[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02271856A - Ceramics artificial bone and production thereof - Google Patents

Ceramics artificial bone and production thereof

Info

Publication number
JPH02271856A
JPH02271856A JP1093100A JP9310089A JPH02271856A JP H02271856 A JPH02271856 A JP H02271856A JP 1093100 A JP1093100 A JP 1093100A JP 9310089 A JP9310089 A JP 9310089A JP H02271856 A JPH02271856 A JP H02271856A
Authority
JP
Japan
Prior art keywords
bone
artificial bone
porosity
dense
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093100A
Other languages
Japanese (ja)
Inventor
Hiroyasu Takeuchi
啓泰 竹内
Yoshitaka Okubo
大久保 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1093100A priority Critical patent/JPH02271856A/en
Publication of JPH02271856A publication Critical patent/JPH02271856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the ceramics artificial bone which accelerates the generation of a bone to restore its function in an early period and is satisfactory in strength as well as essentially consisting of the artificial bone of ceramics and continuously changing the porosity thereof from dense to porous state. CONSTITUTION:The ceramics artificial bone is essentially required to have the porosity changing continuously from the dense to the porous state. Since the change in the tissue of the freshly borne bone, fibers or the like formed in the pores when the artificial bone is embedded into a living body is continuous, the destruction does not arise. The reason thereof lies in that since the change of the tissue is continuous, the joint surfaces to be concentrated with stresses by an extreme change in the elastic modulus does not exit and, therefore, the breaking point in the function does not exist. The porosity of the artificial bone is preferably dense and <20% in terms of strength and is preferably in a 20 to 90% range in the case of the porous state. The part to be formed with the freshly borne bone is preferably provided with 50 to 70% porosity. Further, the ratio at which the porosity is continuously changed from the dense to the porous state varies largely with the sections to be used and is usually preferably several %/mm.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、生体の硬組織に利用可能な医療用材料である
セラミックス製人工骨及びその製造方法に関する。更に
詳細には、骨欠損部又は骨空隙部の充てんに使用可能な
医療用材料であるセラミックス製人工骨及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an artificial bone made of ceramics, which is a medical material that can be used in the hard tissues of a living body, and a method for manufacturing the same. More specifically, the present invention relates to a ceramic artificial bone that is a medical material that can be used to fill bone defects or bone voids, and a method for manufacturing the same.

〈従来の技術〉 骨腫瘍における掻爬や複雑骨折等により、或いは、骨移
植のための採骨により骨欠損又は骨空隙が生じた場合、
従来はそのまま自然治癒を待つか、又は近年では人工骨
による治療が行われている。
<Conventional technology> When a bone defect or bone gap occurs due to curettage or compound fracture of a bone tumor, or due to bone collection for bone transplantation,
Conventionally, the treatment has been to wait for natural healing, or in recent years, treatment has been performed using artificial bone.

人工骨による治療にあたっては、従来、金属、有機系合
成樹脂、セラミックス等の材料が使用されている。
Conventionally, materials such as metals, organic synthetic resins, and ceramics have been used for treatment with artificial bones.

しかしながら、自然治癒を待つ場合には、機能の回復に
長時間を必要とし、又、骨欠損部又は骨空隙部が大きい
と元の形状に戻らない場合もある。
However, if you wait for natural healing, it will take a long time for the function to recover, and if the bone defect or bone gap is large, it may not return to its original shape.

更に、金属製の人工骨を使用すると腐食による強度劣化
及び金属イオンの溶出による生体への悪影響等が懸念さ
れ、有機系合成樹脂製の人工骨の場合にはモノマーの溶
出による発ガン性等の恐れがある。従って、これらの材
料は人工骨として満足できるものではない。
Furthermore, if artificial bones made of metal are used, there are concerns about strength deterioration due to corrosion and adverse effects on living organisms due to the elution of metal ions, and in the case of artificial bones made of organic synthetic resins, there are concerns such as carcinogenicity due to the elution of monomers. There is a fear. Therefore, these materials are not satisfactory as artificial bones.

これに対して、セラミックス材料を使用した人工骨は、
生体との親和性が良好であるところから。
On the other hand, artificial bones using ceramic materials,
Because it has good affinity with living organisms.

近年、需要が増加する傾向にある。かかるセラミックス
材料を人工骨に使用するにあたって、強度的に高い負荷
がかかる骨欠損部分には緻密質の材料を使用することが
多い1強度よりも新生骨の増殖を期待する骨欠損部分に
は連続気孔を有する多孔質の材料が使用される。しかし
ながら、生体中において、人工骨が十分に機能するため
には、負荷に対する十分な強度と新生骨の増殖の双方を
期待することが殆どであり、これらの双方の機能を兼備
した人工骨の開発が望まれている。このような材料とし
ては、緻密体と多孔体を別々に製造し、次いで焼結又は
接着剤による接着等により接合した材料が公知であるが
、生体中で機能させた場合、新生骨が増殖した多孔質部
分と緻密質部分とでは弾性率が極端に相違するため、接
着部分で破壊する恐れがあり、人工骨として使用するこ
とができないのが現状である。
Demand has been increasing in recent years. When using such ceramic materials for artificial bones, dense materials are often used for bone defect areas that are subject to high strength loads. A porous material with pores is used. However, in order for an artificial bone to function satisfactorily in a living body, it is expected that it will have both sufficient strength to withstand loads and growth of new bone, and the development of an artificial bone that has both of these functions is required. is desired. As such materials, materials in which a dense body and a porous body are manufactured separately and then joined together by sintering or adhesive bonding are known, but when they are made to function in vivo, new bone grows. Since the elastic modulus is extremely different between the porous part and the dense part, there is a risk of the bone breaking at the bonded part, and it is currently impossible to use it as an artificial bone.

〈発明が解決しようとする課題〉 従って、本発明の主要な目的は、新生骨が増殖する多孔
質部分と、緻密質部分との弾性率の極端な相違による破
壊が生ぜず、人工骨としての使用が可能なセラミックス
製人工骨及びその製造方法を提供することである。
<Problems to be Solved by the Invention> Therefore, the main object of the present invention is to prevent fracture due to the extreme difference in elastic modulus between the porous part where new bone grows and the dense part, so that it can be used as an artificial bone. An object of the present invention is to provide a usable ceramic artificial bone and a method for manufacturing the same.

本発明の別の目的は、早期より骨の新生を促進して機能
の早期回復を図り得ると共に、強度的にも十分に満足で
きるセラミックス製人工骨及びその製造方法を提供する
ことである。
Another object of the present invention is to provide an artificial bone made of ceramics and a method for producing the same, which can promote bone new generation from an early stage to achieve early functional recovery, and which is also sufficiently satisfactory in terms of strength.

本発明の更に別の目的は、人工骨材料の成分等の溶出に
よる生体へのいかなる悪影響、特に発ガン性等の恐れの
ないセラミックス製人工骨及びその製造方法を提供する
ことである。
Still another object of the present invention is to provide an artificial bone made of ceramics and a method for producing the same, which is free from any adverse effects on the living body due to elution of components of the artificial bone material, particularly carcinogenicity.

〈課題を解決するための手段〉 本発明によれば、セラミックスを主成分とする人工骨で
あって、前記人工骨の気孔率が緻密質から多孔質に連続
的に変化することを特徴とするセラミックス製人工骨が
提供される。
<Means for Solving the Problems> According to the present invention, there is provided an artificial bone mainly composed of ceramics, characterized in that the porosity of the artificial bone changes continuously from dense to porous. A ceramic artificial bone is provided.

更に、本発明によれば、三次元網目構造を有する有機質
樹脂に、セラミックスのスラリーを含浸させた後、前記
含浸させたスラリーを部分的に除去して前記有機質樹脂
の気孔率を緻密質から多孔質に連続的に変化させ1次い
で乾燥及び焼結することを特徴とするセラミックス製人
工骨の製造方法が提供される。
Further, according to the present invention, after impregnating an organic resin having a three-dimensional network structure with a ceramic slurry, the impregnated slurry is partially removed to change the porosity of the organic resin from dense to porous. Provided is a method for manufacturing an artificial bone made of ceramics, which is characterized in that the quality of the artificial bone is continuously changed, and then drying and sintering are performed.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明によるセラミックス製人工骨においては、その気
孔率が緻密質から多孔質に連続的に変化する・ことを必
須の要件とする。従って、生体中に埋込んだ際に、気孔
中に形成される新生骨や繊維等の組織の変化が連続的に
なるので、従来の接合による材料の如き破壊が起らない
、これは組織の変化が連続的になるため、弾性率の極端
な変化により応力が集中する接合面が存在せず、従って
、機能中の破壊点が存在しないためである。
An essential requirement for the ceramic artificial bone according to the present invention is that its porosity continuously changes from dense to porous. Therefore, when implanted into a living body, tissue changes such as new bone and fibers formed in the pores are continuous, so destruction of the tissue does not occur as with conventional bonding materials. This is because the change is continuous, so there is no bonding surface where stress is concentrated due to extreme changes in the elastic modulus, and therefore there is no point of failure during function.

本発明において、人工骨の気孔率は、強度的に緻密質で
20%未満であるのが好ましく、また多孔質では、20
〜90%特に50〜70%の範囲であるのが好ましい、
新生骨が形成される部分は、前記50〜70%の気孔率
とするのが好ましい。
In the present invention, the porosity of the artificial bone is preferably less than 20% if it is dense in terms of strength, and preferably less than 20% if it is porous.
~90%, particularly preferably in the range of 50-70%,
The portion where new bone is formed preferably has a porosity of 50 to 70%.

更に緻密質から多孔質へ気孔率を連続的に変化させる割
合は、使用する部位により大きく異なるが通常数%/m
であるのが望ましい。
Furthermore, the rate at which the porosity changes continuously from dense to porous varies greatly depending on the part used, but is usually several %/m.
It is desirable that

本発明において、人工骨の材料として使用できるセラミ
ックス材料としては、従来公知の任意のセラミックス材
料が好ましく使用できる。例えば、ヒドロキシアパタイ
ト、りん酸3カルシウム、りん酸4カルシウム、ピロり
ん酸カルシウム等のりん酸カルシウム化合物、アルミナ
及びジルコニア等が好ましいセラミックス材料である。
In the present invention, any conventionally known ceramic material can be preferably used as the ceramic material for the artificial bone. For example, preferred ceramic materials include hydroxyapatite, calcium phosphate compounds such as tricalcium phosphate, tetracalcium phosphate, and calcium pyrophosphate, alumina, and zirconia.

これらの化合物は、単体又は2種以上の混合物の形で好
ましく使用できる1本発明においては、特にヒドロキシ
アパタイトが好ましい。
These compounds can be preferably used alone or in the form of a mixture of two or more. In the present invention, hydroxyapatite is particularly preferred.

本発明によるセラミックス製人工骨の製造にあたっては
、三次元網目構造を有する有機質多孔体樹脂に、セラミ
ックスのスラリーを密に含浸させた後、緻密質部分はそ
のままの状態とし、連続的に気孔率が変化するように含
浸スラリーを部分的に除去し、次いで乾燥及び焼結する
方法が好ましく採用される。連続的に気孔率が変化する
ように含浸スラリーを部分的に除去するには、そのまま
の状態で使用できる緻密質部分から、気孔率が高い部分
になるに従って、スラリーを除去する割合を増加させる
と気孔率は連続的に変化して多孔質部分に移行する方法
を用いることができる。
In manufacturing the ceramic artificial bone according to the present invention, after the organic porous resin having a three-dimensional network structure is densely impregnated with ceramic slurry, the dense part is left as it is, and the porosity is continuously increased. A method of variably removing the impregnated slurry, followed by drying and sintering, is preferably employed. To partially remove the impregnated slurry so that the porosity changes continuously, the slurry removal rate should be increased from the dense part that can be used as is to the part with high porosity. A method can be used in which the porosity is continuously changed and transferred to the porous portion.

本発明によるセラミックス製人工骨の製造にあたって好
ましく使用できる三次元網目構造を有する有機質樹脂と
しては、例えば、ポリビニルホルマール樹脂、ポリウレ
タンフォーム等が挙げられる。これらの多孔体は、骨欠
損部及び骨空隙部に合わせて任意の形状に加工すること
ができる。
Examples of the organic resin having a three-dimensional network structure that can be preferably used in manufacturing the ceramic artificial bone according to the present invention include polyvinyl formal resin, polyurethane foam, and the like. These porous bodies can be processed into any shape to suit the bone defect and bone void.

本発明によるセラミックス製人工骨の製造にあたっては
、セラミックスのスラリーを公知の任意の方法により含
浸させることができる。例えば、有機質樹脂を真空状態
とし、スラリーを供給して加圧する方法、スラリーを先
に圧縮含浸させ膨張させる方法、有機質樹脂を、スラリ
ーと共に2本のローラー間を通過させ含浸させる方法等
を用いることができる。
In manufacturing the ceramic artificial bone according to the present invention, the ceramic slurry can be impregnated by any known method. For example, a method may be used in which the organic resin is vacuumed and slurry is supplied and pressurized, the slurry is first compressed and impregnated and expanded, or the organic resin is passed together with the slurry between two rollers to be impregnated. I can do it.

本発明によるセラミックス製人工骨の製造にあたっては
、セラミックスのスラリーを部分的に除去して気孔率を
連続的に変化させる必要がある。
In manufacturing the ceramic artificial bone according to the present invention, it is necessary to partially remove the ceramic slurry to continuously change the porosity.

該方法として、好ましい例を第1図及び第2図を参照し
て説明する。例えば板状や直方体の人工骨を製造する場
合には、第1図に示すとおり、2本のローラー1a、l
bを使用し、該ローラーの間隙りを例えばコンピュータ
制御等の操作により、矢印方向に連続的に移動させ、セ
ラミックスのスラリーを含浸させた三次元網目構造を有
する有機質樹脂2の多孔質とする部分のスラリーを除去
する方法によって、得ることができる。この際ローラー
18及び1bは、各々移動可能であっても、また片方の
ローラーを固定し、もう一方のローラーのみを移動させ
スラリーを除去することもできる。即ち2本のローラー
1a及び1bのrJJ隙りが、必要に応じて連続的に広
くなったり、狭くなったりするように操作し、スラリー
が含浸された有機質樹脂2を該ローラー1a及び1bの
間隙を通過させることにより、所望の気孔率の変化が得
られる。従って、緻密体とすべき部分は、スラリーが含
浸された有機質樹脂2の厚さtをローラー間隙りより小
さくし、また多孔体とすべき部分は、該有機質樹脂2の
厚さtをローラー間隙りより大きくする方法等を好まし
く挙げることができる。又、円柱状等の人工骨を製造す
る場合には、第2図に示すとおり、セラミックスのスラ
リーを含浸させた三次元網目構造を有する有機質樹脂2
′の外形よりやや小さく、かつスラリーの通過が可能な
網目構造を有する脱スラリー用加圧治具3a及び3bに
より該有機質樹脂2を徐々に圧縮することにより、多孔
質とする部分のスラリーを除去し、所望の気孔率の変化
を得ることができる。即ち2本の脱スラリー用加圧治具
3a及び3bの直径rは。
A preferred example of this method will be described with reference to FIGS. 1 and 2. For example, when manufacturing a plate-shaped or rectangular parallelepiped artificial bone, two rollers 1a and 1 are used as shown in FIG.
b, and the gap between the rollers is continuously moved in the direction of the arrow by, for example, computer control, etc., to make the part of the organic resin 2 porous having a three-dimensional network structure impregnated with ceramic slurry. can be obtained by removing a slurry of At this time, the rollers 18 and 1b may each be movable, or one roller may be fixed and only the other roller may be moved to remove the slurry. That is, the rJJ gap between the two rollers 1a and 1b is operated to continuously widen or narrow as necessary, and the slurry-impregnated organic resin 2 is inserted into the gap between the rollers 1a and 1b. A desired change in porosity can be obtained by passing through the porosity. Therefore, in the part to be made into a dense body, the thickness t of the organic resin 2 impregnated with slurry is smaller than the gap between the rollers, and in the part to be made into a porous body, the thickness t of the organic resin 2 is made smaller than the gap between the rollers. Preferred examples include a method of making the size larger than the size of the original. In addition, when producing artificial bones such as cylinders, as shown in Fig. 2, an organic resin 2 having a three-dimensional network structure impregnated with ceramic slurry is used.
By gradually compressing the organic resin 2 using pressure jigs 3a and 3b for removing slurry, which have a mesh structure that is slightly smaller than the outer diameter of ', and which allows slurry to pass through, the slurry in the porous portion is removed. Thus, a desired change in porosity can be obtained. That is, the diameter r of the two deslurry pressing jigs 3a and 3b is as follows.

直径りである有機質樹脂2′より若干小さいので、該有
機質樹脂2′に脱スラリー用加圧治具3a及び3bを押
しつけて、加圧すれば、脱スラリーできる。次いで、有
機質樹脂2′又は脱スラリー用加圧治具3a及び3bを
所望の範囲、例えば約30°回転させ、再度加圧操作を
行うと均一な所望の気孔率の変化が得られる。またこの
際脱スラリー用加圧治具に半球状のものを用いることに
より球状の人工骨を作製することもできる。
Since it is slightly smaller than the diameter of the organic resin 2', the slurry can be removed by pressing the de-slurry pressure jigs 3a and 3b against the organic resin 2' and pressurizing it. Next, the organic resin 2' or the pressure tools 3a and 3b for removing slurry are rotated within a desired range, for example, about 30 degrees, and the pressure operation is performed again to obtain a uniform desired change in porosity. Moreover, at this time, a spherical artificial bone can also be produced by using a hemispherical pressure jig for removing slurry.

以上に記載した本発明の好ましい方法により、多孔質と
なる部分は、有機質樹脂の骨格のみにセラミックススラ
リーが付着した状態となり、緻密体部分からセラミック
ススラリー付着量が連続的に変化した人工骨が得られる
According to the preferred method of the present invention described above, the ceramic slurry adheres only to the organic resin skeleton in the porous portion, and an artificial bone is obtained in which the amount of ceramic slurry attached continuously changes from the dense portion. It will be done.

本発明においては、次いで、公知の任意の方法にて乾燥
及び焼結を行い、セラミックス製人工骨を製造できる。
In the present invention, a ceramic artificial bone can be manufactured by drying and sintering using any known method.

このようにして製造する、本発明によるセラミックス製
人工骨は任意の形状とすることが可能であり、例えば、
固定用の孔及び/又は凸部を有するようなものであって
もよい。従って、任意の使用目的の人工骨を製造でき、
例えば、骨移植手術にあたって屡々採骨される腸骨用の
スペーサーや長管骨置換用人工骨等として好ましく使用
できる。
The ceramic artificial bone according to the present invention manufactured in this way can have any shape, for example,
It may have fixing holes and/or protrusions. Therefore, artificial bones can be manufactured for any purpose,
For example, it can be preferably used as a spacer for iliac bone, which is often harvested in bone transplant surgery, or as an artificial bone for long bone replacement.

〈実施例〉 以下に、本発明を実施例により更に詳細に説明するが、
実施例に記載の内容は本発明を限定するものではない。
<Examples> The present invention will be explained in more detail by examples below.
The contents described in Examples are not intended to limit the present invention.

ス1■L−1 連続気孔を有するポリウレタンフォームを3X3XIQ
mの板状にに切断し、ヒドロキシアパタイト68wt%
濃度のスラリーを圧縮・膨張させる方法で密に含浸させ
た。次いで、2本の平行なステンレス製ローラー(3a
llφ)の片方をコンピューター制御することにより、
連続的に間隙を狭めることができる装置を通過させるこ
とにより、スラリー含浸樹脂の一部のスラリーを除去し
た1次に、湿度をコントロールした乾燥装置により含浸
樹脂を乾燥した後、1200℃の温度にて焼成し、本発
明による人工骨を得た。
S1 L-1 Polyurethane foam with continuous pores 3X3XIQ
Cut into m plate shape, hydroxyapatite 68wt%
Dense impregnation was achieved by compressing and expanding a concentrated slurry. Next, two parallel stainless steel rollers (3a
By controlling one side of llφ) by computer,
Part of the slurry in the slurry-impregnated resin was removed by passing it through a device that can continuously narrow the gap.Then, the impregnated resin was dried in a humidity-controlled drying device, and then heated to a temperature of 1200℃. The artificial bone according to the present invention was obtained by firing.

上記の方法にて製造した人工骨を気孔率が変化する方向
に切断し、断面の気孔の量を観察したところ、スラリー
を除去しない部分はほぼ緻密であり、除去した部分では
気孔の量が連続的に変化していた。又、気孔は気孔率5
0%以上から、気孔どうしがほぼ連通していた。
When the artificial bone produced by the above method was cut in the direction in which the porosity changes and the amount of pores in the cross section was observed, it was found that the area where the slurry was not removed was almost dense, and the area where the slurry was removed was continuous. It was changing. In addition, the pores have a porosity of 5
From 0% or higher, the pores were almost in communication with each other.

失庭旌−主 ポリビニルホルマール樹脂を1.53φX 3 as 
Lの円柱状に加工し、ヒドロキシアパタイト68wt%
濃度のスラリーを真空中で樹脂に供給した後加圧する方
法で密に含浸させた0次いで、1.2(!lφ×3 a
s Lのステンレス製の網を長軸方向に半切りした形状
の脱スラリー用加圧治具を使用し、加圧操作を30”づ
つ角度を移動して3回行った。調湿乾燥後、1200℃
で焼成して本発明による人工骨を得た。
Lost Garden - Main polyvinyl formal resin 1.53φX 3 as
Processed into L cylinder shape, 68wt% hydroxyapatite
A slurry with a concentration of 0 then 1.2 (!lφ×3 a
Using a pressurizing jig for slurry removal in the shape of a S L stainless steel mesh cut in half in the long axis direction, the pressurizing operation was performed three times by moving the angle by 30". After controlling the humidity and drying, 1200℃
The artificial bone according to the present invention was obtained by firing.

上記の方法にて製造した人工骨を円周方向に切断し、断
面の気孔の量を観察したところ、中心より約4−までは
ほぼ緻密であり、外周に向い連続的に多孔質となってい
た。
When the artificial bone produced by the above method was cut in the circumferential direction and the amount of pores in the cross section was observed, it was found that it was almost dense from the center up to about 4 mm, and became continuously porous toward the outer periphery. Ta.

上記の方法にて製造した人工骨を使用し、動物による有
効性を確認するため、成犬の長管骨を長さ3alにわた
って切断し、上記の人工骨を移植した。術後のレントゲ
ンll!察によれば、1力月後には人工骨の周囲に新生
骨が形成され、3力月後では骨とほぼ一体化していた。
In order to confirm the effectiveness in animals using the artificial bone produced by the above method, a long bone of an adult dog was cut over a length of 3 al, and the above artificial bone was implanted. Post-operative X-ray! According to the investigation, new bone was formed around the artificial bone after one month, and it was almost integrated with the bone after three months.

2年経過後も骨折することなく、正常に機能していた。Even after two years, the patient was functioning normally without any fractures.

〈発明の効果〉 本発明のセラミックス製人工骨は、新生骨が増薙する多
孔質部分と、緻密質部分との弾性率の極端な相違による
破壊が生じることのない強固なものである。また、本発
明により提供されるセラミックス製人工骨及びその製造
方法では、早期より骨の新生を促進して機能の早期回復
を図り得ると共に1強度的にも十分に満足でき、しかも
、生体へのいかなる悪影響の恐れもないので、従来の人
工骨に代わって極めて有用である。
<Effects of the Invention> The ceramic artificial bone of the present invention is strong and will not break due to the extreme difference in elastic modulus between the porous part where new bone grows and the dense part. In addition, the ceramic artificial bone and the method for manufacturing the same provided by the present invention can promote bone new generation from an early stage to achieve early functional recovery, and are also sufficiently satisfactory in terms of strength, and are also effective for the living body. It is extremely useful as an alternative to traditional artificial bones as there is no possibility of any adverse effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるセラミックス製人工骨の製造に
あたって、板状又は直方体の人工骨を製造する好ましい
装置の模式図、第2図は、本発明によるセラミックス製
人工骨の製造にあたって、円柱状の人工骨を製造する好
ましい装置の模式図である。 la、lb・・ローラー 2,2′ ・・有機質樹脂、
3a、3b・・脱スラリー用加圧治具。
FIG. 1 is a schematic diagram of a preferred apparatus for manufacturing a plate-shaped or rectangular parallelepiped artificial bone in the production of a ceramic artificial bone according to the present invention, and FIG. FIG. 2 is a schematic diagram of a preferred apparatus for manufacturing an artificial bone. la, lb...roller 2,2'...organic resin,
3a, 3b... Pressure jig for slurry removal.

Claims (1)

【特許請求の範囲】 1)セラミックスを主成分とする人工骨であって、前記
人工骨の気孔率が緻密質から多孔質に連続的に変化する
ことを特徴とするセラミックス製人工骨。 2)三次元網目構造を有する有機質樹脂に、セラミック
スのスラリーを含浸させた後、前記含浸させたスラリー
を部分的に除去して前記有機質樹脂の気孔率を緻密質か
ら多孔質に連続的に変化させ、次いで乾燥及び焼結する
ことを特徴とする請求項1記載のセラミックス製人工骨
の製造方法。
[Scope of Claims] 1) An artificial bone made of ceramics, the artificial bone having ceramic as its main component, characterized in that the porosity of the artificial bone changes continuously from dense to porous. 2) After impregnating an organic resin having a three-dimensional network structure with a ceramic slurry, the impregnated slurry is partially removed to continuously change the porosity of the organic resin from dense to porous. 2. The method of manufacturing a ceramic artificial bone according to claim 1, further comprising drying and sintering the ceramic bone.
JP1093100A 1989-04-14 1989-04-14 Ceramics artificial bone and production thereof Pending JPH02271856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093100A JPH02271856A (en) 1989-04-14 1989-04-14 Ceramics artificial bone and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093100A JPH02271856A (en) 1989-04-14 1989-04-14 Ceramics artificial bone and production thereof

Publications (1)

Publication Number Publication Date
JPH02271856A true JPH02271856A (en) 1990-11-06

Family

ID=14073104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093100A Pending JPH02271856A (en) 1989-04-14 1989-04-14 Ceramics artificial bone and production thereof

Country Status (1)

Country Link
JP (1) JPH02271856A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492873A (en) * 1990-08-09 1992-03-25 Oriental Sangyo Kk Porous ceramic body and production thereof
JP2004290418A (en) * 2003-03-27 2004-10-21 Toshiba Ceramics Co Ltd Member for alveolar bone and jawbone
WO2007105600A1 (en) * 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material
JP2007236802A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Material for implant inclination
JP2008029680A (en) * 2006-07-31 2008-02-14 Takiron Co Ltd Anchor member and artificial ligament

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485644A (en) * 1987-09-28 1989-03-30 Asahi Optical Co Ltd Preparation of ceramics composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485644A (en) * 1987-09-28 1989-03-30 Asahi Optical Co Ltd Preparation of ceramics composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492873A (en) * 1990-08-09 1992-03-25 Oriental Sangyo Kk Porous ceramic body and production thereof
JP2004290418A (en) * 2003-03-27 2004-10-21 Toshiba Ceramics Co Ltd Member for alveolar bone and jawbone
WO2007105600A1 (en) * 2006-03-10 2007-09-20 Takiron Co., Ltd. Composite implant material
JP2007236803A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Implant composite material
JP2007236802A (en) * 2006-03-10 2007-09-20 Takiron Co Ltd Material for implant inclination
JP2008029680A (en) * 2006-07-31 2008-02-14 Takiron Co Ltd Anchor member and artificial ligament

Similar Documents

Publication Publication Date Title
US7001551B2 (en) Method of forming a composite bone material implant
EP1492475B1 (en) Dense/porous structures for use as bone substitutes
US5492768A (en) Porous living body repairing member, and a method of imparting elasticity to it
US20050263921A1 (en) Dual function prosthetic bone implant and method for preparing the same
EP1523342B1 (en) Structured composites as a matrix (scaffold) for the tissue engineering of bones
US11497829B2 (en) Method for manufacturing support for regenerating core-shell structured hard tissue and support for regenerating core-shell structured hard tissue manufactured thereby
JPH04303444A (en) Artificial intervertebral disk
JP2004501719A (en) Osteogenic implants derived from bone
JPS61106149A (en) Bone tissue coagulation promoting material, bone implant member and production thereof
CA2713761C (en) Bone implant composite
JP2010167274A (en) Artificial bone capable of being absorbed and replaced and its production method
JPH02271856A (en) Ceramics artificial bone and production thereof
CA2534826A1 (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
JP2000169251A (en) Production of ceramic complex and ceramic complex
JPH01151461A (en) Prosthesis material for organism
JPH0415062A (en) Living body material with multiphase structure and its manufacture
EP2682137A2 (en) Synthetic bone substitute material and method for producing the same
JPH09173436A (en) Bioprocsthetic member and its manufacture
CA2556901A1 (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
RU2726253C2 (en) Implant for replacement of bone trabecular defects
JP2818127B2 (en) Bone reinforcement for artificial joint replacement
JPH01204673A (en) Manufacture of perforated body of calcium phosphate
JP2010233914A (en) Artificial bone and method of manufacturing the same
JPH07275342A (en) Bone supply material for artificial hip joint
AU2002256238A1 (en) Dense/porous structures for use as bone substitutes