JPH0227414B2 - TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO - Google Patents
TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHOInfo
- Publication number
- JPH0227414B2 JPH0227414B2 JP4397585A JP4397585A JPH0227414B2 JP H0227414 B2 JPH0227414 B2 JP H0227414B2 JP 4397585 A JP4397585 A JP 4397585A JP 4397585 A JP4397585 A JP 4397585A JP H0227414 B2 JPH0227414 B2 JP H0227414B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel
- temperature
- rolled
- ridging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 54
- 239000010959 steel Substances 0.000 claims description 54
- 238000005096 rolling process Methods 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 35
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- 238000011282 treatment Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 description 19
- 238000001953 recrystallisation Methods 0.000 description 10
- 238000000137 annealing Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000005098 hot rolling Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 229910000655 Killed steel Inorganic materials 0.000 description 3
- 229910001327 Rimmed steel Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000003796 beauty Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004534 enameling Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Description
(産業上の利用分野)
耐リジング性と加工性および化成処理性に優れ
た薄鋼板の製造に関してこの明細書で述べる技術
内容は、圧延条件の規制により冷間圧延および再
結晶焼鈍工程を省略し得る新プロセスについての
開発成果を開示するところにある。
建材、自動車車体材、缶材ないしは各種表面処
理原板などの用途に使用される板厚がおよそ2mm
以下の加工用薄鋼板には以下のような特性が要求
される。
(1) 機械的特性
良好な曲げ加工性、張り出し加工性および絞り
加工性を得るために、主として高い延性と高いラ
ンクフオード値(r値)が必要である。
(2) 表面特性
これら材料は主として最終製品の最外側に使用
されるため、素材としての形状および表面美麗さ
はもちろんのこと、各種表面処理性も重要であ
る。
とくに自動車用鋼板においては、塗装前処理す
なわち化成処理性が重要であり、この化成処理性
が良好でないと十分な焼付塗装性が確保できな
い。
これら薄鋼板の一般的な製造手段は、次のとお
りである。
まず鋼素材としては主に低炭素鋼を用い、造塊
―分塊圧延にて板厚200mm程度の鋼片とした後、
加熱炉にて加熱―均熱処理し、ついで粗熱延工程
により板厚約30mmのシートバーとしてから、仕上
温度がAr3変態点以上の範囲における仕上熱延工
程にて所定板厚の熱延鋼帯とし、しかるのちそれ
を酸洗後、冷間圧延により所定板厚(2.0mm以下)
の冷延鋼帯とし、さらに再結晶焼鈍を施して最終
製品とする。
かかる慣行の最大の欠点は最終製品に至るまで
の工程がきわめて長いことにある。その結果、製
品にするまでに要するエネルギー、要員および時
間が莫大になるだけでなく、これら長い工程中
に、製品の品質とくに表面特性上種々の問題を生
じさせる不利も加わる。例えば冷間圧延工程にお
ける表面欠陥の発生、あるいは再結晶焼鈍工程に
おける不純物元素の表面濃化および表面酸化に起
因する表面美麗さの劣化、さらには表面処理性の
劣化などか不可避的トラブルである。
ところで加工用薄鋼板の製造法としては、熱間
圧延工程にて最終製品とするものも考えられてい
る。この方法によれば、冷間圧延および再結晶焼
鈍工程が省略でき、そのメリツトは大きい。
しかしながら、熱間圧延のままで得られる薄鋼
板の機械的特性は、冷延―焼鈍工程を経たものに
比べるとはるかに劣る。とくに自動車の車体など
に使用されるプレス加工材には優れた深絞り性が
要求されるのに対し、熱延鋼帯のr値は1.0前後
と低く、そのためその加工用途はきわめて限られ
たものになる。これは従来の熱延方法において
は、その仕上温度がAr3変態的以上であるため、
γ→α変態時に集合組織がランダム化するためで
ある。加えて2.0mm以下の板厚の薄鋼板を熱延工
程のみで製造することはきわめて困難である。し
かも寸法精度の問題の他に、薄くなることによる
鋼板温度の低下は、低炭素鋼のAr3変態点以下の
圧延を余儀なくし、材質(延性、絞り性)の著し
い劣化をもたらす。またたとえAr3変態点以下の
圧延によつて材質が確保できたとしても、フエラ
イト域で圧延された鋼板にはリジングが発生しや
すくなるという新たな問題が生じる。
ここにリジングとは製品の加工時に生じる表面
の凹凸の欠陥であつて、加工製品の最外側に使用
されることが主であるこの種の鋼板にとつては致
命的な欠陥である。
リジングは、金属学的には加工―再結晶過程を
経ても容易には分割されない結晶方位群(例えば
{100}方位粒群)が圧延方向に伸ばされたまま残
留することに起因するものであり、一般にフエラ
イト(α)域の比較的高温で加工された状況で生
じやすく、とくにフエライト域での圧下率が高い
場合すなわち薄鋼板の製造のような場合にはその
傾向が強い。
最近では、これら加工用薄鋼板は、加工製品の
複雑化、高級化に伴い厳しい加工を受けることが
多くなつたこともあり、優れた耐リジング性が要
求されるようになつてきた。
ところで近年鉄鋼材料の製造工程は著しく変化
しており、加工用薄鋼板の場合も例外ではない。
すなわち、近年まず連続鋳造プロセスの導入に
よつて分塊圧延工程が省略可能となり、また材質
向上と省エネルギーを目的として鋼片の加熱温度
は従来の1200℃近傍から1100℃近傍もしくはそれ
以下に低下される傾向にある。さらに溶鋼から直
ちに板厚50mm以下の鋼帯を溶製することにより、
熱延の加熱処理と粗圧延工程を省略できるプロセ
スも実用化されつつある。
しかしながらこれらの新製造工程は、いずれも
溶鋼が凝固する際にできる組織(鋳造組織)を破
壊するという点では不利である。とくに凝固時に
形成された{100}<uvw>を主方位とする強い鋳
造集合組織を破壊することはきわめて困難であ
る。
その結果として、最終薄鋼板には、前述したリ
ジングが起こりやすかつたのである。
(従来の技術)
Ar3変態点以下の比較的低温域で所定板厚の薄
鋼板とし、その後は冷間圧延および再結晶焼鈍工
程を施さない加工用薄鋼板の製造方法もいくつか
提示されている。例えば特開昭48−4329号公報に
は、低炭素リムド鋼をAr3変態点以下の温度で90
%の圧延にて4mm板厚の鋼帯とすることによる降
伏点26.1Kg/mm2、引張強さ37.3Kg/mm2、伸び49.7
%、=1.29の特性を有する製造例が示されてい
る。また特開昭52−44718号公報には同じく低炭
素リムド鋼を熱延仕上温度800〜860℃(Ar3変態
点以下)で2.0mm板厚とし、巻取温度600〜730℃
とすることによる、降伏点20Kg/mm2以下の低降伏
点鋼板の製造法が示されている。しかしながら絞
り性の指標であるコニカルカツプ値は得られる製
品で60.60〜62.18mm程度であり、この点従来例の
60.58〜60.61に比べると絞り性は同等かそれ以下
である。さらに特開昭53−22850号公報には同じ
く低炭素リムド鋼を熱延仕上温度710〜750℃で
1.8〜2.3mm板厚とし、巻取温度530〜600℃とする
ことによる低炭素熱延鋼板の製造法が示されい
る。しかしながらこの方法によつて得られる製品
のコニカルカツプ値も上掲の特開昭52−44718号
公報の場合と同様に従来例よりも高く、絞り性は
劣つている。またさらに特開昭54−109022号公報
には、低炭素アルミキルド鋼を熱延仕上温度760
〜820℃で1.6mm板厚とし、巻取温度650〜690℃と
することによる降伏点14.9〜18.8Kg/mm2、引張強
さ27.7〜29.8Kg/mm2、伸び39.0〜44.8%の特性を
有する低強度軟鋼板の製造例が開示されている。
その他特開昭59−226149号公報にはC/0.002,
Si/0.02,Mn0.23,P/0.009,S/0.008,Al/
0.025,N/0.0021,Ti/0.10の低炭素Alキルド
鋼を500〜900℃で潤滑油を施しつつ76%の圧延に
て1.6mm板厚の鋼帯とすることにより、=1.21
の特性を有する薄鋼板の製造例が示されている。
しかしながら上記した公知技術にはいずれも、
前述した耐リジング性を向上させることについて
は勿論、化成処理性の向上につき、何らの考慮も
払われていない。
(発明が解決しようとする問題点)
冷間圧延のみならず再結晶焼鈍をも含まない新
プロセスによつて、耐リジング性と加工性および
化成処理性に優れる薄鋼板の製造方法を与えるこ
とが、この発明の目的である。
(問題点を解決するための手段)
この発明は、低炭素鋼を所定板厚に圧延する工
程において、少なくとも1パスを、
Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上、ひずみ速度:300(s-1)以上で
圧延し、
ついで400℃以下の温度で巻取ることを特徴と
する耐リジング性と化成処理性に優れる加工用ア
ズロールド薄鋼板の製造方法である。
この発明の基礎となつた研究結果からまず説明
する。
供試材は表1に示す2種類の低炭アルミキルド
鋼の熱延鋼板であり、これらの供試材A,Bを
700℃に加熱、均熱後、1パスで20%、40%およ
び60%の各圧下率でそれぞれ圧延した。
(Industrial Application Field) The technical content described in this specification regarding the production of thin steel sheets with excellent ridging resistance, workability, and chemical conversion treatment is based on the technology that eliminates cold rolling and recrystallization annealing steps due to the regulation of rolling conditions. The goal is to disclose the development results of the new process. Approximately 2mm thick plate used for building materials, automobile body materials, can stock, and various surface-treated original plates.
The following properties are required for the following thin steel sheets for processing. (1) Mechanical properties High ductility and high Rankford value (r value) are mainly required to obtain good bending workability, stretchability and drawing workability. (2) Surface properties Since these materials are mainly used for the outermost part of the final product, not only the shape and surface beauty of the material but also various surface treatments are important. Particularly in steel sheets for automobiles, pre-painting treatment, that is, chemical conversion treatment properties, is important, and unless the chemical conversion treatment properties are good, sufficient baking paintability cannot be ensured. The general manufacturing method for these thin steel sheets is as follows. First, we mainly use low-carbon steel as the steel material, and after forming it into slabs with a thickness of about 200 mm by ingot-forming and blooming rolling,
The steel is heated and soaked in a heating furnace, then subjected to a rough hot rolling process to form a sheet bar with a thickness of approximately 30 mm, and then subjected to a finishing hot rolling process at a finishing temperature in the range of Ar 3 transformation point or higher to produce a hot rolled steel of a predetermined thickness. It is made into a strip, then pickled and cold-rolled to a specified thickness (2.0 mm or less).
The final product is made into a cold-rolled steel strip and further subjected to recrystallization annealing. The biggest drawback of this practice is the extremely long process required to reach the final product. As a result, not only is the amount of energy, manpower and time required to produce the product, but also the disadvantages that arise during these long steps are various problems in the quality of the product, especially its surface properties. For example, unavoidable problems include the occurrence of surface defects in the cold rolling process, deterioration in surface beauty due to surface concentration and surface oxidation of impurity elements in the recrystallization annealing process, and further deterioration in surface treatment properties. By the way, as a method of manufacturing thin steel sheets for processing, a method of producing the final product through a hot rolling process is also considered. According to this method, cold rolling and recrystallization annealing steps can be omitted, which has great merits. However, the mechanical properties of a hot-rolled thin steel sheet are far inferior to those obtained through a cold rolling-annealing process. In particular, press-formed materials used for automobile bodies require excellent deep drawability, but hot-rolled steel strip has a low r value of around 1.0, so its processing applications are extremely limited. become. This is because in the conventional hot rolling method, the finishing temperature is higher than Ar 3 transformation.
This is because the texture becomes random during the γ→α transformation. In addition, it is extremely difficult to manufacture thin steel sheets with a thickness of 2.0 mm or less using only a hot rolling process. Moreover, in addition to the problem of dimensional accuracy, the drop in steel sheet temperature due to thinning forces low carbon steel to be rolled below the Ar 3 transformation point, resulting in significant deterioration of material properties (ductility, drawability). Furthermore, even if the quality of the material can be secured by rolling at a temperature below the Ar 3 transformation point, a new problem arises in that ridging is more likely to occur in steel sheets rolled in the ferrite region. Rigging is a defect in surface irregularities that occurs during the processing of a product, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products. In terms of metallurgy, ridging is caused by crystal orientation groups (for example, {100} oriented grain groups) that are not easily divided even after the processing-recrystallization process and remain stretched in the rolling direction. , generally tends to occur when processing is performed at a relatively high temperature in the ferrite (α) region, and this tendency is particularly strong when the reduction rate in the ferrite region is high, that is, when manufacturing thin steel sheets. Recently, these thin steel sheets for processing have been increasingly subjected to severe processing as processed products become more complex and sophisticated, and excellent ridging resistance has become required. Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception. In other words, in recent years, the introduction of a continuous casting process has made it possible to omit the blooming process, and the heating temperature of steel slabs has been lowered from the conventional 1200°C to around 1100°C or lower in order to improve material quality and save energy. There is a tendency to Furthermore, by immediately producing steel strips with a thickness of 50 mm or less from molten steel,
Processes that can omit the hot rolling heat treatment and rough rolling steps are also being put into practical use. However, all of these new manufacturing processes are disadvantageous in that they destroy the structure (cast structure) formed when molten steel solidifies. In particular, it is extremely difficult to destroy the strong casting texture, which is formed during solidification and has a main orientation of {100}<uvw>. As a result, the final thin steel sheet was susceptible to the aforementioned ridging. (Prior art) Several methods have been proposed for manufacturing thin steel sheets for processing, which are formed into a thin steel sheet of a predetermined thickness in a relatively low temperature range below the Ar 3 transformation point, and then do not undergo cold rolling or recrystallization annealing processes. There is. For example, in Japanese Patent Application Laid-Open No. 48-4329, low carbon rimmed steel is heated to 90°C at a temperature below the Ar3 transformation point.
% rolling to make a 4mm thick steel strip yield point 26.1Kg/mm 2 , tensile strength 37.3Kg/mm 2 , elongation 49.7
A production example with a characteristic of %, = 1.29 is shown. Furthermore, in JP-A-52-44718, low carbon rimmed steel is hot-rolled to a thickness of 2.0 mm at a finishing temperature of 800 to 860°C (below the Ar 3 transformation point), and a coiling temperature of 600 to 730°C.
A method for manufacturing a low yield point steel plate with a yield point of 20 kg/mm 2 or less is shown. However, the conical cup value, which is an index of drawability, is about 60.60 to 62.18 mm in the obtained product, which is different from the conventional example.
Compared to 60.58 to 60.61, the drawability is the same or lower. Furthermore, Japanese Patent Application Laid-open No. 53-22850 also discloses that low carbon rimmed steel is hot-rolled at a finishing temperature of 710 to 750°C.
A method for producing a low carbon hot rolled steel sheet is shown, in which the sheet thickness is 1.8 to 2.3 mm and the coiling temperature is 530 to 600°C. However, the conical cup value of the product obtained by this method is also higher than that of the conventional example, as in the case of the above-mentioned Japanese Patent Laid-Open No. 52-44718, and the drawing property is inferior. Furthermore, Japanese Patent Application Laid-open No. 54-109022 discloses that low carbon aluminum killed steel is hot-rolled at a finishing temperature of 760.
Characteristics of yield point 14.9-18.8Kg/mm 2 , tensile strength 27.7-29.8Kg/mm 2 , and elongation 39.0-44.8% were obtained by making the plate thickness 1.6mm at ~820℃ and coiling temperature 650-690℃. An example of manufacturing a low-strength mild steel plate having the following is disclosed.
In addition, Japanese Patent Application Laid-open No. 59-226149 has C/0.002,
Si/0.02, Mn0.23, P/0.009, S/0.008, Al/
By rolling 0.025, N/0.0021, Ti/0.10 low carbon Al killed steel at 500 to 900℃ with lubricating oil at 76% to form a 1.6mm thick steel strip, = 1.21
An example of manufacturing a thin steel sheet having the following characteristics is shown. However, all of the above-mentioned known technologies have
Of course, no consideration is given to improving the chemical conversion treatment property, as well as to improving the ridging resistance mentioned above. (Problems to be Solved by the Invention) It is possible to provide a method for producing thin steel sheets with excellent ridging resistance, workability, and chemical conversion treatment properties by a new process that does not include not only cold rolling but also recrystallization annealing. , which is the object of this invention. (Means for Solving the Problems) This invention provides that, in the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of below the Ar 3 transformation point and above 500°C, with a rolling reduction rate of 35°C. % or more, strain rate: 300 (s -1 ) or more, and then coiling at a temperature of 400°C or less. . First, the research results that formed the basis of this invention will be explained. The test materials are two types of hot-rolled low carbon aluminum killed steel sheets shown in Table 1, and these test materials A and B are
After heating to 700°C and soaking, rolling was performed in one pass at rolling reductions of 20%, 40%, and 60%.
【表】
このときのひずみ速度ε〓と圧延後の鋼板の値
およびリジング指数との関係を第1図に示す。
値およびリジング指数はひずみ速度を圧下率
とに強く依存し、圧下率35%以上でかつ300s-1以
上の高いひずみ速度にすることにより、値およ
び耐リジング性は著しく向上した。
なおひずみ速度(ε〓)の計算は以下の式に従つ
た。
ここでn:圧延ロールの回転数(rpm)
r:圧下率(%)/100
R:圧延ロールの半径(mm)
H0:圧延前の板厚(mm)
また表2に示した供試鋼Cを用い6列からなる
圧延機を用いて、圧延後の鋼帯の巻取り温度と化
成処理性との関係について調べた結果を第2図に
示す。最終スタンドにおける仕上圧延温度700℃、
圧下率40%、そしてひずみ速度704s-1であつた。[Table] Figure 1 shows the relationship between the strain rate ε〓, the value of the steel plate after rolling, and the ridging index. The value and the ridging index strongly depend on the strain rate and the rolling reduction, and by increasing the rolling reduction to a high strain rate of 300 s -1 or higher, the value and the ridging resistance were significantly improved. The strain rate (ε〓) was calculated according to the following formula. Where, n: Rotation speed of rolling roll (rpm) r: Reduction ratio (%)/100 R: Radius of rolling roll (mm) H 0 : Thickness of plate before rolling (mm) Also, the test steel shown in Table 2 Fig. 2 shows the results of an investigation into the relationship between the coiling temperature of the steel strip after rolling and the chemical conversion treatability using a rolling mill consisting of six rows of steel. Finish rolling temperature at final stand 700℃,
The reduction rate was 40% and the strain rate was 704s -1 .
【表】
同図より明らかなように、巻取り温度を400℃
以下とした場合に、化成処理性が著しく向上し
た。
なお化成処理性は、鋼板に脱脂、水洗、りん酸
塩処理を施し、以下に述べるピンホールテストを
行つた時のピンホール面積率で評価した。またり
ん酸処理は日本パーカライジング(株)製BT3112を
用い55゜で全酸度14.3、遊離酸度0.5に調整し、ス
プレーで120秒間吹付けた。
ピンホールテスト
試験面に鉄イオンと反応して発色する試薬を浸
したろ紙を密着させて、鋼板表面に残留するりん
酸結晶未付着部分を検出し、それを画像解析して
ピンホール面積率として数値化した。化成処理性
の評価基準は、ピンホール面積率が0.5%以下が
10.5〜2%が2、2〜9%が3、9〜15%が4、
15%以上が5として求めた。1と2は実用上問題
のないピンホール面積率を示す。
発明者らは、これらの基礎的データに基づき研
究を重ねた結果、以下のように製造条件を規制す
ることにより、耐リジング性、加工性および化成
処理性に優れる薄鋼板が製造できることを確認し
た。
(1) 鋼組成
高ひずみ速度圧延の効果は本質的には鋼組成に
依存しない。ただし、一定レベル以上の加工性を
確保するためには、侵入型固溶元素であるC,N
はそれぞれ0.10%以下、0.01%以下であることが
好ましい。また鋼中OをAlの添加により低減す
ることは、材質とくに延性の向上に有利である。
さらにより優れた加工性を得るためにC,Nを安
定な炭窒化物として析出固定可能な特殊元素たと
えばTi,Nb,ZrおよびB等の添加も有効であ
る。
また高強度を得るためにP,SiおよびMn等を
強度に応じて添加することもできる。
(2) 圧延素材の製造法
従来方式、すなわち造塊―分塊圧延もしくは連
続鋳造法により得られた鋼片は当然に適用でき
る。
鋼片の加熱温度は800〜1250℃が適当であり、
省エネルギーの観点から1100℃未満が好適であ
る。連続鋳造から鋼片を再加熱することなく圧延
を開始するいわゆるCC―DR(連続鋳造―直接圧
延)法も勿論適用可能である。
一方溶鋼から直ちに50mm以下の圧延素材を鋳造
する方法(シートバーキヤスター法およびトリツ
プキヤスター法)も省エネルギー、省工程の観点
から経済的メリツトが大きいので、圧延素材の製
造法としてはとりわけ有利である。
(3) 圧延工程
この工程が最も重要であり、低炭素鋼を所定の
板厚に圧延するに当り、仕上圧延において、少な
くとも1パスを、Ar3変態点以下、500℃以上の
温度範囲で、圧下率35%以上、ひずみ速度300s-1
以上で圧延し、ついで、400℃以下の温度で巻取
ることが必須である。
仕上圧延温度がAr3変態点を超える高温域で
は、たとえ圧下率35%以上、ひずみ速度300s-1以
上で圧延を施し、その後に400℃以下で巻取つた
としても、加工性、耐リジング性とも劣るものし
か得られず、一方500℃未満では、変形抵抗の著
しい増大をもたらし、冷間圧延法で特有な問題が
生じるため、仕上圧延温度はAr3変態点〜500℃
の範囲に限定した。
またひずみ速度については、300s-1に満たない
と目標とする材質が確保できないので、300s-1以
上とりわけ500〜2500s-1が好適である。
圧延パス数、圧下率の配分は、上記の条件が満
たされれば任意でよい。
圧延機の配列、構造、ロール径や、潤滑の有無
などは本質的な影響力を持たない。
巻取り温度については、400℃を超えると前掲
第2図に示したように化成処理性の劣化が著しい
ので、400℃以下とする必要がある。
なお再結晶焼鈍処理については、原則として不
要であるが、材質上の要請から、圧延後のランア
ウトテーブル上および巻とり工程で保熱、均熱処
理を施すこと、また必要に応じて圧延後に多少の
加熱処理を施すことを禁ずるものではない。
(4) 酸洗、調質圧延
上述の手順で得られた鋼帯は、従来よりも低温
域での圧延であるため酸化層は薄く、酸洗性は極
めて良好であるので、酸洗せずに使用できる用途
も広い。また脱スケールは、従来の酸による除去
の他に機械的除去も可能である。さらに形状矯
正、表面粗度調整などを目的として、10%以下の
調質圧延を加えることができる。
(5) 表面処理
かくして得られる鋼帯は、亜鉛めつき(合金系
を含む)、錫めつきおよびほうろう性など表面処
理性に優れるので、各表面処理原板として適用で
きる。
(作 用)
耐リジング性さらには値が格段に向上する理
由については、次のとおりと考えられる。
圧延後の再結晶集合組織の形成は、圧延時に導
入される加工ひずみ量に大きく依存することが知
られている。すなわち、{222}方位粒に対する加
工ひずみ量が多いと、{222}方位を主方位とする
再結晶集合組織が形成される。従来行われてきた
圧延速度では、圧延時に導入される加工ひずみは
{200}方位粒が多く、そのため再結晶集合組織に
は{200}方位が集積しその結果低い値しか得
られなかつた。
しかしながらこの発明に従う高ひずみ速度圧延
では、{222}方位粒に導入される加工ひずみ量が
増大し、その結果{222}方位を主方位とする再
結晶集合組織が形成されるので、値が格段に向
上する。
さらに、{222}方位粒への加工ひずみにより、
{222}方位粒の再結晶が優先的に進行するため、
リジング発生の主原因である{200}方位粒を侵
食し、耐リジング性も向上する。
(実施例)
表3に示す組成鋼をそれぞれ、表4に示す方法
で板厚20〜40mmのシートバーにした後、6列から
成る圧延機を用いて板厚0.8〜1.6mmの薄鋼板とし
た。このとき最後列のスタンドにおいて高ひずみ
速度圧延を行つた。また巻取り温度も300〜700℃
温度範囲で種々に変更した。
かくして得られた薄鋼板につき、酸洗、調質圧
延(圧下率0.5〜1%)後の材料特性を表4に示
す。なお引張特性はJIS5号試験片として求めた。
またリジング性は、圧延方向から切り出したJIS5
号試験片を用い、15%の引張予ひずみを付加した
ものについて、表面の凹凸を目視法にて1(良)
〜5(劣)の評価をした。この評価は、在来の低
炭素冷延鋼板の製造方法によるとき、リジングが
事実上現れなかつたので評価基準が確立していな
い。従つて、本発明では従来ステンレス鋼につい
ての目視法による指数評価基準をそのまま準用し
た。評価1,2は実用上問題のないリジング性を
示す。[Table] As is clear from the figure, the winding temperature is 400℃.
When the following conditions were used, chemical conversion treatment properties were significantly improved. The chemical conversion treatment property was evaluated by the pinhole area ratio when the steel plate was degreased, washed with water, and treated with phosphate, and the pinhole test described below was performed. The phosphoric acid treatment was carried out using BT3112 manufactured by Nippon Parkerizing Co., Ltd. at 55°, with total acidity adjusted to 14.3 and free acidity 0.5, and sprayed for 120 seconds. Pinhole test A filter paper impregnated with a reagent that reacts with iron ions to develop color is closely attached to the test surface to detect areas where phosphoric acid crystals remain on the surface of the steel plate, and this is image-analyzed to determine the pinhole area percentage. Quantified. The evaluation criteria for chemical conversion treatment is that the pinhole area ratio is 0.5% or less.
10.5-2% is 2, 2-9% is 3, 9-15% is 4,
More than 15% gave it a rating of 5. 1 and 2 indicate pinhole area ratios that pose no problem in practice. As a result of repeated research based on these basic data, the inventors confirmed that by regulating the manufacturing conditions as shown below, it is possible to manufacture thin steel sheets with excellent ridging resistance, workability, and chemical conversion treatment properties. . (1) Steel composition The effects of high strain rate rolling essentially do not depend on the steel composition. However, in order to ensure workability above a certain level, C and N, which are interstitial solid solution elements, must be
are preferably 0.10% or less and 0.01% or less, respectively. Further, reducing O in steel by adding Al is advantageous for improving material quality, especially ductility.
Furthermore, in order to obtain even better workability, it is also effective to add special elements such as Ti, Nb, Zr, and B, which can precipitate and fix C and N as stable carbonitrides. Furthermore, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength. (2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can of course be applied. The appropriate heating temperature for the steel billet is 800 to 1250℃.
From the viewpoint of energy saving, the temperature is preferably less than 1100°C. Of course, the so-called CC-DR (continuous casting-direct rolling) method, in which rolling is started without reheating the steel billet after continuous casting, is also applicable. On the other hand, the methods of immediately casting rolled material of 50 mm or less from molten steel (sheet bar caster method and trip caster method) also have great economic merits from the viewpoint of energy saving and process saving, so they are particularly advantageous as methods for manufacturing rolled material. It is. (3) Rolling process This process is the most important.When rolling low carbon steel to a predetermined thickness, at least one pass is performed in the finish rolling at a temperature range of below the Ar 3 transformation point and above 500℃. Reduction rate of 35% or more, strain rate of 300s -1
It is essential to roll the material at a temperature above 400°C and then to wind it at a temperature below 400°C. In the high temperature range where the finish rolling temperature exceeds the Ar 3 transformation point, even if rolling is performed at a reduction rate of 35% or more and a strain rate of 300s -1 or more, and then coiled at 400℃ or less, the workability and ridging resistance will deteriorate. On the other hand, temperatures lower than 500℃ result in a significant increase in deformation resistance, causing problems specific to the cold rolling process.
limited to the range of Regarding the strain rate, if the strain rate is less than 300 s -1 , the target material quality cannot be secured, so a strain rate of 300 s -1 or more, especially 500 to 2500 s -1 is preferable. The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied. The arrangement, structure, roll diameter, and presence or absence of lubrication of the rolling mill have no essential influence. Regarding the winding temperature, if it exceeds 400°C, the chemical conversion treatment property deteriorates significantly as shown in FIG. 2 above, so it is necessary to keep it below 400°C. In principle, recrystallization annealing treatment is not necessary, but due to material requirements, heat retention and soaking treatment must be performed on the runout table after rolling and during the winding process, and if necessary, some heat treatment must be performed after rolling. Heat treatment is not prohibited. (4) Pickling and temper rolling The steel strip obtained by the above procedure has a thin oxidation layer because it is rolled at a lower temperature than conventional methods, and has extremely good pickling properties, so it is not pickled. It can also be used for a wide range of purposes. In addition to conventional acid removal, mechanical removal can also be used for descaling. Furthermore, temper rolling of 10% or less can be applied for the purpose of shape correction, surface roughness adjustment, etc. (5) Surface treatment The steel strip thus obtained has excellent surface treatment properties such as galvanizing (including alloys), tin plating, and enameling, so it can be used as a base sheet for various surface treatments. (Function) The reason why the ridging resistance and value are significantly improved is considered to be as follows. It is known that the formation of a recrystallized texture after rolling is largely dependent on the amount of processing strain introduced during rolling. That is, when the amount of processing strain on {222} oriented grains is large, a recrystallized texture with the {222} orientation as the main orientation is formed. At conventional rolling speeds, many {200} oriented grains are affected by the processing strain introduced during rolling, and therefore {200} oriented grains accumulate in the recrystallized texture, resulting in only a low value being obtained. However, in the high strain rate rolling according to the present invention, the amount of processing strain introduced into the {222} oriented grains increases, and as a result, a recrystallized texture with the {222} orientation as the main orientation is formed, so the value is significantly lower. improve. Furthermore, due to processing strain on {222} oriented grains,
Since recrystallization of {222} oriented grains proceeds preferentially,
It erodes {200} oriented grains, which are the main cause of ridging, and improves ridging resistance. (Example) The composition steels shown in Table 3 were made into sheet bars with a thickness of 20 to 40 mm by the method shown in Table 4, and then made into thin steel plates with a thickness of 0.8 to 1.6 mm using a rolling mill consisting of 6 rows. did. At this time, high strain rate rolling was performed in the last row of stands. Also, the winding temperature is 300 to 700℃.
Various changes were made in the temperature range. Table 4 shows the material properties of the thus obtained thin steel sheet after pickling and temper rolling (reduction ratio of 0.5 to 1%). The tensile properties were determined using a JIS No. 5 test piece.
In addition, the ridging property was determined by JIS5 cut out from the rolling direction.
No. 1 test piece was used, and 15% tensile pre-strain was applied, and the surface unevenness was visually inspected to be 1 (good).
Rated ~5 (poor). No evaluation criteria have been established for this evaluation because virtually no ridging appeared when conventional low-carbon cold-rolled steel sheets were produced. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are applied as they are. Ratings 1 and 2 indicate ridging properties that pose no problem in practical use.
【表】【table】
【表】
注 ☆:比較例、無印:適合例
この発明に従つて製造された鋼板は比較例より
も優れた値と耐リジング性および化成処理性を
示している。
(発明の効果)
かくしてこの発明によれば、Ar3変態点〜500
℃の温度範囲における高圧下率、高ひずみ速度圧
延後、低温で巻取ることにより、従来の冷間圧延
のみならず再結晶焼鈍をも省略したアズロールド
のままで、良好な加工性と共に優れた耐リジング
性ならびに化成処理性をもつ薄鋼板を得ることが
でき、しかも圧延素材についてもシートバーキヤ
スター法、ストリツプキヤスター法などに適合す
るなど、加工用薄鋼板の製造工程の大幅な簡略化
が実現できる。[Table] Note: ☆: Comparative example, no mark: Compatible example The steel plate manufactured according to the present invention exhibits better values, ridging resistance, and chemical conversion treatment properties than the comparative example. (Effect of the invention) Thus, according to this invention, Ar 3 transformation point ~ 500
By rolling at a high reduction rate and high strain rate in the temperature range of °C, and then winding at a low temperature, the as-rolled form not only omits conventional cold rolling but also recrystallization annealing, and has good workability and excellent durability. It is possible to obtain thin steel sheets with ridging and chemical conversion properties, and the rolling material is also compatible with the sheet bar caster method, strip caster method, etc., greatly simplifying the manufacturing process of thin steel sheets for processing. can be realized.
第1図は、値およびリジング指数及ぼすひず
み速度の影響を、圧下率をパラメータとして示し
たグラフ、第2図は、化成処理性に及ぼす巻取り
温度の影響を示したグラフである。
FIG. 1 is a graph showing the effect of strain rate on the value and ridging index using rolling reduction as a parameter, and FIG. 2 is a graph showing the effect of winding temperature on chemical conversion treatability.
Claims (1)
て、少なくとも1パスを、 Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上、ひずみ速度:300s-1以上で圧延
し、 ついで400℃以下の温度で巻取ることを特徴と
する、耐リジング性と化成処理性に優れる加工用
アズロールド薄鋼板の製造方法。[Claims] 1. In the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of below the Ar 3 transformation point and above 500°C, at a rolling reduction rate of 35% or above, and at a strain rate of 300 s. A method for manufacturing an as-rolled thin steel sheet for processing, which has excellent ridging resistance and chemical conversion treatment properties, and is characterized by rolling at a temperature of -1 or higher and then coiling at a temperature of 400°C or lower.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4397585A JPH0227414B2 (en) | 1985-03-06 | 1985-03-06 | TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO |
EP86301470A EP0196788B1 (en) | 1985-03-06 | 1986-02-28 | Method of manufacturing formable as rolled thin steel sheets |
US06/835,052 US4861390A (en) | 1985-03-06 | 1986-02-28 | Method of manufacturing formable as-rolled thin steel sheets |
AT86301470T ATE54950T1 (en) | 1985-03-06 | 1986-02-28 | PROCESS FOR THE MANUFACTURE OF ROLLED FORMABLE THIN STEEL PLATES. |
DE8686301470T DE3672864D1 (en) | 1985-03-06 | 1986-02-28 | METHOD FOR PRODUCING ROLLED DEFORMABLE THICK STEEL SHEETS. |
CA000503250A CA1271396A (en) | 1985-03-06 | 1986-03-04 | Method of manufacturing formable as-rolled thin steel sheets |
AU54387/86A AU566498B2 (en) | 1985-03-06 | 1986-03-04 | Producing thin steel sheet |
CN 86102191 CN1013350B (en) | 1985-03-06 | 1986-03-05 | Method of mfg. formable as-rolled thin steel sheets |
KR1019860001578A KR910000007B1 (en) | 1985-03-06 | 1986-03-06 | Method of manufacturing formable ar-rolled thin steel sheets |
BR8600962A BR8600962A (en) | 1985-03-06 | 1986-03-06 | PROCESS OF MANUFACTURING THIN STEEL SHEETS, CONFORMING AS LAMINATES |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4397585A JPH0227414B2 (en) | 1985-03-06 | 1985-03-06 | TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61204324A JPS61204324A (en) | 1986-09-10 |
JPH0227414B2 true JPH0227414B2 (en) | 1990-06-18 |
Family
ID=12678718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4397585A Expired - Lifetime JPH0227414B2 (en) | 1985-03-06 | 1985-03-06 | TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0227414B2 (en) |
-
1985
- 1985-03-06 JP JP4397585A patent/JPH0227414B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61204324A (en) | 1986-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0158255B2 (en) | ||
JPH0257128B2 (en) | ||
JPH0257131B2 (en) | ||
JPH0238648B2 (en) | ||
JPH0227414B2 (en) | TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO | |
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
JPH0227413B2 (en) | TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH0227416B2 (en) | TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH033730B2 (en) | ||
JPH0227417B2 (en) | ||
JPH0257129B2 (en) | ||
JPH0227415B2 (en) | TAIRIJINGUSEITOMETSUKIMITSUCHAKUSEINISUGURERUKAKOYOYOJUKINZOKUMETSUKIUSUKOHANNOSEIZOHOHO | |
JPH0259848B2 (en) | ||
JPH0257130B2 (en) | ||
JPH0257133B2 (en) | ||
JPH034608B2 (en) | ||
JPH0257132B2 (en) | ||
JPH062069A (en) | High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability | |
JPS6213534A (en) | Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability | |
JPH0259845B2 (en) | ||
JPH0561341B2 (en) | ||
JPH0333768B2 (en) | ||
JPH0432128B2 (en) | ||
JPS61270341A (en) | Manufacture of cold rolled steel sheet for deep drawing superior in ridging resistance and chemical conversion treatability | |
JPH033731B2 (en) |