[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0226023A - Monitor of discharge for plasma treatment - Google Patents

Monitor of discharge for plasma treatment

Info

Publication number
JPH0226023A
JPH0226023A JP63175007A JP17500788A JPH0226023A JP H0226023 A JPH0226023 A JP H0226023A JP 63175007 A JP63175007 A JP 63175007A JP 17500788 A JP17500788 A JP 17500788A JP H0226023 A JPH0226023 A JP H0226023A
Authority
JP
Japan
Prior art keywords
voltage
discharge
plasma
high frequency
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63175007A
Other languages
Japanese (ja)
Inventor
Etsuro Watanabe
悦朗 渡辺
Fumikazu Ito
伊藤 文和
Tsutomu Okabe
勉 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63175007A priority Critical patent/JPH0226023A/en
Publication of JPH0226023A publication Critical patent/JPH0226023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To detect an abnormal discharge in an early stage by a method wherein the electrode voltage of a plasma treatment apparatus is taken out and the application duration time of a discharge voltage, frequency of the abnormal voltage generation and various voltage data are detected and displayed from envelope components of a radio frequency voltage. CONSTITUTION:A radio frequency voltage appearing at the electrode 104a of a plasma treatment apparatus 1 is taken out by a radio frequency voltage detector 2 and the radio frequency voltage is regulated so as to be at a voltage level at which the voltage is easily subjected to a signal treatment. The envelopes VP+ and VP- of the radio frequency voltage are taken out by an envelope detecting parts 4 and the status of the discharge is monitored with the signals. In other words, the duration time of a plasma is measured, generation of an abnormal voltage is detected and counted and the peak of the electrode voltage, the peak voltage and the cathode drop voltage of the plasma treatment apparatus are measured and obtained data are displayed and processed. With this constitution, all the variations of the plasma status and the abnormal discharges are quantitatively monitored and warnings of highly harmful influences upon the plasma treatment apparatus and production of defective semiconductor devices can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ処理技術に係シ、特にプラズマ放電
の不安定による、半導体デバイスや、プラズマ処理装置
に与える悪影響を低減する場合や、装置やプロセスの不
具合いを早期に発見する場合に有効な、プラズマ処理用
放電状態監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to plasma processing technology, particularly for reducing the adverse effects of unstable plasma discharge on semiconductor devices and plasma processing equipment. The present invention relates to a discharge state monitoring device for plasma processing, which is effective for early detection of process defects.

〔従来の技術〕[Conventional technology]

プラズマ処理装置の大きな課題の1つに、装置の安定稼
動の長期維持がある。装置の安定性が乱れると、プラズ
マ処理中にプラズマ状態が変化したシ異常放電が発生す
る。これらは、処理室の損傷、プラズマ処理の不完全な
半導体デバイスの大量生産に太きく関与し、半導体製造
工程における歩留りやスルーブツトの低下の大きな原因
となっている。
One of the major issues facing plasma processing equipment is maintaining stable operation of the equipment over a long period of time. If the stability of the apparatus is disrupted, abnormal discharge occurs when the plasma state changes during plasma processing. These factors greatly contribute to damage to processing chambers and mass production of semiconductor devices with incomplete plasma processing, and are a major cause of reduction in yield and throughput in semiconductor manufacturing processes.

プラズマ状態の変化を補える方法としては、処理室に観
測用の覗き窓を設け、作業者がプラズマ処理室内を観察
することを行っていた。しかし、プラズマ処理装置の構
造上観察が不十分なことが多く、プラズマの状態変化を
正しく補えるまでには至らなかりた。また、プラズマ放
電は、装置毎に固有の特徴を持っておシ、各装置に一人
ずつの観測者がつかなくてはならず、現実的に困難であ
った0 プラズマ状態監視装置の公知技術には、例えば特開昭5
9−41475号公報がある。これは、プラズマ処理装
置に、■プラズマ電位を検出するシングル又はダブルプ
ローブ、■覗き窓を介しプラズマ光を検出するフォトセ
ンサ、■放電印加電圧の直流分を検出する陰極降下電圧
検出器、06つの放電検出装置を設け、それらの検出信
号を、あらかじめ定めた設定値と比較し、放電状態を判
定し、その結果に基きトリガ電源を制御してプラズマ処
理装置を自動化するものである。
One way to compensate for changes in the plasma state is to install an observation window in the processing chamber so that workers can observe the inside of the plasma processing chamber. However, due to the structure of plasma processing equipment, observation is often insufficient, and it has not been possible to accurately compensate for changes in the plasma state. In addition, plasma discharge has unique characteristics for each device, and each device must have one observer, which is practically difficult. For example, JP-A No. 5
There is a publication No. 9-41475. This consists of a plasma processing device that includes: ■ a single or double probe that detects plasma potential, ■ a photosensor that detects plasma light through a viewing window, ■ a cathode drop voltage detector that detects the DC component of the discharge applied voltage. A discharge detection device is provided, the detected signals are compared with a predetermined setting value, the discharge state is determined, and the trigger power source is controlled based on the result to automate the plasma processing apparatus.

この方法は、プラズマ電位、プラズマ光、陰極降下電圧
と、放電状態を様々な面から検討することができ、優れ
た方法である。しかしこの方法はプラズマ処理装置の各
部に様々な検出器を設置しなくてはならず、既製のプラ
ズマ処理装置に簡単にをり付けることは困難であった。
This method is an excellent method because it allows the examination of plasma potential, plasma light, cathode drop voltage, and discharge state from various aspects. However, this method requires the installation of various detectors in each part of the plasma processing apparatus, making it difficult to simply attach it to an existing plasma processing apparatus.

その他異常放電を自動的にモニタあるいは抑制する公知
技術には、例えば特開昭57−174465号公報にあ
るように、電極に発生する直流バイアス電圧VDOをモ
ニタし、予め定めた最適のVDOとなる様に処理室内の
圧力を制御するものがあった。
Other known techniques for automatically monitoring or suppressing abnormal discharge include, for example, as disclosed in Japanese Unexamined Patent Publication No. 57-174465, which monitors the DC bias voltage VDO generated at the electrode and adjusts it to a predetermined optimum VDO. There were devices that controlled the pressure inside the processing chamber.

この方法は、直流バイアス電圧VDOのゆつ〈シとした
変化で生じる異常放電を検出することに関しては優れた
ものであるが、モニタ装置にインダクタンスを用いてい
るため、直流バイアス電圧vDoの急峻な変化による異
常放電や直流バイアス電圧vn。
This method is excellent for detecting abnormal discharges caused by gradual changes in the DC bias voltage VDO, but because it uses an inductance in the monitor device, it is Abnormal discharge and DC bias voltage due to changes in vn.

に変化の現われない異常放電を検出することはできなか
り九。
It is not possible to detect abnormal discharges that do not show any change.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術には、既製のプラズマ処理装置に設置する
ための設置方法や、陰極降下電圧が急峻に変化するもの
や、陰極降下電圧に変化の現われないプラズマ状態変化
を検知することに関して配慮されていなかった。また、
プラズマ電位や陰極降下電圧は、プラズマ処理装置やプ
ロセス条件によって犬きく異なり、電圧を検出する部分
はそれに対応できる手段を備えていなければならないが
従来は、それに関して全(配慮されていなかりた。
The above-mentioned conventional technology does not take into account the installation method for installing in an off-the-shelf plasma processing apparatus, the detection of a device in which the cathode drop voltage changes abruptly, or a change in the plasma state in which no change appears in the cathode drop voltage. There wasn't. Also,
Plasma potential and cathode drop voltage vary greatly depending on the plasma processing equipment and process conditions, and the part that detects the voltage must be equipped with a means to deal with it, but in the past, this has not been fully considered.

本発明の目的は、上記従来技術の欠点をなくし全てのプ
ラズマ状態変化や異常放電を定量的に把握し、プラズマ
処理装置に大きな悪影響を与えたυ、不良半導体デバイ
スの生産となる前兆を捕え、ることかできるようにした
プラズマ処理用放電状態監視装置を提供することにある
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, to quantitatively grasp all plasma state changes and abnormal discharges, and to catch signs of υ that have a large negative impact on plasma processing equipment and the production of defective semiconductor devices. An object of the present invention is to provide a discharge state monitoring device for plasma processing that can perform the following tasks.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するために、プラズマ放電の不安定時に
おけるプラズマ処理装置の各種パラメータを測定した。
In order to solve the above problem, various parameters of the plasma processing apparatus were measured when plasma discharge was unstable.

その結果、安定なプラズマ放電が得られている時と比較
してプラズマ放電の不安定時はプラズマ処理装置の電極
電圧に著しい変化が現われることがわかりた。そこで、
電極の電圧をよシ詳細に測定してみると、安定放電中は
、プラズマ処理装置の電極には振幅一定のある周期を持
った高周波電圧が印加されているが、プラズマ放電に異
常が発生すると、■電圧の発生継続時間すなわちプラズ
マ放電の継続時間が大きくばらつく、■電極電圧包絡線
に急峻な鋭い変動が発生する、■電極電圧のピーク・ピ
ーク電圧や陰極降下電圧(高周波電圧中の直流成分)が
安定しない、ことがわかりた。
As a result, it was found that the electrode voltage of the plasma processing apparatus shows a significant change when the plasma discharge is unstable compared to when a stable plasma discharge is obtained. Therefore,
A detailed measurement of the electrode voltage reveals that during stable discharge, a high-frequency voltage with a constant amplitude and a certain period is applied to the electrode of the plasma processing equipment, but when an abnormality occurs in the plasma discharge, , ■ The duration of voltage generation, that is, the duration of plasma discharge, varies greatly; ■ Sharp fluctuations occur in the electrode voltage envelope; ■ Peak-to-peak voltage of the electrode voltage and cathode drop voltage (DC component in high-frequency voltage) ) was found to be unstable.

前記目的は、プラズマ放電の状態を、自動的かつ正確に
評価することにより達成できるので■■■にあげたよう
な、電極電圧の変化状態を、自動的かつ正確に監視する
ことが有効である。そこで、プラズマ処理装置の電極電
圧をプラズマ処理装置固有の電圧レベルに影響されるこ
となく取り出し、取り出した高周波電圧の包絡線成分か
ら放電電圧の印加継続時間、異常電圧の発生頻度、各種
電圧データを検出表示する構成とする。また検出したそ
れぞれのデータを演算処理することでプラズマ放電の状
態評価を正確かつ定量的に行うことができる。
The above objective can be achieved by automatically and accurately evaluating the state of plasma discharge, so it is effective to automatically and accurately monitor the state of change in electrode voltage as mentioned in ■■■. . Therefore, we extracted the electrode voltage of the plasma processing equipment without being affected by the voltage level specific to the plasma processing equipment, and from the envelope component of the extracted high-frequency voltage, we determined the application duration of the discharge voltage, the frequency of occurrence of abnormal voltage, and various voltage data. The configuration is such that it is detected and displayed. Further, by processing each detected data, it is possible to accurately and quantitatively evaluate the state of plasma discharge.

〔作用〕[Effect]

本発明のプラズマ処理用放電状態監視装置は、プラズマ
処理装置の電極部に発生する高周波電圧を高周波電圧検
出器で取り出し、得た高周波電圧を信号処理しやすい電
圧レベルになるよう調整し包絡線検出部で高周波電圧の
包絡線を取り出し、この包絡線信号によシ放電状態を監
視する。監視は、■放電状態監視装置内の放電継続時間
計測部でプラズマ放電の継続時間を計測、■異常電圧検
出部で異常電圧の発生を検知及びカウント、■電圧計測
部で、プラズマ処理装置の電極電圧のピーク・ピーク電
圧や陰極降下電圧を計測し、得たデータを表示器に表示
したシ、インターフェース部を介して、演算処理部で演
算処理することKよシ行う。
The discharge state monitoring device for plasma processing of the present invention uses a high frequency voltage detector to extract the high frequency voltage generated in the electrode section of the plasma processing device, adjusts the obtained high frequency voltage to a voltage level that is easy to process the signal, and detects the envelope. The envelope of the high-frequency voltage is extracted at the section, and the discharge state is monitored using this envelope signal. Monitoring consists of: ■ Measuring the duration of plasma discharge with the discharge duration measuring section in the discharge condition monitoring device; ■ Detecting and counting the occurrence of abnormal voltage with the abnormal voltage detection section; ■ Using the voltage measuring section to measure the duration of plasma discharge The peak-to-peak voltage and the cathode drop voltage are measured, and the obtained data is displayed on the display and then processed by the arithmetic processing section via the interface section.

プラズマ処理装置の電極電圧は放電状態をよく現わして
いるので、このように電極電圧を様々な面から調べるこ
とで放電状態を正しく把握できるi〔実施例〕 本発明の実施例を第1図乃至第8図を用いて説明する。
Since the electrode voltage of a plasma processing apparatus well represents the discharge state, it is possible to accurately understand the discharge state by examining the electrode voltage from various aspects. This will be explained using FIGS.

代表的なプラズマ処理装置の構成を、実施例1を示し九
第1図に同時に示した。
The configuration of a typical plasma processing apparatus is also shown in FIG. 1, which shows Example 1.

プラズマ処理装置1は、電源装置とプラズマ発生装置と
から構成されている。
The plasma processing apparatus 1 includes a power supply device and a plasma generation device.

電源装置は、電源101で得た高周波電力を電力増幅器
102で増幅し、プラズマ発生装置と整合をとる整合器
103を介してプラズマ発生装置に必要な電力を供給す
るもの、である。
The power supply device amplifies high frequency power obtained from a power supply 101 with a power amplifier 102, and supplies the necessary power to the plasma generation device via a matching box 103 that matches the plasma generation device.

プラズマ発生装置は、処理室と呼ばれる部分である。処
理室104内は、電力を印加する電極104aプラズマ
処理物105を設置する電極104bで構成され、図示
しない排気装置及びガス供給装置で、常に一定の雰囲気
に保たれている。
The plasma generator is a part called a processing chamber. The inside of the processing chamber 104 includes an electrode 104a for applying electric power and an electrode 104b for placing the plasma-treated object 105, and is always maintained at a constant atmosphere by an exhaust device and a gas supply device (not shown).

〈実施例1〉 本発明の実施例1を説明する。装置の構成は、第1図に
示すように1プラズマ処理装置1の電極104aに電力
を与えたことによシ発生する電圧を取シ出す高周波電圧
検出器2と、該高周波電圧検出器2によって得た高周波
電圧の電圧レベルを減衰させる減衰器3と、減衰器3に
よって減衰した高周波電圧の包絡線V、+  VP−を
取り出す包絡線検出部4と、該包絡線検出部4で得た高
周波電圧の包絡線の継続時間すなわちプラズマ放電の継
続時間を計測する放電継続時間計測部5と、放電継続時
間の計測結果を表示する放電継続時間表示器8と、包絡
線検出部4で検出した高周波電圧の包絡線に急峻な変動
が生じたことを検知し計数する異常電圧検出部6と、該
異常電圧検出部6で計数した異常電圧の発生回数を表示
する異常電圧発生回数表示器9と、包絡線検出部4で検
出した包絡線信号V、+、VP−から、プラズマ処理装
置1の電極104aに印加されている各種の電圧値を計
測する電圧データ処理部7と、計測した電圧データを表
示する電圧データ表示器1oと、これまでに挙げた構成
要素によつて得た、放電継続時間データ、異常電圧発生
回数データ、電圧データを演算処理部に取〕込むための
インターフェース部11と、取シ込んだ各データのバラ
ツキや傾向を監視することでプラズマ放電の状態を評価
する演算処理部12で構成されている。
<Example 1> Example 1 of the present invention will be described. The configuration of the device is as shown in FIG. an attenuator 3 that attenuates the voltage level of the obtained high-frequency voltage; an envelope detection section 4 that extracts the envelope V, + VP- of the high-frequency voltage attenuated by the attenuator 3; A discharge duration measuring section 5 that measures the duration of the voltage envelope, that is, the duration of plasma discharge, a discharge duration indicator 8 that displays the measurement result of the discharge duration, and a high frequency detected by the envelope detection section 4. an abnormal voltage detection unit 6 that detects and counts the occurrence of a steep fluctuation in the voltage envelope; an abnormal voltage occurrence frequency display 9 that displays the number of abnormal voltage occurrences counted by the abnormal voltage detection unit 6; A voltage data processing unit 7 measures various voltage values applied to the electrode 104a of the plasma processing apparatus 1 from the envelope signals V, +, and VP− detected by the envelope detection unit 4, and a voltage data processing unit 7 that measures the measured voltage data. a voltage data display device 1o for display; an interface unit 11 for importing discharge duration data, abnormal voltage occurrence frequency data, and voltage data obtained by the components mentioned above into an arithmetic processing unit; It is comprised of an arithmetic processing unit 12 that evaluates the state of plasma discharge by monitoring variations and trends in each piece of data that has been imported.

次に、このように構成したプラズマ処理用放電監視装置
の動作説明をする。
Next, the operation of the plasma processing discharge monitoring device configured as described above will be explained.

プラズマ処理装置1の電極104aには、処理室104
に電力を与えたことによプ電圧が生じている。
The electrode 104a of the plasma processing apparatus 1 has a processing chamber 104.
A voltage is generated by applying power to the

その電圧を1高周波電圧検出器2、減衰器3によつて取
シ出したものの1例が第3図に示した波形である。この
波形のうち、プラズマ放電の状態をよく表わしているの
が、(1)プラズマ放電の継続時間、(21異常電圧の
発生、(3)ピーク・ピーク電圧、陰極降下電圧(高周
波電圧に含まれる直流成分)である。
An example of the voltage extracted by the high frequency voltage detector 2 and attenuator 3 is the waveform shown in FIG. Among these waveforms, the following are the ones that best represent the state of plasma discharge: (1) duration of plasma discharge, (21 occurrence of abnormal voltage), (3) peak-to-peak voltage, cathode drop voltage (included in high-frequency voltage) DC component).

(1)放電継続時間の計測方法 放電継続時間計測部5の一構成例を第4図、各部の動作
波形を第5図に示し、放電継続時間計測動作を説明する
(1) Method for Measuring Discharge Continuation Time An example of the configuration of the discharge continuation time measuring section 5 is shown in FIG. 4, and operation waveforms of each part are shown in FIG. 5, and the discharge continuation time measurement operation will be explained.

包絡線検出部4で得た包絡線信号vP+・ V、−から
1:1反転器501、加算器502によつて、高周波電
圧のピーク・ピーク電圧VPP (第5図(1))が得
られる。これを比較電圧設定器504を持りた比較器5
03に入力し、放電の有無を第5図(it)のように判
別する。ここで放電布の間だけゲート506によりクロ
ック506を有効にしく第5図(Ill) )、タイマ
カウンタ507で放電継続時間を計測する。バッファ5
08は、放電継続時間表示器8を駆動させるために使用
する。
The peak-to-peak voltage VPP (FIG. 5 (1)) of the high frequency voltage is obtained from the envelope signal vP+, V, - obtained by the envelope detection section 4 by the 1:1 inverter 501 and adder 502. . A comparator 5 having a comparison voltage setting device 504
03, and the presence or absence of discharge is determined as shown in FIG. 5 (it). Here, the clock 506 is enabled by the gate 506 only during the discharge cloth, and the discharge continuation time is measured by the timer counter 507 (FIG. 5). buffer 5
08 is used to drive the discharge duration indicator 8.

(2)異常電圧発生の検知、計数方法 異常電圧検出部6の一構成例を第6図、各部の動作波形
を第7図に示し、異常電圧の検知、計数動作を説明する
。ここでの説明は、包絡線信号vP+の変動検知のみを
行うが、vP−側の変動検知も同様に行えるので省略す
る。
(2) Detection and counting method of abnormal voltage generation An example of the configuration of the abnormal voltage detection section 6 is shown in FIG. 6, and operation waveforms of each part are shown in FIG. 7, and abnormal voltage detection and counting operations will be explained. The description here will be omitted because only the variation detection of the envelope signal vP+ is performed, but the variation detection on the vP- side can be similarly performed.

包絡線検出部4で得た包絡線信号vP+は、高域通過フ
ィルタ602によってその変動分のみが取り出され(第
7図(II) ) 、増幅器605に入力される。
From the envelope signal vP+ obtained by the envelope detection section 4, only its variation is extracted by a high-pass filter 602 (FIG. 7 (II)) and input to an amplifier 605.

増幅器603の増幅率は、低域通過フィルタ601、自
動利得設定器604により、ピーク・ピーク電圧VPP
の大きさに反比例するようになっている(第7図(ll
+1)。この増幅器605の出力をしきい値(Vth■
)設定器605、L * イ値(Vth (り)  設
定器6o6を持った比較器607に入力する(第7図1
1v) )ことでピーク・ピーク電圧VPPの大きさに
対して常に一定比率の異常電圧を検出できる。(すなわ
ち、第7図(1))の■と■の異常電圧は同じ大きさΔ
Vであるが、ピーク・ピーク電圧VPPは■の方が太き
い。■で発生した異常電圧■はVPPの大きさに比べは
るかに小さく装置やプラズマ処理に影響が少いので検出
する必要はない。) このようにして得た検出信号(第7図(■))は、OR
ゲート608を介しカウンタ609に入力し、異常電圧
の発生回数をカウントする。バッファ610は異常電圧
発生回数表示器9を駆動させるために使用する。
The amplification factor of the amplifier 603 is set to the peak-to-peak voltage VPP by the low-pass filter 601 and automatic gain setter 604.
is inversely proportional to the size of (Figure 7 (ll
+1). The output of this amplifier 605 is set to a threshold value (Vth■
) setter 605, L*I value (Vth (ri) input to comparator 607 with setter 6o6 (Fig. 7
1v)) Therefore, it is possible to always detect an abnormal voltage at a constant ratio to the magnitude of the peak-to-peak voltage VPP. (In other words, the abnormal voltages of ■ and ■ in Fig. 7 (1)) have the same magnitude Δ
V, but the peak-to-peak voltage VPP is larger in ■. The abnormal voltage (2) generated in (2) is much smaller than the magnitude of VPP and has little effect on the equipment and plasma processing, so there is no need to detect it. ) The detection signal obtained in this way (Fig. 7 (■)) is OR
The signal is inputted to a counter 609 via a gate 608, and the number of occurrences of abnormal voltage is counted. The buffer 610 is used to drive the abnormal voltage occurrence count display 9.

(31[圧計測方法 計測する電圧は、l)放電中に逐次変動するピーク・ピ
ーク電圧vPP、陰極降下電圧VDO% l)放電中の
vT’P、vDOの最大値VPP(?7LcLs) 、
 Vno(WL8g)、111)放電開始から一定時間
後のvPP(7””t)+ vDo(P”nt)である
。これらl )、  II )、  l11)の電圧デ
ータは、包絡線信号vP+、vP−を電圧データ処理部
7でハード的に処理することで得られる。
(31 [Pressure measurement method The voltage to be measured is: l) Peak-to-peak voltage vPP, cathode drop voltage VDO%, which varies sequentially during discharge. l) Maximum value of vT'P and vDO during discharge, VPP (?7LcLs),
Vno (WL8g), 111) vPP (7""t) + vDo (P"nt) after a certain period of time from the start of discharge.The voltage data of these l), II), l11) is the envelope signal vP+, It is obtained by processing vP- in hardware in the voltage data processing section 7.

電圧データ処理部7の一構成例を第8図に示し1゜その
動作を説明する。
An example of the configuration of the voltage data processing section 7 is shown in FIG. 8, and its operation will be explained below.

まず、包絡線検出部4で得た包絡線信号vP+vP−か
ら、電圧データ処理部8内の加算器801.1/2倍器
802で陰極降下電圧vnoを、反転器808゜加算器
809でピーク・ピーク電圧vPPを作シ出す。
First, from the envelope signal vP+vP- obtained by the envelope detection section 4, the adder 801 in the voltage data processing section 8 generates the cathode drop voltage vno by the 1/2 multiplier 802, and the peak voltage is determined by the inverter 808 and the adder 809. -Create peak voltage vPP.

加算器801.172倍器802で得たvDoは、A/
D変換器805でアナログ−ディジタル信号変換し出力
する。アナログ−ディジタル変換は、クロック発生器8
04のクロックで逐次性われ・このクロックを細かくす
ることでvDoの変動状況を知ることができる。
Adder 801.172 vDo obtained from multiplier 802 is A/
A D converter 805 converts the analog-to-digital signal and outputs it. Analog-to-digital conversion is performed by clock generator 8
04 clock is sequential. By making this clock more detailed, it is possible to know the fluctuation status of vDo.

放電開始から一定時間後の陰極降下電圧VDO(pai
nt )は、A/D変換器805で得たvDO値を保持
回路805で保持することで得る。保持信号は、放電開
始から一定時間後に保持信号を発生する、図示しない保
持信号発生器よシ得る。
Cathode drop voltage VDO (pai
nt ) is obtained by holding the vDO value obtained by the A/D converter 805 in the holding circuit 805. The hold signal can be generated by a hold signal generator (not shown) that generates the hold signal after a certain period of time from the start of discharge.

陰極降下電圧の最大値VDO(mαX)は、A/D変換
器803で得た”Doをディジタル比較器806のA側
に入力し、そのデータ以前の最大値(ディジタル比較器
806のB側)と比較し、A>Bならば、最大値保持回
路807に新たな値を保持することで得る。
The maximum value VDO (mαX) of the cathode drop voltage is obtained by inputting "Do" obtained by the A/D converter 803 to the A side of the digital comparator 806, and calculating the maximum value before that data (B side of the digital comparator 806). If A>B, the new value is obtained by holding the maximum value holding circuit 807.

ピーク・ピーク電圧ノVpp、 vppCpaint)
、 VppCmar)もこれと同様にして得られるので
、ここでは説明を省略する@ 以上説明したような動作で、プラズマ放電の放電継続時
間、異常電圧の発生の検知、各種電圧データの計測を行
う。これらの計測値は、表示器8〜10に値を表示する
と共に、インターフェース部11を介して、演算処理部
12に取り込む。演算処理’![h12では、取り込ん
だデータの各値のバラツキや゛傾向を監視しプラズマ放
電の状態を定量的に評価する。
Peak-to-peak voltage (Vpp, vppCpaint)
, VppCmar) can be obtained in the same manner, so their explanation will be omitted here.@ With the operations described above, the discharge duration of the plasma discharge, the detection of the occurrence of abnormal voltage, and the measurement of various voltage data are performed. These measured values are displayed on the displays 8 to 10 and are also taken into the arithmetic processing section 12 via the interface section 11. Arithmetic processing'! [In h12, the state of plasma discharge is quantitatively evaluated by monitoring the variations and trends in each value of the captured data.

〈実施例2〉 本発明の実施例2を説明する。装置の構成は、第2図に
示すように、プラズマ処理室置1の電極104aに電力
を与えたことによ)発生する電圧を取り出す高周波電圧
検出器2と、該高周波電圧検出器2によって得た高周波
電圧の電圧レベルを減衰させる減衰器3と、減衰器3に
よつて減衰した高周波電圧を、次段以降で信号処理しや
すいように電圧レベルを確保する増幅器15と、増幅器
13から出力する高周波電圧の包絡線vP+・ v、−
を取、b出す包絡線検出部4と、増幅器13の増幅率A
と、常に1/Aの関係を保つ増幅器14.15と包絡線
検出部4で得た高周波電圧の包絡線の継続時間すなわち
プラズマ放電の継続時間を計測する放電継続時間計測部
5と、放電継続時間の計測結果を表示する放電継続時間
表示器8と、包絡線検出部4で検出した高周波電圧の包
絡線に急峻な変動が生じたことを検知し計数する異常電
圧検出部6と、該異。
<Example 2> Example 2 of the present invention will be described. As shown in FIG. 2, the configuration of the apparatus includes a high-frequency voltage detector 2 that extracts the voltage generated by applying power to the electrode 104a of the plasma processing chamber 1, and a an attenuator 3 that attenuates the voltage level of the high frequency voltage attenuated by the attenuator 3; an amplifier 15 that secures a voltage level so that the high frequency voltage attenuated by the attenuator 3 can be easily processed in subsequent stages; and an amplifier 13 that outputs the high frequency voltage. Envelope of high frequency voltage vP+・v,−
The envelope detection section 4 which outputs
A discharge duration measuring section 5 measures the duration of the envelope of the high frequency voltage obtained by the amplifier 14, 15 and the envelope detection section 4, which always maintains a 1/A relationship, that is, the duration of the plasma discharge, and the discharge duration measuring section 5 measures the duration of the plasma discharge. A discharge duration indicator 8 that displays the time measurement result, an abnormal voltage detection unit 6 that detects and counts the occurrence of a steep fluctuation in the envelope of the high-frequency voltage detected by the envelope detection unit 4, and .

常電圧検出部6で計数した異常電圧の発生回数を表示す
る異常電圧発生回数表示器9と、包絡線検出部4で検出
j−た包絡線信号V、+  V、−から1プラズマ処理
装置1の電極104aに印加されている各種の電圧値を
計測する電圧データ処理部7と、計測した電圧データを
表示する電圧データ表示器10と、これまでに挙げた構
成要素によって得た、放電継続時間データ、異常電圧発
生回数データ、電圧データを演算処理部に取シ込むため
のインターフェース部11と、取り込んだ各データのバ
ラツキや傾向を監視することでプラズマ放電の状態を評
価する演算処理部12で構成されている。
An abnormal voltage occurrence count display 9 that displays the number of occurrences of abnormal voltage counted by the normal voltage detection section 6, and an envelope signal V, +V, - detected by the envelope detection section 4 from the plasma processing apparatus 1 The voltage data processing unit 7 that measures various voltage values applied to the electrode 104a, the voltage data display 10 that displays the measured voltage data, and the discharge duration obtained by the components mentioned above. An interface unit 11 for inputting data, data on the number of abnormal voltage occurrences, and voltage data to the arithmetic processing unit, and an arithmetic processing unit 12 for evaluating the state of plasma discharge by monitoring the variations and trends of each input data. It is configured.

次に、このように構成したプラズマ処理用放電監視装置
の動作を説明する。
Next, the operation of the discharge monitoring device for plasma processing configured as described above will be explained.

実施例1との相違点は、増幅器15と、増幅器13の増
幅率Aと常に1Aの関係を保つ増幅器14.15を付加
したことである。
The difference from the first embodiment is that an amplifier 15 and amplifiers 14 and 15 that always maintain a relationship of 1A with the amplification factor A of the amplifier 13 are added.

プラズマ処理装置1の電極に印加される電圧はプラズマ
処理装置の糧類や、プラズマ処理室の雰−囲気によって
大幅に変動する。しかし減衰器3は常に一定の比率でし
か電圧を減衰できないので、予惣をはずtた電圧が電極
に発生した場合に、包絡線検出部4で正しい包絡線V、
+、V、−を得られないことや減衰器5自身を破壊して
しまうおそれがあった。
The voltage applied to the electrodes of the plasma processing apparatus 1 varies considerably depending on the food of the plasma processing apparatus and the atmosphere of the plasma processing chamber. However, since the attenuator 3 can only attenuate the voltage at a constant rate, if an unpredicted voltage is generated at the electrode, the envelope detector 4 detects the correct envelope V.
There was a risk that +, V, and - could not be obtained and that the attenuator 5 itself would be destroyed.

そこで、減衰器3の減衰率を大きめ(例えば、60 d
B程度)に設定しておき、増幅器13で包絡線検出部4
で処理しやすい電圧レベルまで増幅する・・この様な処
理を施した電圧信号を包絡線検出部4に入力し包絡線V
、+、V、−を得る。しかしこのvP−? 。
Therefore, the attenuation rate of attenuator 3 should be increased (for example, 60 d
B), and the amplifier 13 detects the envelope detection section 4.
Amplify the voltage signal to a voltage level that is easy to process with
, +, V, - are obtained. But this vP-? .

vP−信号は、増幅器13で任意の増幅率AK増幅され
ているのでこの−itで電圧データ処理部7に入力する
と、電圧値の計測ミスとなりてしまう。そこで増幅器1
3の増幅率Aと常に1Aの関係を保つ増幅器14.15
で減衰器3の出力レベルと同レベルに戻す操作を行う。
Since the vP- signal is amplified by an arbitrary amplification factor AK in the amplifier 13, if this -it is inputted to the voltage data processing section 7, a voltage value measurement error will occur. So amplifier 1
Amplifier 14.15 that always maintains a relationship of 1A with the amplification factor A of 3
Perform the operation to return the output level to the same level as the output level of attenuator 3.

これ以降、実施例1で説明したと同様な動作、処理を行
い、プラズマ放電の放電継続時間、異常電圧の検知、各
種電圧値の計測を行う。これらの計測値は、表示器8〜
10にその値を表示すると共・に、インターフェース部
11を介して演算処理部12にをり込む。演算処理部1
2では、取り込んだデータの各値のバラツキや傾向を監
視し、プラズマ放電の状態を定量的かつ正確に評価する
After this, operations and processes similar to those described in Example 1 are performed, and the discharge duration of plasma discharge, detection of abnormal voltage, and measurement of various voltage values are performed. These measured values are displayed on the display 8~
The value is displayed on the screen 10 and is also input into the arithmetic processing section 12 via the interface section 11. Arithmetic processing unit 1
In step 2, variations and trends in each value of the captured data are monitored to quantitatively and accurately evaluate the state of plasma discharge.

〔発明の効果〕〔Effect of the invention〕

本発明は、既製のプラズマ処理装置に設置するための設
置方法に優れ陰極降下電圧が急峻に変化するものや、陰
極降下電圧に変化の現われないプラズマの状態変化を検
知でき、かつ、プラズマ処理装置やプ巳セス条件によっ
て大きく異なる電圧レベルに対応できる手段を備えてい
るため、放電状態と処理室内絶縁部品の焼けや溶解、デ
バイスに付着する異物、デバイス寸法や均一性の不良と
の関係をプラズマ処理装置の種類に関係なく、正しく得
ることができ、放電時の電極電圧を本装置で監視してい
て、これらの事態が発生する前兆をとらえ、事前に対策
を施すことが可能である。
The present invention has an excellent installation method for installing in a ready-made plasma processing apparatus, and is capable of detecting a case where the cathode drop voltage changes abruptly or a change in the plasma state in which no change appears in the cathode drop voltage. Since it is equipped with means that can respond to voltage levels that vary greatly depending on the process conditions, plasma Regardless of the type of processing device, it can be obtained correctly, and by monitoring the electrode voltage during discharge with this device, it is possible to catch signs of these situations occurring and take countermeasures in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す図、第2図は本発
明の第2の実施例を示す図、第3図はプラズマ処理中に
プラズマ処理装置の電極部に発生する高周波電圧の一例
を示す図、第4図は放電継続時間計測部の一構成例を示
す図、第5図は第4図中の主要各部の波形を示す図、第
6図は異常電圧検出部の一構成例を示す図、第7図は第
6図中の主要各部の波形を示す図、第8図は電圧データ
処理部の一構成例を示す図である。 1・・・プラズマ処理装置、2・・・高周波電圧検出器
・、6・・・減衰器、4・・・包絡線検出部、5・・・
放電継続時間計測部、6・・・異常電圧検出部、7・・
・電圧データ処理部、8・・・放電継断時間表示器、9
・・・異常電圧発生回数表示器、10・・・電圧データ
表示器、11・・・インターフェース部、12・・・演
算処理部。 〉 纂 図 纂 図
FIG. 1 is a diagram showing a first embodiment of the present invention, FIG. 2 is a diagram showing a second embodiment of the present invention, and FIG. 3 is a diagram showing high frequency waves generated in the electrode section of a plasma processing apparatus during plasma processing. Figure 4 is a diagram showing an example of the voltage, Figure 4 is a diagram showing an example of the configuration of the discharge duration measuring section, Figure 5 is a diagram showing the waveforms of each main part in Figure 4, and Figure 6 is the diagram of the abnormal voltage detection section. FIG. 7 is a diagram showing waveforms of each main part in FIG. 6, and FIG. 8 is a diagram showing an example of the configuration of the voltage data processing section. DESCRIPTION OF SYMBOLS 1... Plasma processing apparatus, 2... High frequency voltage detector, 6... Attenuator, 4... Envelope detection part, 5...
Discharge duration measuring section, 6... Abnormal voltage detection section, 7...
・Voltage data processing unit, 8...Discharge disconnection time indicator, 9
... Abnormal voltage occurrence frequency display, 10... Voltage data display, 11... Interface section, 12... Arithmetic processing section. 〉 Compiled diagram

Claims (1)

【特許請求の範囲】 1、プラズマ発生手段と該プラズマ発生手段に高周波電
力を印加する高周波電力印加手段を備えたプラズマ処理
装置において、上記高周波電力印加手段で印加される高
周波電圧成分を検出する高周波電圧検出手段と、該高周
波電圧検出手段によって検出された高周波電圧の包絡線
を検出する包絡線検出手段と、該包絡線検出手段によっ
て得られた信号をもとにプラズマ処理の継続時間を計測
する放電継続時間計測手段と、上記包絡線検出手段によ
って得られた信号をもとに異常電圧の発生を検知して計
測する異常電圧検出計数手段と、上記包絡線検出手段に
よって得られた信号をもとにプラズマ放電時の放電電圧
を計測する電圧計測手段と、上記放電継続時間計測手段
、異常電圧検出計数手段及び電圧計測手段から得られる
各種データに基いてプラズマ処理を評価する演算処理手
段とを備えたことを特徴とするプラズマ処理用放電状態
監視装置。 2、上記高周波電圧検出手段と上記包絡線検出手段との
間に上記高周波電圧検出手段から検出される高周波電圧
を増幅する増幅手段を設け、更に上記包絡線検出手段の
出力を減衰させて上記放電継続時間計測手段、異常電圧
検出計数手段及び電圧計測手段に入力させる減衰手段を
設けたことを特徴とする請求項1記載のプラズマ処理用
放電状態監視装置。
[Claims] 1. In a plasma processing apparatus equipped with a plasma generating means and a high frequency power applying means for applying high frequency power to the plasma generating means, a high frequency voltage component for detecting a high frequency voltage component applied by the high frequency power applying means. A voltage detection means, an envelope detection means for detecting an envelope of the high frequency voltage detected by the high frequency voltage detection means, and a duration time of plasma processing is measured based on a signal obtained by the envelope detection means. A discharge duration measuring means, an abnormal voltage detection and counting means for detecting and measuring the occurrence of an abnormal voltage based on the signal obtained by the envelope detection means, and a signal obtained by the envelope detection means. A voltage measuring means for measuring the discharge voltage during plasma discharge, and an arithmetic processing means for evaluating the plasma processing based on various data obtained from the discharge duration measuring means, the abnormal voltage detection and counting means, and the voltage measuring means. A discharge state monitoring device for plasma processing characterized by comprising: 2. An amplifying means for amplifying the high frequency voltage detected by the high frequency voltage detecting means is provided between the high frequency voltage detecting means and the envelope detecting means, and the output of the envelope detecting means is further attenuated to reduce the discharge. 2. The discharge state monitoring device for plasma processing according to claim 1, further comprising attenuating means for inputting the voltage to the duration measuring means, the abnormal voltage detection and counting means, and the voltage measuring means.
JP63175007A 1988-07-15 1988-07-15 Monitor of discharge for plasma treatment Pending JPH0226023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175007A JPH0226023A (en) 1988-07-15 1988-07-15 Monitor of discharge for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175007A JPH0226023A (en) 1988-07-15 1988-07-15 Monitor of discharge for plasma treatment

Publications (1)

Publication Number Publication Date
JPH0226023A true JPH0226023A (en) 1990-01-29

Family

ID=15988584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175007A Pending JPH0226023A (en) 1988-07-15 1988-07-15 Monitor of discharge for plasma treatment

Country Status (1)

Country Link
JP (1) JPH0226023A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003590A1 (en) * 1991-08-05 1993-02-18 Tadahiro Ohmi Plasma processing apparatus
US5467013A (en) * 1993-12-07 1995-11-14 Sematech, Inc. Radio frequency monitor for semiconductor process control
JP2006332658A (en) * 2005-05-20 2006-12-07 Asm Japan Kk Method for detecting abnormal operation in plasma processing
JP2008538852A (en) * 2005-04-22 2008-11-06 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド Arc detection and handling in radio frequency power applications
JP2009048883A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048882A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048881A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma discharge condition monitor
JP2009048880A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048879A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus, and method of monitoring plasma discharge condition in the same
JP2010015740A (en) * 2008-07-02 2010-01-21 Panasonic Corp Plasma processing device, and method for monitoring state of discharge in plasma processing device
JP2011527379A (en) * 2008-06-17 2011-10-27 シュナイダー エレクトリック ユーエスエイ インコーポレイテッド Apparatus and method for wafer level arc detection
US8585862B2 (en) 2007-08-21 2013-11-19 Panasonic Corporation Plasma processing device and plasma discharge state monitoring device
US8668836B2 (en) 2007-08-21 2014-03-11 Panasonic Corporation Plasma processing device and method of monitoring plasma discharge state in plasma processing device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003590A1 (en) * 1991-08-05 1993-02-18 Tadahiro Ohmi Plasma processing apparatus
US5444259A (en) * 1991-08-05 1995-08-22 Ohmi; Tadahiro Plasma processing apparatus
US5467013A (en) * 1993-12-07 1995-11-14 Sematech, Inc. Radio frequency monitor for semiconductor process control
US5472561A (en) * 1993-12-07 1995-12-05 Sematech, Inc. Radio frequency monitor for semiconductor process control
JP2008538852A (en) * 2005-04-22 2008-11-06 アドバンスト・エナジー・インダストリーズ・インコーポレイテッド Arc detection and handling in radio frequency power applications
JP2006332658A (en) * 2005-05-20 2006-12-07 Asm Japan Kk Method for detecting abnormal operation in plasma processing
JP2009048881A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma discharge condition monitor
JP2009048882A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048883A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048880A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus
JP2009048879A (en) * 2007-08-21 2009-03-05 Panasonic Corp Plasma treatment apparatus, and method of monitoring plasma discharge condition in the same
US8585862B2 (en) 2007-08-21 2013-11-19 Panasonic Corporation Plasma processing device and plasma discharge state monitoring device
US8668836B2 (en) 2007-08-21 2014-03-11 Panasonic Corporation Plasma processing device and method of monitoring plasma discharge state in plasma processing device
JP2011527379A (en) * 2008-06-17 2011-10-27 シュナイダー エレクトリック ユーエスエイ インコーポレイテッド Apparatus and method for wafer level arc detection
JP2010015740A (en) * 2008-07-02 2010-01-21 Panasonic Corp Plasma processing device, and method for monitoring state of discharge in plasma processing device
US8855949B2 (en) 2008-07-02 2014-10-07 Panasonic Corporation Plasma processing device and method of monitoring discharge state in plasma processing device

Similar Documents

Publication Publication Date Title
JPH0226023A (en) Monitor of discharge for plasma treatment
KR101606736B1 (en) Passive capacitively-coupled electrostatic (cce) probe arrangement for detecting plasma instabilities in a plasma processing chamber
JPS599842B2 (en) Damage detection device for rotating bodies
KR20100045954A (en) Plasma processing device and method of monitoring plasma discharge state in plasma processing device
US20100163182A1 (en) Plasma processing device
US3979670A (en) Apparatus for detecting and measuring peak-to-peak values in electrical signals
US6519306B1 (en) Neutron monitoring system
JPH0773105B2 (en) Plasma processing device
JP2000131196A (en) Device for inspecting looseness of ripple spring of generator
CN213069198U (en) Source range neutron detector fault diagnosis device
JPH0527040A (en) Radiation ray measuring device
JPH03148035A (en) Apparatus for detecting abnormality of bearing
JP3170006B2 (en) Bearing abnormality detection device
KR100448169B1 (en) Howling determinating method of Braun tube using luminance
JPS60158390A (en) Method of determining operational possibility of neutron source region detector
JPS6378532A (en) Device for detecting abnormality of discharge
JP3379160B2 (en) Beam current measuring device
Morales Vigo et al. Linearity and Response Time of the LHC Diamond Beam Loss Monitors in the CLEAR Beam Test Facility at CERN
CN115685297A (en) Tritium measuring device with radon discrimination function
JP4882916B2 (en) Plasma processing apparatus and plasma discharge state monitoring method in plasma processing apparatus
JPH04192436A (en) Semiconductor evaluating device
JPS63110727A (en) Plasma processing power source monitor
JP2003149378A (en) Neutron measuring device
JPH03251749A (en) Processing method of measured data
KR100222838B1 (en) Trigger apparatus for testing audio signal in television system