JPH02260588A - Semiconductor laser and manufacture thereof - Google Patents
Semiconductor laser and manufacture thereofInfo
- Publication number
- JPH02260588A JPH02260588A JP8106689A JP8106689A JPH02260588A JP H02260588 A JPH02260588 A JP H02260588A JP 8106689 A JP8106689 A JP 8106689A JP 8106689 A JP8106689 A JP 8106689A JP H02260588 A JPH02260588 A JP H02260588A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light
- semiconductor laser
- type
- tma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 8
- 238000005253 cladding Methods 0.000 abstract description 7
- 239000010408 film Substances 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 5
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 239000012159 carrier gas Substances 0.000 abstract description 2
- 238000006303 photolysis reaction Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 241000024192 Aloa Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、共振器端面の劣化を防止した半導体レーザに
間する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor laser in which deterioration of the cavity end face is prevented.
従来技術によって製造された半導体レーザの主要断面図
を第 図に示す、(01)n型GaAs基板に(02)
n型A l o、 4sG a o、 ssA Sクラ
ッド層、(03)Al1.、+sG a o、 ssA
S活性層。The main cross-sectional view of a semiconductor laser manufactured by the conventional technique is shown in Fig.
n-type A lo, 4sG ao, ssA S cladding layer, (03) Al1. , +sG ao, ssA
S active layer.
(06)P型A 2 o、 as G a o、 ss
A S光ガイド層、(07)PgMAjl!o、a
Gao、i Asクラッド層、(05)P型GaAsキ
ャップ層を順次MOCVD法によりエピタキシャル成長
する。(06)P型A l o、 ssG a o、
ssA s光ガイド層を成長する際には、共振器端面近
傍以外の部分に光照射して、MOCVD法のAI2原料
であるTMAの分解効率を促進し、へβ組成を増加させ
る。光照射により(04)光照射層は、(07)P型ク
ラッド層と同じ組成のP型Aβ。s G a o、 o
sA S層となる。(06) P type A 2 o, as G a o, ss
A S light guide layer, (07) PgMAjl! o, a
A Gao, iAs cladding layer, and a (05) P-type GaAs cap layer are epitaxially grown in sequence by MOCVD. (06) P-type A lo, ssG a o,
When growing the ssA s optical guide layer, light is irradiated to a portion other than the vicinity of the resonator end face to promote the decomposition efficiency of TMA, which is the AI2 raw material of the MOCVD method, and increase the β composition. Upon light irradiation, the (04) light irradiation layer becomes P-type Aβ having the same composition as the (07) P-type cladding layer. s G a o, o
sA This becomes the S layer.
MOCVD法によるエピタキシャル成長終了後、(08
)P型電極、(09)n型電極を蒸着し、チップごとに
襞間して端面LOC構造の半導体し−ザを得る。After epitaxial growth by MOCVD method, (08
) A P-type electrode and (09) an N-type electrode are deposited and folded for each chip to obtain a semiconductor laser having an end face LOC structure.
得られた半導体レーザは、共振器端面近傍でLOC構造
となるため、共振器端面での活性層の光密度が下がり端
面劣化が抑制されると共に、端面以外の領域では光密度
が下がらないため、全体をLOG構造としたときのよう
なしきい値電流の増加を抑制できる。したがって高出力
発振が可能となる。Since the obtained semiconductor laser has an LOC structure near the cavity end face, the optical density of the active layer at the cavity end face is reduced and facet deterioration is suppressed, and the optical density does not decrease in areas other than the end face. It is possible to suppress the increase in threshold current that occurs when the entire structure is formed into a LOG structure. Therefore, high output oscillation is possible.
[発明が解決しようとする課題]
しかし、前述の従来技術では、端面LOC構造半導体レ
ーザな構成する化合物半導体薄膜層をMOCVD法で製
造した後、レーザチップに襞間する際、ウェハー中の光
ガイド層の場所が外観上判別できないため、あらかじめ
成長前の単結晶化合物半導体基板に目印となる溝をエツ
チングにより形成し、紫外光をそれに合わせて照射して
いるが、基板のエツチングに手間がかかる上、照射光が
紫外光であるため、マスク合せがしにくいという問題点
を有していた。そこで本発明はこのような問題点を解決
するもので、その目的とするところは、MOCVD法で
化合物半導体薄膜層を成長したあとで、ウェハー中の光
ガイド層の場所を簡単に判別できる半導体レーザ及びそ
の製造方法を提供するところにある。[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, after manufacturing a compound semiconductor thin film layer constituting an edge LOC structure semiconductor laser using the MOCVD method, when folding it into a laser chip, the light guide in the wafer is removed. Since the location of the layer cannot be visually determined, grooves are etched to serve as landmarks in the single-crystal compound semiconductor substrate before growth, and ultraviolet light is irradiated to match the grooves, but etching the substrate is time-consuming and difficult. However, since the irradiation light is ultraviolet light, it is difficult to match the mask. The present invention is intended to solve these problems, and its purpose is to provide a semiconductor laser that can easily identify the location of a light guide layer in a wafer after growing a compound semiconductor thin film layer using the MOCVD method. and a manufacturing method thereof.
〔課題を解決するための手段]
上記課題を解決するために本発明の半導体レーザ及びそ
の製造方法は、
(1)共振器端面近傍にのみ光ガイド層を有する端面L
OC構造を有し、前記光ガイド層のエピタキシャル成長
中に、共振器端面近傍以外の領域に光照射する工程によ
り製造される半導体レーザにおいて、前記共振器端面近
傍以外の領域の上部半導体層上にIII族金属膜を有す
ることを特徴とする。[Means for Solving the Problems] In order to solve the above problems, the semiconductor laser and the manufacturing method thereof of the present invention provide: (1) an end face L having a light guide layer only in the vicinity of the cavity end face;
In a semiconductor laser having an OC structure and manufactured by a step of irradiating light to a region other than the vicinity of the resonator end face during epitaxial growth of the optical guide layer, III It is characterized by having a group metal film.
(2)前記半導体レーザを構成する半導体層を有機金属
を原料とする成長法で成長後、前記III族金属膜を光
照射しながら成長することを特徴とする。(2) After the semiconductor layer constituting the semiconductor laser is grown by a growth method using an organic metal as a raw material, the Group III metal film is grown while being irradiated with light.
【実 施 例]
本発明の実施例における半導体レーザの主要断面図を第
1図に示す、(101)n型GaAs基板に、(102
)n型A 420.41G a o、 ssA sクラ
ッド層、(103)Aj2o、+5Gao、5sAS活
性層、(106)P型A j! o、 ssG a o
、 aaA S光ガイド層、(107)P型Alo、s
Gao、s Asクラッド層、(105)P型GaA
Sキャップ層を順次MOCVD法によりエピタキシャル
成長する。[Example] A main cross-sectional view of a semiconductor laser according to an example of the present invention is shown in FIG.
) n-type A 420.41G a o, ssA s cladding layer, (103) Aj2o, +5Gao, 5sAS active layer, (106) P-type A j! o, ssG ao
, aaA S light guide layer, (107) P-type Alo,s
Gao, s As cladding layer, (105) P-type GaA
The S cap layer is sequentially grown epitaxially by MOCVD.
(106)P型A 12 o、 ssG a o、 s
sA s光ガイド層を成長する際には、共振器端面近傍
以外の部分に光照射して、MOCVD法のAg原料であ
るTMAの分解効率を促進し、/1組成を増加させる。(106) P-type A 12 o, ssG a o, s
When growing the sA s optical guide layer, light is irradiated to a portion other than the vicinity of the cavity end face to promote the decomposition efficiency of TMA, which is the Ag raw material for MOCVD, and increase the /1 composition.
光照射により(104)光照射層は、(107)P型ク
ラッド層と同じ組成のP型A2゜、s Ga a、 s
A 8層となる。半導体層を成長後、成長温度を20
0℃に下げ、キャリアガスとTMAのみを流し、共振器
端面近傍以外の部分に光照射する。TMAは200℃で
はほとんど熱分解しないので、光照射部のみTMAの光
分解により(110)Ag層が堆積する。By light irradiation, the (104) light irradiation layer becomes P-type A2°, s Ga a, s with the same composition as the (107) P-type cladding layer.
A: There will be 8 layers. After growing the semiconductor layer, increase the growth temperature to 20
The temperature is lowered to 0° C., only the carrier gas and TMA are flowed, and parts other than the vicinity of the resonator end face are irradiated with light. Since TMA hardly thermally decomposes at 200° C., a (110) Ag layer is deposited by photodecomposition of TMA only in the light irradiated area.
第2図に本発明の実施例における半導体レーザの製造装
置の主要構成図を示す、(209)の原料ガス導入系か
ら(210)の反応管中に原料ガスを入れ(211)の
加熱された基板上に流して化合物半導体薄膜を成長する
。(106)光ガイド層及び(1to)A42層の成長
中には、(201)のエキシマレーザからの紫外光を(
202)のシリンドリカルレンズで整形して(203)
のミラーで反射させ(204)、(205)の合成石英
レンズで平行ビームとしく206)のマスクを通しく2
07)の縮小レンズで基板に焦点を結ばせて、半導体レ
ーザの共振器端面近傍以外の領域となる場所に光照射を
行う。Figure 2 shows a main configuration diagram of a semiconductor laser manufacturing apparatus according to an embodiment of the present invention. Raw material gas is introduced from the raw material gas introduction system (209) into the reaction tube (210) and heated in (211). A compound semiconductor thin film is grown by pouring it onto a substrate. During the growth of the (106) light guide layer and the (1to)A42 layer, the ultraviolet light from the excimer laser (201) is
Shaped with a cylindrical lens (202) (203)
It is reflected by the mirror (204), made into a parallel beam by the synthetic quartz lens (205), and passed through the mask (206).
07) The substrate is focused by the reduction lens, and light is irradiated to a region other than the vicinity of the cavity end face of the semiconductor laser.
(110)AJ2層の堆積後、熱CVD法により(11
1)SiOs層を形成し、共振器方向に平行なストライ
ブ状に(ll’1)SiOs層をエツチングし、さらに
その上部に(ios)p型オーミック電極、(101)
n型GaAs基板側に(109)n型オーミック電極を
蒸着形成する。After depositing the (110) AJ2 layer, (11
1) Form a SiOs layer, etch the SiOs layer in stripes (ll'1) parallel to the resonator direction, and then add a (ios) p-type ohmic electrode, (101) on top of the SiOs layer.
A (109) n-type ohmic electrode is formed by vapor deposition on the n-type GaAs substrate side.
第3図は襞間前の半導体レーザウェハーを示す図である
。(310)Aff層上部以外の(312)II厚の薄
い領域に沿って襞間を行ない共振器を形成して利得導波
型の端面LOC構造半導体レーザを得る。得られた半導
体レーザは、共振器端面近傍のみ、活性層の光密度が下
がり、端面劣化が抑制されると共に、端面以外の領域で
は活性層の光密度が下がらず、全体をLOG構造とした
ときのようなしきい値電流の増加を抑制できるため高出
力発振が可能となる。FIG. 3 is a diagram showing the semiconductor laser wafer before the folds. A resonator is formed by forming folds along a thin region of (312)II thickness other than the upper part of the (310)Aff layer, thereby obtaining a gain waveguide type end facet LOC structure semiconductor laser. In the obtained semiconductor laser, the optical density of the active layer decreases only in the vicinity of the cavity end face, suppressing the deterioration of the end face, and the optical density of the active layer does not decrease in the region other than the end face, and when the whole has a LOG structure. Since the increase in the threshold current can be suppressed, high output oscillation is possible.
本実施例ではIII族金属膜をA2としたが、有機金属
を原料とするIII族金属であればGaでもIn等でも
もちろんかまわない、また埋め込み再成長を行う屈折率
導波型半導体レーザにおいても、リブ上部に膜厚段差が
生じるので、もちろん本発明は有効であり光ガイド層を
有する領域を外観で判別することができる。In this example, A2 was used as the group III metal film, but any group III metal made from an organic metal, such as Ga or In, may of course be used. Since a step in film thickness occurs above the rib, the present invention is of course effective, and the region having the light guide layer can be determined by appearance.
〔発明の効果1
以上述べたように本発明によれば、化合物半導体薄膜層
を成長後、LOG領域以外の部分に光照射しながらII
I族金属膜を堆積させることにより、端面LOC構造を
もつ半導体レーザのウェハーをエピタキシャル成長後、
レーザチップに襞間する際、L OCfil域の場所が
外観で判別できるため、成長前の基板に目印となる溝を
エツチングにより形成する工程や、前記の溝に合わせて
光を照射するためのアライメント工程が必要なくなるた
め。[Effect of the invention 1 As described above, according to the present invention, after growing a compound semiconductor thin film layer, II
After epitaxial growth, a semiconductor laser wafer with an edge LOC structure is formed by depositing a Group I metal film.
When folding a laser chip, the location of the LOCfil region can be determined by its appearance, so there is a process of etching a groove to serve as a mark on the substrate before growth, and an alignment process to irradiate light to match the groove. This eliminates the need for the process.
製造工程の大幅な短縮が可能となる。その結果。This makes it possible to significantly shorten the manufacturing process. the result.
歩留りも向上し、共振器端面の劣化が抑制された最大光
出力の大きい長寿命の半導体レーザを低い製造コストで
簡単に製造できるという効果を有する。The yield is improved, and a long-life semiconductor laser with a high maximum optical output and suppressed deterioration of the resonator end face can be easily manufactured at a low manufacturing cost.
第1図は本発明の実施例における半導体レーザの斜視図
。
第2図は本発明の実施例における半導体レーザの製造装
置の主要構成図。
第3図(a)、(b)は本発明の実施例における襞間前
の半導体レーザのウェハの(a)上視図と(b)主要断
面図。
第4図は従来の半導体レーザの主要断面図。
(101) 、
(105) 、
(108) 、
(109) 、
(111) 、
(2l O
(2l 2
(301) 、 (401)
・・・n型GaAs基板
(305) 、 (405)
・・・P型GaAsキャップ層
(30B)、 (408)
・・・P型電極
(309)、 (409)
・・・n型電極
・・・Si0g層
・・・シリンドリカルレンズ
・・・ミラー
・・・合成石英凹レンズ
・・・合成石英凸レンズ
・・・高周波発振器
・・・原料ガス導入系
・・・反応管
・・・排気系
/ρコ A’!Aloa;host%s 7う訃・7
を/10 Af!、fil
多う)刊FIG. 1 is a perspective view of a semiconductor laser in an embodiment of the present invention. FIG. 2 is a main configuration diagram of a semiconductor laser manufacturing apparatus in an embodiment of the present invention. FIGS. 3(a) and 3(b) are (a) a top view and (b) a main sectional view of a semiconductor laser wafer before the folds in an embodiment of the present invention. FIG. 4 is a main cross-sectional view of a conventional semiconductor laser. (101), (105), (108), (109), (111), (2l O (2l 2 (301), (401)... n-type GaAs substrate (305), (405)... P-type GaAs cap layer (30B), (408)...P-type electrode (309), (409)...n-type electrode...Si0g layer...cylindrical lens...mirror...synthetic quartz Concave lens...synthetic quartz convex lens...high frequency oscillator...raw material gas introduction system...reaction tube...exhaust system/ρ A'!Aloa;host%s 7 Death・7
/10 Af! , fil Taou) Published by
Claims (2)
OC構造を有し、前記光ガイド層のエピタキシャル成長
中に、共振器端面近傍以外の領域に光照射する工程によ
り製造される半導体レーザにおいて、前記共振器端面近
傍以外の領域の上部半導体層上にIII族金属膜を有する
ことを特徴とする半導体レーザ。(1) End face L having a light guide layer only near the cavity end face
In a semiconductor laser having an OC structure and manufactured by a step of irradiating light to a region other than the vicinity of the cavity end face during epitaxial growth of the optical guide layer, III A semiconductor laser characterized by having a group metal film.
料とする成長法で成長後、III族金属績を光照射しなが
ら成長することを特徴とする半導体レーザの製造方法。(2) A method for manufacturing a semiconductor laser, which comprises growing a semiconductor layer constituting the semiconductor laser by a growth method using an organic metal as a raw material, and then growing the group III metal layer while irradiating it with light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8106689A JPH02260588A (en) | 1989-03-31 | 1989-03-31 | Semiconductor laser and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8106689A JPH02260588A (en) | 1989-03-31 | 1989-03-31 | Semiconductor laser and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02260588A true JPH02260588A (en) | 1990-10-23 |
Family
ID=13736021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8106689A Pending JPH02260588A (en) | 1989-03-31 | 1989-03-31 | Semiconductor laser and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02260588A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009112A (en) * | 1994-09-16 | 1999-12-28 | Rohm Co., Ltd. | Semiconductor laser and manufacturing method therefor |
-
1989
- 1989-03-31 JP JP8106689A patent/JPH02260588A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009112A (en) * | 1994-09-16 | 1999-12-28 | Rohm Co., Ltd. | Semiconductor laser and manufacturing method therefor |
US6130108A (en) * | 1994-09-16 | 2000-10-10 | Rohm Co., Ltd. | Semiconductor laser and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1014520A1 (en) | Nitride semiconductor laser and method of fabricating the same | |
US5573976A (en) | Method of fabricating semiconductor laser | |
JPH02260588A (en) | Semiconductor laser and manufacture thereof | |
JPS63114287A (en) | Semiconductor laser device and manufacture thereof | |
JPH0271574A (en) | Semiconductor laser and manufacture thereof | |
JPH01227485A (en) | Semiconductor laser device | |
JP2669142B2 (en) | Method for manufacturing window structure semiconductor laser | |
JP2679057B2 (en) | Manufacturing method of semiconductor laser | |
JP2545233B2 (en) | Method for manufacturing semiconductor laser | |
JP2629194B2 (en) | Manufacturing method of semiconductor laser | |
JPH0265286A (en) | Semiconductor laser | |
JPH06125132A (en) | Method of manufacturing semiconductor laser element | |
JPH04345079A (en) | Semiconductor laser equipment and its manufacture | |
JPH02232982A (en) | Manufacture of semiconductor laser | |
JP2629722B2 (en) | Manufacturing method of semiconductor laser | |
JPH02119285A (en) | Manufacture of semiconductor laser | |
JPH0349286A (en) | Semiconductor laser device and manufacturing process | |
JPH03126284A (en) | Manufacture of semiconductor laser | |
KR0179017B1 (en) | Method of manufacturing laser diode | |
JPH03231484A (en) | Manufacture of semiconductor laser | |
JPH02230785A (en) | Manufacture of semiconductor laser | |
JPS6018984A (en) | Light-emitting element and manufacture thereof | |
JPS60118691A (en) | Method for growing crystal | |
JPS61187388A (en) | Manufacture of semiconductor laser | |
JPH0258288A (en) | Semiconductor laser |