本発明者らは、かかる目的を達成すべく鋭意研
究を行なつた結果、膜エレメント群を2又は3な
る小数のブロツクに分割し、そのブロツク数を可
変にすることが非常に有効であることを見い出し
本発明に到達した。
即ち本発明は、選択透過性膜を具備した多数の
膜エレメント群と、該膜に空気を透過せしめて酸
素富化空気を該膜エレメントから抜き出すための
取出手段を有する酸素富化装置において、該膜エ
レメント群が2ブロツク又は3ブロツクに異なる
比率で分割されて該取出手段に連結され、酸素富
化空気を取り出す該ブロツク数を調節するための
手段を有したことを特徴とする酸素富化装置を提
供するものである。
以下本発明について図面を用いてさらに詳細に
説明する。
第1図は、本発明の1実施態様を例示したもの
である。膜エレメント1は酸素を窒素よりも選択
的に透過させる膜を具備したものであり、その膜
の形状としては平面状、円筒状あるいは中空糸状
等のいずれであつてもよい。その具体例としては
支持板の両面又は片面に酸素の選択透過性膜が設
けられたものが挙げられ、それには該膜を介して
酸素富化空気を取り出すための取り出し口2が設
けられている。
本発明の酸素富化装置は、かかる膜エレメント
を多数備えたものであつて、その膜エレメント群
を有効膜面積基準で異なつた比率で2又は3ブロ
ツクなる少ないブロツク数に分割して、そのブロ
ツク毎にまとめて酸素富化空気を取り出すように
したこと、及び酸素富化空気を取り出すブロツク
の数を調節する手段を有したことを特徴とするも
のである。その具体例を第1図に示したが、膜エ
レメント群が第1ブロツク3と第2ブロツク4に
分割されており、各々のブロツクからの酸素富化
空気が各々の集収管5,6から取り出されるよう
になつている。さらにそのブロツク数を調節する
手段としてバルブ7が設けられており、膜に送ら
れる空気8の温度が高い場合にそれが閉じられる
ようになつている。かかるバルブは手動であつて
もよく、あるいは電磁弁で自動的に作動されるも
のであつてもよい。必要な場合には膜エレメント
の外表面にさし向けられる空気の温度、膜エレメ
ントの内側あるいは酸素富化空気取り出し管等の
富化空気側の圧力、又は取り出される富化空気中
の酸素濃度を検出する手段を設けて、それらの検
出値に応じて自動的にバルブの開閉を調節しても
よい。場合によつては、バルブの単なる開閉だけ
ではなくて、その開口度を調節することも可能で
ある。
かかるブロツク毎の分割の比率としては、2ブ
ロツクの場合には第1ブロツクの有効膜面積が全
体の60〜80%、好ましくは65〜75%であり、第2
ブロツクのそれが20〜40%、好ましくは25〜35%
であることが望ましい。また3ブロツクに分割さ
れる場合には、第1ブロツクの有効膜面積が全体
の40〜60%、好ましくは45〜55%であり、第2ブ
ロツクのそれが25〜40%、好ましくは30〜40%で
あり、第3ブロツク10〜25%、好ましくは15〜25
%であることが望ましい。また使用するブロツク
数を調節する手段としては、上記第2ブロツク、
第3ブロツクの酸素富化空気の集収管のみにバル
ブを設置することが望ましく、その調節方法とし
ては、例えば大気が低温時においては全ブロツク
を使用し、高温になつた場合に第1、第2ブロツ
クを使用し、さらに高温になれば第1ブロツクの
み用いるという方法が望ましい。
この様に本発明の酸素富化装置は、特定の範囲
で異なつた比率で膜エレメント群を小数のブロツ
クに分割し、大気の温度変化に応じて使用するブ
ロツク数を変えることによつて、例えば10℃〜30
℃の広い温度範囲にわたつて所定の濃度範囲の酸
素富化空気が安定に得られるようにしたものであ
る。膜エレメント群をさらに多くのブロツク数に
分割することは、構造が複雑で且つ高価な装置と
なり、操作性も悪くなるので好ましくない。また
各ブロツクの占める有効膜面積比率に関しては、
例えば2ブロツクの場合には、第1ブロツクの下
限が60%未満の場合には高温時において所定の濃
度以上の酸素富化空気が得やすい反面、得られる
富化空気流量が所定値よりも小さくなりやすくな
るので好ましくない。またこの第1ブロツクの膜
面積比率が80%以上を越えると高温時において所
定の濃度以上の酸素富化空気が得にくくなるので
好ましくない。
尚、3ブロツクに分割したものについては、2
ブロツク形式よりもさらに高温の場合、例えば35
℃のような状態においても所定の濃度以上の富化
空気が得られるようにしたものである。通常の使
用条件、即ち10〜30℃の温度範囲においては、3
ブロツクよりも2ブロツクの方が装置の構造や操
作が簡単であつて特に好ましい。
第1図に示す如く、該膜を透過させて酸素富化
空気を生成させそれを取り出す手段として通常真
空ポンプ等の減圧手段10が用いられるが、膜エ
レメントの外側を加圧にするタイプもあり得る。
かかる減圧手段によつて取り出された富化空気
は、通常の場合、水分保持機能部11を有した冷
却手段12を通過し水分離器13で凝縮水が分離
された後、加圧用オリフイス14、使用に供すべ
き流量の調節バルブ15及び流量計16を経て酸
素富化空気として使用に供される。尚、得られる
富化空気が過剰な場合には、Bとして排出され
る。また水分離器13で分離された水分は水分排
出管17を通過し水分保持機能部11に排出され
る。一方大気は、18のフアン手段によつて、C
としてフイルターを介して装置内に取り入れられ
冷却機12を通過した後膜エレメント外表面を通
り、さらに減圧手段を冷却しながらそのまわりを
通りDとして排出される。
[実施例]
ポリ4−メチルペンテン−1の選択透過性膜を
支持体の両面に配した膜エレメント30枚を第1表
に示すような比率で2及び3ブロツクに分割し、
他は同じ形式の酸素富化装置を組み立て、第1表
に示す温度条件で得られた透過富化空気量及びそ
の酸素濃度を測定した。その結果を合せて第1表
に示す。
[Technical Field] The present invention relates to an oxygen enrichment device for obtaining oxygen enrichment from the atmosphere. More specifically, the present invention relates to an oxygen enrichment device for obtaining oxygen-enriched air from the atmosphere using a large number of membrane elements each having an oxygen selectively permeable membrane capable of transmitting oxygen at a higher rate than nitrogen. [Prior Art] Most conventional oxygen enrichment devices using membranes are operated with a constant number of built-in membrane elements. Although such an enrichment device can obtain air enriched to a predetermined oxygen concentration at a temperature near room temperature, if the atmospheric temperature during use in the summer exceeds, for example, 30°C, the oxygen concentration will be much lower than the predetermined concentration. The drawback was that only enriched air could be obtained. In addition, in operating conditions at such high temperatures, the flow rate of enriched air obtained becomes excessive,
There was a waste of having to dispose of surplus enriched air other than the required amount. There is also a proposal for an oxygen enrichment device in which the number of membrane elements from which enriched air is taken out is variable, but in that case, a control valve is provided for each membrane element to change the number of membrane elements used. . Such a device has the drawback that the control valve has a complicated and expensive structure, and its operation during operation is also complicated. In particular, medical oxygen enrichers are used by patients in hospitals and homes, and require oxygen-enriched air at a predetermined concentration. Furthermore, they are simple devices, easy to operate, and stable. It was hoped that there would be. [Object of the invention] The present invention aims to eliminate the above-mentioned drawbacks and provide an enrichment device that can stably obtain enriched air with a predetermined oxygen concentration without waste even when the atmosphere is high in temperature such as during summer. The purpose is Yet another object of the present invention is to provide an oxygen enrichment device that is extremely simple and easy to operate. [Structure of the Invention] As a result of intensive research to achieve the above object, the present inventors have found that it is very possible to divide the membrane element group into 2 or 3 decimal blocks and to make the number of blocks variable. The present invention has been developed based on the discovery that this method is effective. That is, the present invention provides an oxygen enrichment apparatus having a large number of membrane element groups each equipped with a permselective membrane, and an extraction means for allowing air to permeate through the membrane and extracting oxygen-enriched air from the membrane element. An oxygen enrichment device characterized in that a membrane element group is divided into two or three blocks at different ratios and connected to the extraction means, and has means for adjusting the number of blocks from which oxygen-enriched air is extracted. It provides: The present invention will be explained in more detail below with reference to the drawings. FIG. 1 illustrates one embodiment of the invention. The membrane element 1 is equipped with a membrane that allows oxygen to permeate more selectively than nitrogen, and the membrane may have a planar shape, a cylindrical shape, a hollow fiber shape, or the like. A specific example thereof is one in which an oxygen permselective membrane is provided on both sides or one side of the support plate, and an outlet 2 is provided for taking out oxygen-enriched air through the membrane. . The oxygen enrichment device of the present invention is equipped with a large number of such membrane elements, and the membrane element group is divided into as few blocks as 2 or 3 blocks at different ratios based on the effective membrane area. The present invention is characterized in that oxygen-enriched air is taken out at once for each block, and that it has means for adjusting the number of blocks from which oxygen-enriched air is taken out. A specific example is shown in FIG. 1, in which the membrane element group is divided into a first block 3 and a second block 4, and the oxygen-enriched air from each block is taken out from each collection pipe 5, 6. It's starting to become easier. Furthermore, a valve 7 is provided as a means for adjusting the number of blocks, and is closed when the temperature of the air 8 sent to the membrane is high. Such valves may be manually operated or automatically operated by solenoid valves. If necessary, the temperature of the air directed to the outer surface of the membrane element, the pressure inside the membrane element or on the enriched air side, such as in the oxygen-enriched air extraction tube, or the oxygen concentration in the enriched air to be extracted. Detecting means may be provided and the opening and closing of the valve may be automatically adjusted according to the detected values. In some cases, it is possible not only to simply open and close a valve, but also to adjust its opening degree. In the case of two blocks, the effective membrane area of the first block is 60 to 80% of the total, preferably 65 to 75%, and
That of the block is 20-40%, preferably 25-35%
It is desirable that When divided into three blocks, the effective membrane area of the first block is 40-60%, preferably 45-55% of the whole, and that of the second block is 25-40%, preferably 30-55%. 40%, and the third block 10-25%, preferably 15-25
% is desirable. Further, as means for adjusting the number of blocks used, the second block,
It is desirable to install a valve only in the collection pipe of the oxygen-enriched air of the third block, and the way to adjust it is, for example, when the atmosphere is low, all blocks are used, and when the atmosphere becomes high, the first and second blocks are used. It is desirable to use two blocks, and if the temperature rises further, only the first block is used. In this way, the oxygen enrichment device of the present invention divides the membrane element group into a small number of blocks at different ratios within a specific range, and changes the number of blocks used according to changes in atmospheric temperature. 10℃~30
It is designed to stably obtain oxygen-enriched air in a predetermined concentration range over a wide temperature range of .degree. Dividing the membrane element group into a larger number of blocks is not preferable because it results in a complex and expensive device with poor operability. Regarding the effective membrane area ratio occupied by each block,
For example, in the case of two blocks, if the lower limit of the first block is less than 60%, it is easier to obtain oxygen-enriched air with a predetermined concentration or higher at high temperatures, but on the other hand, the flow rate of enriched air obtained is smaller than the predetermined value. This is not desirable because it can easily occur. Moreover, if the membrane area ratio of this first block exceeds 80%, it is not preferable because it becomes difficult to obtain oxygen-enriched air of a predetermined concentration or higher at high temperatures. In addition, for those divided into 3 blocks, 2
For higher temperatures than the block format, e.g. 35
This makes it possible to obtain enriched air with a predetermined concentration or higher even under conditions such as ℃. Under normal usage conditions, i.e. in the temperature range of 10 to 30℃, 3
A two-block system is particularly preferable because the structure and operation of the device are simpler than a two-block system. As shown in FIG. 1, a depressurizing means 10 such as a vacuum pump is usually used as a means for permeating the membrane to generate and extract oxygen-enriched air, but there is also a type that pressurizes the outside of the membrane element. obtain.
In normal cases, the enriched air taken out by such a pressure reducing means passes through a cooling means 12 having a water retention function section 11, and after condensed water is separated by a water separator 13, the enriched air is passed through a pressurizing orifice 14, The air is used as oxygen-enriched air after passing through a flow rate control valve 15 and a flow meter 16. Note that if the obtained enriched air is excessive, it is discharged as B. Further, the water separated by the water separator 13 passes through a water discharge pipe 17 and is discharged to the water retention function section 11. On the other hand, the atmosphere is controlled by 18 fan means.
It is taken into the apparatus through a filter, passes through the cooler 12, passes through the outer surface of the membrane element, and then passes around the pressure reducing means while being cooled, and is discharged as D. [Example] Thirty membrane elements each having a permselective membrane of poly-4-methylpentene-1 arranged on both sides of a support were divided into two and three blocks at the ratio shown in Table 1.
An oxygen enrichment device of the same type was assembled, and the amount of permeated enriched air obtained and its oxygen concentration were measured under the temperature conditions shown in Table 1. The results are shown in Table 1.
【表】【table】
【表】
[発明の効果]
本発明の酸素富化装置は、夏期等の大気温度が
高い場合においても所定の酸素濃度範囲にある富
化空気が無駄なく安定して得られる利点を有しし
いる。また、使用すべき膜エレメントのブロツク
数を調節するための構造が非常に簡単で且つ安価
に組立てることが可能であり、さらにその操作が
極めて容易で安定している。特にこれらの特徴
は、家庭内で医療用として使用される場合には大
きな利点となり得るものである。[Table] [Effects of the Invention] The oxygen enrichment device of the present invention has the advantage that enriched air within a predetermined oxygen concentration range can be stably obtained without waste even when the atmospheric temperature is high such as during summer. There is. Furthermore, the structure for adjusting the number of membrane element blocks to be used is very simple and can be assembled at low cost, and furthermore, its operation is extremely easy and stable. In particular, these features can be a great advantage when used for medical purposes in the home.
第1図は本発明における酸素富化装置の1実施
態様をブロツク図により例示したものである。こ
の図における1は膜エレメント、3は第1ブロツ
ク、4は第2ブロツク、7はバルブである。
FIG. 1 is a block diagram illustrating one embodiment of the oxygen enrichment device according to the present invention. In this figure, 1 is a membrane element, 3 is a first block, 4 is a second block, and 7 is a valve.
Claims (1)
群と、該膜に空気を透過せしめて酸素富化空気を
該膜エレメントから抜き出すための取出手段を有
する酸素富化装置において、該膜エレメント群が
2ブロツク又は3ブロツクに異なる比率で分割さ
れて該取出手段に連結され、酸素富化空気を取り
出す該ブロツク数を調節するための手段を有した
ことを特徴とする酸素富化装置。 2 該膜エレメント群が2ブロツクに分割されて
おり、第1ブロツクが全体の60〜80%を占める特
許請求の範囲第1項記載の酸素富化装置。 3 該膜エレメント群が3ブロツクに分割されて
おり、第1ブロツクが全体の40〜60%、第2ブロ
ツクが全体の25〜40%、第3ブロツクが全体の10
〜25%を占める特許請求の範囲第1項記載の酸素
富化装置。 4 該取出手段が減圧手段を具備したものである
特許請求の範囲第1項記載の酸素富化装置。[Scope of Claims] 1. An oxygen enrichment device comprising a large number of membrane element groups equipped with selectively permeable membranes, and a means for extracting oxygen-enriched air from the membrane elements by allowing air to permeate through the membranes. , wherein the membrane element group is divided into two or three blocks at different ratios and connected to the extraction means, and has means for adjusting the number of blocks from which oxygen-enriched air is extracted. conversion device. 2. The oxygen enrichment device according to claim 1, wherein the membrane element group is divided into two blocks, and the first block occupies 60 to 80% of the whole. 3 The membrane element group is divided into three blocks; the first block accounts for 40-60% of the total, the second block accounts for 25-40% of the total, and the third block accounts for 10% of the total.
25%. 4. The oxygen enrichment device according to claim 1, wherein the extraction means is equipped with a pressure reduction means.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27394084A JPH0229603B2 (en) | 1984-12-27 | 1984-12-27 | SANSOFUKASOCHI |
EP85115335A EP0185980B1 (en) | 1984-12-27 | 1985-12-03 | Oxygen enriching apparatus |
EP89103387A EP0346566A3 (en) | 1984-12-27 | 1985-12-03 | Oxygen enriching apparatus |
DE3587995T DE3587995T2 (en) | 1984-12-27 | 1985-12-03 | Oxygenation device. |
US07/163,124 US4789388A (en) | 1984-12-27 | 1988-02-17 | Oxygen enriching apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27394084A JPH0229603B2 (en) | 1984-12-27 | 1984-12-27 | SANSOFUKASOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61155201A JPS61155201A (en) | 1986-07-14 |
JPH0229603B2 true JPH0229603B2 (en) | 1990-07-02 |
Family
ID=17534681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27394084A Expired - Lifetime JPH0229603B2 (en) | 1984-12-27 | 1984-12-27 | SANSOFUKASOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0229603B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0679407U (en) * | 1993-04-26 | 1994-11-08 | 日栄電機産業株式会社 | Nozzle for hair dryer |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625817U (en) * | 1985-06-24 | 1987-01-14 | ||
JPH03188874A (en) * | 1989-12-20 | 1991-08-16 | Teijin Ltd | Oxygen enriching unit |
JP2009268994A (en) * | 2008-05-09 | 2009-11-19 | Air Water Inc | Gas separation apparatus and method |
JP2010051842A (en) * | 2008-08-26 | 2010-03-11 | Panasonic Electric Works Co Ltd | Oxygen enrichment device |
JP2010104873A (en) * | 2008-10-28 | 2010-05-13 | Panasonic Electric Works Co Ltd | Oxygen-enriched air introducing apparatus |
-
1984
- 1984-12-27 JP JP27394084A patent/JPH0229603B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0679407U (en) * | 1993-04-26 | 1994-11-08 | 日栄電機産業株式会社 | Nozzle for hair dryer |
Also Published As
Publication number | Publication date |
---|---|
JPS61155201A (en) | 1986-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2524239A1 (en) | MEMBRANE STACK ARRANGEMENT WITH IN-LINE FEED | |
DE3486017T3 (en) | Very pure nitrogen gas generator. | |
DE2524242A1 (en) | VACUUM EXTRACTION SYSTEM FOR OXYGEN ENRICHMENT DEVICE WITH MEMBRANES | |
Leemann et al. | Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization | |
CN100584403C (en) | Oxygen humidifier | |
JPH0229603B2 (en) | SANSOFUKASOCHI | |
WO2015007272A1 (en) | Membrane separation process and membrane plant for energy-efficient production of oxygen | |
JPH06205924A (en) | Method of forming highly pure film | |
GB1451747A (en) | Separation of skim milk from milk or cream by filtering | |
CN110906490A (en) | Oxygen-enriched carbon dioxide-removing fresh air system with waste heat recovery function | |
EP0400823A3 (en) | Method of separating a mixed hydrogen/hydrogen selenide vapor stream | |
GB2197598A (en) | Pervaporation device | |
CN211822957U (en) | Oxygen-enriched carbon dioxide-removing fresh air system with waste heat recovery function | |
CN209271017U (en) | Equipment for separation of gases | |
JPH0283015A (en) | Gas dehumidification | |
WO1991008825A1 (en) | Device for continuously cleansing the exhaust gases of a vacuum installation | |
CN206521338U (en) | A kind of water purification tank | |
CN104743532A (en) | Ambient air Kr-85 concentrating device at room temperature | |
RU227278U1 (en) | Apparatus for normobaric interval hypoxic training | |
JPS6379710A (en) | Oxygen enricher | |
JPS5782105A (en) | Device for oxygen enrichment | |
JPS59203705A (en) | Oxygen enricher | |
JPH0419163B2 (en) | ||
JPH0475841B2 (en) | ||
JPH0557151A (en) | Organic substance permselective separator |