[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0227302B2 - - Google Patents

Info

Publication number
JPH0227302B2
JPH0227302B2 JP59231297A JP23129784A JPH0227302B2 JP H0227302 B2 JPH0227302 B2 JP H0227302B2 JP 59231297 A JP59231297 A JP 59231297A JP 23129784 A JP23129784 A JP 23129784A JP H0227302 B2 JPH0227302 B2 JP H0227302B2
Authority
JP
Japan
Prior art keywords
pitch
fiber
oxidized
weight
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59231297A
Other languages
Japanese (ja)
Other versions
JPS61111963A (en
Inventor
Taizo Sugioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP59231297A priority Critical patent/JPS61111963A/en
Publication of JPS61111963A publication Critical patent/JPS61111963A/en
Publication of JPH0227302B2 publication Critical patent/JPH0227302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、炭素成形体の製造法に関し、詳しく
は成形体の形くずれがなく、しかも気泡の生成を
抑制して高密度・高強度の成形体を得ることので
きる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a carbon molded body, and more specifically, it is possible to obtain a high-density and high-strength molded body without deformation of the molded body and by suppressing the generation of air bubbles. Regarding the method.

従来より高強度の炭素成形体の製造する方法と
して、炭素繊維を熱硬化性樹脂やピツチなどを結
合剤として成形体を製造したのち加圧下に焼成す
る方法が提案されている(特開昭52―52912号)。
Conventionally, as a method for manufacturing high-strength carbon molded bodies, a method has been proposed in which a molded body is produced using carbon fibers as a binder using a thermosetting resin, pitch, etc., and then fired under pressure (Japanese Patent Application Laid-Open No. 1989-1999). - No. 52912).

しかしながら、このような方法では焼成の途上
で成形体が形くずれし易く、また焼成時に生成す
るガスによつて製品中に気泡を含有し、十分な強
度のものが得られないという問題があつた。
However, with this method, the molded product tends to lose its shape during firing, and the gas generated during firing creates bubbles in the product, making it impossible to obtain a product with sufficient strength. .

そこで本発明者は、このような従来技術におけ
る問題点を解消するべく鋭意検討を重ねた結果、
ピツチ粉体またはピツチ繊維を適度に酸化処理
し、次いで得られた酸化ピツチを適度な成形圧で
成形したのち焼成することにより、成形体の形く
ずれがなく、しかも気泡の生成を抑制しうること
を見出し、この知見に基いて本発明を完成した。
Therefore, as a result of intensive studies to solve the problems in the conventional technology, the inventor of the present invention found that
By appropriately oxidizing pitch powder or pitch fiber, and then molding the resulting oxidized pitch with appropriate molding pressure and then firing, the molded product does not lose its shape and can suppress the formation of air bubbles. The present invention was completed based on this finding.

すなわち本発明は、第1に酸素含有量が3〜5
重量%となるように、ピツチ粉体またはピツチ繊
維を酸化処理し、次いで得られた酸化ピツチを
100Kg/cm2G以上、500Kg/cm2G未満の成形圧で成
形し、得られた成形体を焼成することを特徴とす
る炭素成形体の製造法を提供するものである。
That is, in the present invention, firstly, the oxygen content is 3 to 5.
% by weight of pitchchi powder or pitchchi fiber, and then the obtained oxidized pitchchi
The present invention provides a method for producing a carbon molded body, which is characterized by molding at a molding pressure of 100 Kg/cm 2 G or more and less than 500 Kg/cm 2 G, and firing the obtained molded body.

また本発明は、第2に酸素含有量が3〜5重量
%となるように、ピツチ粉体またはピツチ繊維を
酸化処理し、次いで得られた酸化ピツチに炭素繊
維または不融化ピツチ繊維を配合した後を100
Kg/cm2G以上、500Kg/cm2G未満の成形圧で成形
し、得られた成形体を焼成することを特徴とする
炭素成形体の製造法を提供するものである。
In addition, the present invention secondly oxidizes pitch powder or pitch fiber so that the oxygen content is 3 to 5% by weight, and then blends carbon fiber or infusible pitch fiber into the obtained oxidized pitch. 100 after
The present invention provides a method for producing a carbon molded body, which is characterized by molding at a molding pressure of Kg/cm 2 G or more and less than 500 Kg/cm 2 G, and firing the obtained molded body.

本発明において原料として用いるピツチとして
は石油系ピツチあるいは石炭系ピツチのいずれで
あつてもよい。ピツチの軟化点は250〜380℃のも
のが好ましく、場合によつては光学的異方性相の
含有量が80%以上、もしくは実質的に100%のメ
ソ相ピツチが用いられる。
The pitch used as a raw material in the present invention may be either petroleum-based pitch or coal-based pitch. The softening point of the pitch is preferably 250 to 380°C, and in some cases, a mesophase pitch having an optically anisotropic phase content of 80% or more or substantially 100% is used.

本発明においては、このようなピツチを直径50
〜500μ、好ましくは100〜300μに粉砕して得られ
るピツチ粉体、またはこのようなピツチを溶融紡
糸して得られる糸径5〜30μ、好ましくは10〜
20μのピツチ繊維を用いる。ここで溶融紡糸の条
件は原料とするピツチの種類などにより異なり、
一義的に決定することはできないが、一般的には
従来行なわれている条件を採用すればよい。具体
的には、紡糸温度250〜400℃、好ましくは260〜
380℃,紡糸速度100〜1500m/分、好ましくは
200〜1000m/分の条件で行ないピツチ繊維を得
る。
In the present invention, such a pitch has a diameter of 50 mm.
Pitch powder obtained by grinding to ~500μ, preferably 100 to 300μ, or yarn diameter obtained by melt spinning such pitch to 5 to 30μ, preferably 10 to
Use 20μ pitch fiber. The conditions for melt spinning vary depending on the type of pitch used as the raw material.
Although it cannot be determined unambiguously, conventional conditions may generally be used. Specifically, the spinning temperature is 250 to 400°C, preferably 260 to 400°C.
380℃, spinning speed 100-1500m/min, preferably
Pitch fibers are obtained by performing the process at a speed of 200 to 1000 m/min.

本発明においては、このようにして得られるピ
ツチ粉体またはピツチ繊維をまず酸化処理する。
この酸化処理は通常、酸化性ガス雰囲気中におい
て、300〜400℃、好ましくは325〜375℃に昇温
し、ピツチ粉体またはピツチ繊維中の酸素含有量
が3〜5重量、好ましくは3.5〜4.5重量%となる
ように行なう。昇温速度は1〜50℃/分間、好ま
しくは10〜20℃/分間とすればよい。ここで酸化
性ガスとしては酸素,オゾン,空気,窒素酸化
物,亜硫酸ガスあるいはこれらの混合物等が挙げ
られる。また、酸化促進剤として無機酸、例えば
塩化水素,臭化水素,硫酸,硝酸など;金属塩化
合物、例えば硝酸ナトリウム,硝酸カリウム,硫
酸ナトリウム,硫酸カリウム,塩化アルミニウム
など;金属酸化物、例えば酸化ナトリウム,酸化
カリウム,過マンガン酸カリウムなど;アンモニ
ウム塩化合物、例えば硫酸アンモニウムなどを使
用してもよい。
In the present invention, the pitch powder or pitch fiber thus obtained is first subjected to an oxidation treatment.
In this oxidation treatment, the temperature is usually raised to 300-400°C, preferably 325-375°C in an oxidizing gas atmosphere, and the oxygen content in the pitchi powder or pitchi fiber is 3-5% by weight, preferably 3.5-5%. Do this so that the amount is 4.5% by weight. The temperature increase rate may be 1 to 50°C/minute, preferably 10 to 20°C/minute. Here, examples of the oxidizing gas include oxygen, ozone, air, nitrogen oxides, sulfur dioxide gas, and mixtures thereof. In addition, as oxidation promoters, inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, etc.; metal salt compounds such as sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, aluminum chloride, etc.; metal oxides such as sodium oxide, Potassium oxide, potassium permanganate, etc.; ammonium salt compounds such as ammonium sulfate may also be used.

このようにして酸化処理されたピツチ粉体また
はピツチ繊維は粉砕物の形で成形される。したが
つて、酸化ピツチ粉体はそのままでよいが、酸化
ピツチ繊維は乳鉢などによりその全長を50〜
1000μ、好ましくは50〜200μの長さに粉砕してお
く。
The oxidized pitch powder or pitch fiber is molded into a pulverized product. Therefore, the oxidized pitch powder can be left as is, but the oxidized pitch fiber can be reduced in length by 50 to 50 mm in a mortar.
Grind it to a length of 1000μ, preferably 50 to 200μ.

次いで、このようにして得られた酸化ピツチ粉
砕物を所望形状に成形する。ここで成形は通常、
100Kg/cm2G以上、500Kg/cm2G未満の成形圧で圧
縮成形することにより行なわれる。成形圧が100
Kg/cm2G未満であると焼結後の強度が不充分であ
り好ましくない。一方、成形圧を500Kg/cm2G以
上としても、それ以上の効果は期待できない。
Next, the pulverized oxidized pitch product thus obtained is molded into a desired shape. Here the molding is usually
This is carried out by compression molding at a molding pressure of 100 Kg/cm 2 G or more and less than 500 Kg/cm 2 G. Molding pressure is 100
If it is less than Kg/cm 2 G, the strength after sintering will be insufficient, which is not preferable. On the other hand, even if the molding pressure is 500 kg/cm 2 G or more, no further effect can be expected.

さらに、得られた成形体を焼成する。すなわ
ち、得られた成形体を不活性ガス雰囲気中で800
〜1500℃、好ましくは1000〜1200℃に昇温して炭
化する。ここで不活性ガスとしては窒素ガス,ヘ
リウムガス,アルゴンガスなどが挙げられる。な
お、この焼成は真空下で行つてもよい。さらに必
要に応じ2000〜2500℃に加熱して黒鉛化してもよ
い。
Furthermore, the obtained molded body is fired. That is, the obtained molded body was heated for 800 min in an inert gas atmosphere.
Carbonization is carried out by raising the temperature to ~1500°C, preferably 1000~1200°C. Examples of the inert gas include nitrogen gas, helium gas, and argon gas. Note that this firing may be performed under vacuum. Furthermore, if necessary, it may be graphitized by heating to 2000 to 2500°C.

このようにして本発明の第1の炭素成形体を製
造することができる。
In this way, the first carbon molded body of the present invention can be manufactured.

また、本発明の第2は上記の如く酸素含有量が
3〜5重量%となるように、ピツチ粉体またはピ
ツチ繊維を酸化処理し、次いで得られた酸化ピツ
チ粉砕物に、炭素繊維または不融化ピツチ繊維を
配合し、特定の成形圧で成形する点に特色を有す
るものである。
In addition, the second aspect of the present invention is to oxidize pitch powder or pitch fiber so that the oxygen content becomes 3 to 5% by weight, and then add carbon fiber or non-carbon fiber to the obtained oxidized pitch powder. It is unique in that it is blended with fused pitch fibers and molded under a specific molding pressure.

ここで炭素繊維としては特に制限はないが、例
えば石油系ピツチあるいは石油系ピツチを溶融紡
糸して得られるピツチ繊維を不融化処理,焼成処
理して製造された糸径5〜20μのものを用いるこ
とができる。また、不融化ピツチ繊維は炭素繊維
を製造する際の不融化工程で得られたものを用い
ることができる。ここで炭素繊維または不融化ピ
ツチ繊維は前記酸化ピツチ粉砕物100重量部に対
し5〜50重量部、好ましくは10〜30重量部の割合
で配合される。ここで炭素繊維または不融化ピツ
チ繊維の配合量が上記割合に満たないと、十分な
添加効果を得ることができず、また炭素繊維また
は不融化ピツチ繊維を上記割合を超えて配合する
と、成形体内部の結合力が弱く、機械的強度の高
い成形体が得られない。
There are no particular restrictions on the carbon fiber, but for example, petroleum pitch or pitch fiber obtained by melt-spinning petroleum pitch may be infusible and fired, and a yarn diameter of 5 to 20 μm may be used. be able to. Further, as the infusible pitch fiber, one obtained in the infusible process when producing carbon fibers can be used. Here, carbon fibers or infusible pitch fibers are blended in an amount of 5 to 50 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of the oxidized pitch pulverized product. If the blending amount of carbon fiber or infusible pitch fiber is less than the above ratio, sufficient addition effect cannot be obtained, and if the blending amount of carbon fiber or infusible pitch fiber exceeds the above ratio, the molded product The internal bonding force is weak and a molded product with high mechanical strength cannot be obtained.

この炭素繊維または不融化ピツチ繊維の配合に
より、製造される成形体の強度を一層向上させる
ことが可能になる。
By blending carbon fibers or infusible pitch fibers, it becomes possible to further improve the strength of the molded product produced.

本発明の第2においては、以後本発明の第1と
同様に成形し、得られた成形体を焼成すればよ
い。
In the second aspect of the present invention, the molded body may be molded in the same manner as in the first aspect of the present invention, and the obtained molded body may be fired.

叙上の如き本発明の第1によれば形くずれのな
い成形体を得ることができる。しかも、成形体中
に気泡がなく、高密度かつ高強度の成形体を得る
ことができる。
According to the first aspect of the present invention as described above, a molded article that does not lose its shape can be obtained. Moreover, there are no air bubbles in the molded product, and a molded product with high density and high strength can be obtained.

さらに、本発明の第2によれば一層強度の向上
した成形体を得ることができる。
Furthermore, according to the second aspect of the present invention, a molded article with further improved strength can be obtained.

したがつて、本発明は機械部品,電気・電子機
器部品などの製造に有効に利用することができ
る。
Therefore, the present invention can be effectively used in manufacturing mechanical parts, electrical/electronic equipment parts, and the like.

実施例 1 軟化点280℃の石油系ピツチを溶融紡糸して糸
径10μのピツチ繊維を得た。このピツチ繊維を空
気中において室温から350℃まで20℃/分間の昇
温速度で加熱し、酸化ピツチ繊維を得た。この酸
化ピツチ繊維中の酸素含有量は4.0重量%であつ
た。次に、この酸化ピツチ繊維を乳鉢にて粉砕
し、得られた粉砕物を400Kg/cm2Gの圧力で圧縮
成形し、直径12mm,肉厚2mmの円板を得た。この
円板を窒素ガス雰囲気中において、10℃/分間の
昇温速度で1000℃に加熱し、焼成した。この結
果、形くずれのない密度1.75g/ml(原料ピツチ
の密度1.31g/ml)の高密度炭素成形体を得た。
Example 1 Petroleum-based pitch with a softening point of 280°C was melt-spun to obtain pitch fiber with a thread diameter of 10 μm. This pitch fiber was heated in air from room temperature to 350° C. at a heating rate of 20° C./min to obtain oxidized pitch fiber. The oxygen content in this oxidized pitch fiber was 4.0% by weight. Next, this oxidized pitch fiber was crushed in a mortar, and the resulting crushed product was compression-molded at a pressure of 400 kg/cm 2 G to obtain a disk with a diameter of 12 mm and a wall thickness of 2 mm. This disk was heated to 1000° C. in a nitrogen gas atmosphere at a heating rate of 10° C./min and fired. As a result, a high-density carbon molded body having a density of 1.75 g/ml (density of raw material pitch 1.31 g/ml) without deformation was obtained.

実施例 2 軟化点280℃の石油系ピツチを直径100μ以下に
粉砕し、得られたピツチ粉末を空気流通下に、室
温から350℃まで10℃/分間の昇温速度で加速す
ることにより酸素含有量3.8重量%の酸化ピツチ
粉末を得た。得られた酸化ピツチ粉末を400Kg/
cm2Gの圧力で圧縮成形し、直径12mm,肉厚2mmの
円板を得た。この円板を窒素ガス雰囲気中で10
℃/分間の昇温速度で1000℃まで加熱し焼成し
た。この結果、形くずれのない密度1.74g/mlの
高密度炭素成形体を得た。
Example 2 Petroleum-based pitch with a softening point of 280°C is crushed to a diameter of 100μ or less, and the resulting pitcher powder is accelerated from room temperature to 350°C at a heating rate of 10°C/min under air circulation to contain oxygen. Oxidized pitch powder with an amount of 3.8% by weight was obtained. 400Kg/of the obtained oxidized pitch powder
Compression molding was performed at a pressure of cm 2 G to obtain a disc with a diameter of 12 mm and a wall thickness of 2 mm. This disk was placed in a nitrogen gas atmosphere for 10
The material was heated to 1000°C at a heating rate of 0°C/min for firing. As a result, a high-density carbon molded article having a density of 1.74 g/ml without deformation was obtained.

比較例 1 軟化点280℃の石油系ピツチを直径100μ以下に
粉砕して得たピツチ粉末を400Kg/cm2Gの圧力で
圧縮成形し、直径12mm,肉厚2mmの円板を得た。
この円板を10℃/分間の昇温速度で400℃まで加
熱して表面を酸化した。次いで、この円板を窒素
ガス雰囲気中において10℃/分間の昇温速度で
1000℃まで加熱し、焼成した。この結果、円板は
形くずれするとともに発泡し、成形体としてのか
さ密度の測定は不可能であつた。
Comparative Example 1 Pitch powder obtained by pulverizing petroleum pitch with a softening point of 280° C. to a diameter of 100 μm or less was compression molded at a pressure of 400 Kg/cm 2 G to obtain a disc with a diameter of 12 mm and a wall thickness of 2 mm.
This disk was heated to 400°C at a heating rate of 10°C/min to oxidize the surface. Next, this disk was heated at a heating rate of 10°C/min in a nitrogen gas atmosphere.
It was heated to 1000℃ and fired. As a result, the disc lost its shape and foamed, making it impossible to measure the bulk density of the molded product.

実施例 3 実施例1における酸化ピツチ繊維粉砕物100重
量部に対して炭素繊維50重量部を配合した混合物
を400Kg/cm2Gの圧力において直径12mm,肉厚2
mmの円板に圧縮成形し、窒素雰囲気中において、
10℃/分間の昇温速度で1000℃まで加熱し焼成し
た。この結果、形くずれのない密度1.76g/mlの
高密度炭素成形体を得た。
Example 3 A mixture of 50 parts by weight of carbon fibers and 100 parts by weight of the pulverized oxidized pitch fiber in Example 1 was heated to a pressure of 400 kg/cm 2 G to form a mixture with a diameter of 12 mm and a wall thickness of 2.
Compression molded into a mm disc and placed in a nitrogen atmosphere.
It was fired by heating to 1000°C at a heating rate of 10°C/min. As a result, a high-density carbon molded body having a density of 1.76 g/ml without deformation was obtained.

実施例 4 実施例2における酸化ピツチ粉末100重量部に
対して炭素繊維50重量部を配合した混合物を400
Kg/cm2Gの圧力において直径12mm,肉厚2mmの円
板に圧縮成形した。得られた円板を窒素ガス雰囲
気中において10℃/分間の昇温速度で加熱し、
1000℃で焼成した。この結果、形くずれのない密
度1.75g/mlの高密度炭素成形体を得た。
Example 4 A mixture of 100 parts by weight of oxidized pitch powder in Example 2 and 50 parts by weight of carbon fiber was mixed into 400 parts by weight.
It was compression molded into a disc with a diameter of 12 mm and a wall thickness of 2 mm at a pressure of Kg/cm 2 G. The obtained disk was heated at a heating rate of 10°C/min in a nitrogen gas atmosphere,
Fired at 1000℃. As a result, a high-density carbon molded article having a density of 1.75 g/ml without deformation was obtained.

比較例 2 軟化点280℃の石油系ピツチを直径100μ以下に
粉砕して得たピツチ粉末100重量部に対して炭素
繊維50重量部を配合した混合物を400Kg/cm2Gの
圧力で圧縮成形し、直径12mm,肉厚2mmの円板を
得た。得られた円板を窒素ガス雰囲気中において
10℃/分間の昇温速度で1000℃まで加熱し、焼成
した。この結果、円板は形くずれし、発泡したた
め成形体としてのかさ密度は測定できなかつた。
Comparative Example 2 A mixture of 50 parts by weight of carbon fiber mixed with 100 parts by weight of pitch powder obtained by crushing petroleum pitch with a softening point of 280°C to a diameter of 100 μ or less was compression molded at a pressure of 400 kg/cm 2 G. A disk with a diameter of 12 mm and a wall thickness of 2 mm was obtained. The obtained disk was placed in a nitrogen gas atmosphere.
It was heated to 1000°C at a heating rate of 10°C/min and fired. As a result, the disc was deformed and foamed, so that the bulk density of the molded product could not be measured.

Claims (1)

【特許請求の範囲】 1 酸素含有量が3〜5重量%となるように、ピ
ツチ粉体またはピツチ繊維を酸化処理し、次いで
得られた酸性ピツチを100Kg/cm2G以上、500Kg/
cm2G未満の成形圧で成形し、得られた成形体を焼
成することを特徴とする炭素成形体の製造法。 2 酸素含有量が3〜5重量%となるように、ピ
ツチ粉体またはピツチ繊維を酸化処理し、次いで
得られた酸化ピツチに炭素繊維または不融化ピツ
チ繊維を配合した後、100Kg/cm2G以上、500Kg/
cm2G未満の成形圧で成形し、得られた成形体を焼
成することを特徴とする炭素成形体の製造法。 3 酸化ピツチ100重量部に対し、炭素繊維を5
〜50重量部配合してなる特許請求の範囲第2項記
載の製造法。
[Claims] 1. Pitch powder or pitch fiber is oxidized so that the oxygen content is 3 to 5% by weight, and then the resulting acid pitch is oxidized to 100 Kg/cm 2 G or more, 500 Kg/
1. A method for producing a carbon molded body, which comprises molding at a molding pressure of less than cm 2 G and firing the resulting molded body. 2. Pitch powder or pitch fiber is oxidized so that the oxygen content is 3 to 5% by weight, and then carbon fiber or infusible pitch fiber is blended with the obtained oxidized pitch, and then 100Kg/cm 2 G More than 500Kg/
1. A method for producing a carbon molded body, which comprises molding at a molding pressure of less than cm 2 G and firing the resulting molded body. 3 5 parts of carbon fiber per 100 parts by weight of oxidized pitch
50 parts by weight of the manufacturing method according to claim 2.
JP59231297A 1984-11-05 1984-11-05 Manufacture of carbon formed body Granted JPS61111963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231297A JPS61111963A (en) 1984-11-05 1984-11-05 Manufacture of carbon formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231297A JPS61111963A (en) 1984-11-05 1984-11-05 Manufacture of carbon formed body

Publications (2)

Publication Number Publication Date
JPS61111963A JPS61111963A (en) 1986-05-30
JPH0227302B2 true JPH0227302B2 (en) 1990-06-15

Family

ID=16921402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231297A Granted JPS61111963A (en) 1984-11-05 1984-11-05 Manufacture of carbon formed body

Country Status (1)

Country Link
JP (1) JPS61111963A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248770A (en) * 1987-04-03 1988-10-17 日石三菱株式会社 Manufacture of carbon/carbon composite material
US4975261A (en) * 1987-09-22 1990-12-04 Petoca Ltd. Process for producing high strength carbon-carbon composite
JPH089822B2 (en) * 1988-02-26 1996-01-31 株式会社ペトカ Method for producing carbon fiber non-woven fabric
JPH068213B2 (en) * 1989-01-17 1994-02-02 トヨタ自動車株式会社 Sliding member
EP0404571B1 (en) * 1989-06-22 1996-11-27 Toyota Jidosha Kabushiki Kaisha Sliding member
JPH068217B2 (en) * 1990-07-17 1994-02-02 トヨタ自動車株式会社 Carbon fiber reinforced carbon sintered body
TWI440248B (en) * 2009-01-21 2014-06-01 Kureha Corp Production method of negative electrode material for nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924348A (en) * 1972-06-27 1974-03-04
JPS50106895A (en) * 1974-01-31 1975-08-22
JPS5176A (en) * 1974-06-11 1976-01-05 Klemm Guenter Ing Fa
JPS5112474A (en) * 1974-07-22 1976-01-31 Shunzo Tachikawa Rooraanaisono jidokao kanonishita harijobearinguno kumitatesochi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924348A (en) * 1972-06-27 1974-03-04
JPS50106895A (en) * 1974-01-31 1975-08-22
JPS5176A (en) * 1974-06-11 1976-01-05 Klemm Guenter Ing Fa
JPS5112474A (en) * 1974-07-22 1976-01-31 Shunzo Tachikawa Rooraanaisono jidokao kanonishita harijobearinguno kumitatesochi

Also Published As

Publication number Publication date
JPS61111963A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4042486A (en) Process for the conversion of pitch into crystalloidal pitch
JPH0227302B2 (en)
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
US4102960A (en) Process for making high strength flexible graphite foil
US4975263A (en) Process for producing mesophase pitch-based carbon fibers
CA1051806A (en) Process for the conversion of pitch into crystalloidal pitch
US5306415A (en) Oxygenated pitch and processing same
EP0402107A3 (en) Method for the preparation of carbon fibers
KR100213315B1 (en) Manufacturing method of carbon-sintered body
JPS6357524B2 (en)
JPH0569765B2 (en)
RU2377223C1 (en) Method to produce composite carbon materials
KR910007569B1 (en) Method of preparing a carbon articles
JPS61197466A (en) Manufacture of carbon formed body
JP3094502B2 (en) Manufacturing method of carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH01145373A (en) Production of carbon fiber-reinforced carbonaceous material
JPS60145965A (en) Manufacture of silicon nitride sintered body
KR19990053883A (en) Manufacturing method of carbon molded body
JP2924061B2 (en) Production method of raw material powder for carbon material
JPH01290701A (en) Production of reformed iron powder
AT252097B (en) Process for the production of a new, refractory body
JPH0456787B2 (en)
JPS59223210A (en) Carbonaceous article and its manufacture