JPH02269309A - Optical modulating system - Google Patents
Optical modulating systemInfo
- Publication number
- JPH02269309A JPH02269309A JP1061534A JP6153489A JPH02269309A JP H02269309 A JPH02269309 A JP H02269309A JP 1061534 A JP1061534 A JP 1061534A JP 6153489 A JP6153489 A JP 6153489A JP H02269309 A JPH02269309 A JP H02269309A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- fiber
- modulation
- optical
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000001902 propagating effect Effects 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 5
- 239000000835 fiber Substances 0.000 abstract description 25
- 230000005540 biological transmission Effects 0.000 abstract description 20
- 239000006185 dispersion Substances 0.000 abstract description 17
- 230000003111 delayed effect Effects 0.000 abstract description 3
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
光ファイバを伝送路とする光通信システムにおいて、高
速のディジタル信号を長距離伝送する伝送装置に用いる
光変調方式に関し、数ギガビット/秒以上の伝送速度に
おいても、ファイバ波長分散の大きいファイバを長距離
伝送できる光変調方式を提供することを目的とし、マツ
ハツエンダ干渉計型光変調器において、二つの光導波路
を伝播する光の位相を非対称に変調することにより、変
調器出力光の立ち上がり部分の中心波長を長波長側に動
かし、立ち下がり部分の中心波長を短波長側に動かすも
のである。[Detailed Description of the Invention] [Summary] This invention relates to an optical modulation method used in a transmission device that transmits high-speed digital signals over long distances in an optical communication system using an optical fiber as a transmission path, even at transmission speeds of several gigabits/second or more. The purpose of this study is to provide an optical modulation method that can transmit long distances through fibers with large fiber wavelength dispersion, and by asymmetrically modulating the phase of light propagating through two optical waveguides in the Matsuhatsu Enda interferometer type optical modulator, The center wavelength of the rising portion of the modulator output light is moved to the longer wavelength side, and the center wavelength of the falling portion of the modulator output light is moved to the shorter wavelength side.
本発明は光ファイバを伝送路とする光通信システムにお
いて、高速のディジタル信号を長距離伝送する伝送装置
に用いる光変調方式に関する。The present invention relates to an optical modulation method used in a transmission device that transmits high-speed digital signals over long distances in an optical communication system using an optical fiber as a transmission path.
高速光通信システムにおいては、光源のスペクトル広が
りを出来るだけ小さくして、スペクトル広がりとファイ
バの波長分散によって生じる光パルスの波形劣化を生じ
させないようにすることが要求されている。In high-speed optical communication systems, it is required to minimize the spectral spread of a light source to avoid waveform deterioration of optical pulses caused by spectral spread and wavelength dispersion of fibers.
このため、スペクトル広がりを小さくすることができる
外部変調方式が注目されているが2本方式を用いても数
ギガとット/秒以上の伝送速度では、変調側波帯によっ
て生じるスペクトル広がりによって伝送距離が制限され
てしまい、より伝送特性を延ばす工夫が必要となる。For this reason, external modulation methods that can reduce the spectral spread are attracting attention, but even when using a two-wire method, at transmission speeds of several gigabit/s or more, transmission is caused by the spectral spread caused by the modulation sidebands. Since the distance is limited, it is necessary to devise ways to further extend the transmission characteristics.
スペクトル広がりが最も小さく、従ってファイバ波長分
散の影響を受けにくい光変調方式のひとつにマツハツエ
ンダ干渉計型光変調器を用いた変調方式がある。マツハ
ツエンダ干渉計型光変調器では二つの光導波路を伝播す
る光の位相を同じ大きさで逆方向に変調して、波長チャ
ーピングのない変調ができる。すなわち スペクトル広
がりを変調波形のフーリエ成分である変調側波帯による
広がりまで小さくすることができる。One of the optical modulation methods that has the smallest spectral spread and is therefore less susceptible to fiber wavelength dispersion is a modulation method that uses a Matsuhatsu Enda interferometer type optical modulator. The Matsuhatsu Enda interferometer type optical modulator modulates the phases of light propagating through two optical waveguides to the same magnitude and in opposite directions, allowing modulation without wavelength chirping. That is, the spectral spread can be reduced to the extent due to modulation sidebands, which are Fourier components of the modulation waveform.
従って、従来のマツハツエンダ干渉計型光変調器を用い
た光変調方式においては、変調器の二つの光導波路を伝
播する光の位相を同じ大きさで逆方向に変調し、波長チ
ャーピングのない変調をおこなってしまた(F、にOY
AM^et、 al、、 JOLIRNAL 0FLI
GHTWAVT! TECIINOLOGY、 VOL
、 6. NO,1,1988゜PP、 87−93)
。Therefore, in the optical modulation method using the conventional Matsuhatsu Enda interferometer type optical modulator, the phases of the light propagating through the two optical waveguides of the modulator are modulated with the same magnitude and in opposite directions, resulting in modulation without wavelength chirping. I did it again (F, ni OY
AM^et, al,, JOLIRNAL 0FLI
GHTWAVT! TECIINOLOGY, VOL
, 6. NO, 1, 1988゜PP, 87-93)
.
ところが、数ギガビット/秒以上の伝送速度においては
、波長チャーピングを零にしても変調側波帯によるスペ
クトル広がりとファイバの波長分散による光パルスの変
形が無視できなくなる。However, at transmission speeds of several gigabits/second or higher, even if wavelength chirping is reduced to zero, spectral broadening due to modulation sidebands and deformation of optical pulses due to fiber wavelength dispersion cannot be ignored.
従って、外部変調方式によって、変調によるスペクトル
広がりを変調側波帯だけによる広がりにまで低減しても
、数ギガビット/秒以上の伝送速度では、ファイバ波長
分散の大きいファイバにおいて長・距離伝送が出来ない
という問題を生じていた。Therefore, even if the spectral spread due to modulation is reduced to the spread due to only the modulation sideband using an external modulation method, long-distance transmission is not possible in a fiber with large fiber chromatic dispersion at transmission speeds of several gigabits/second or more. This caused a problem.
本発明は、数ギガビット/秒以上の伝送速度においても
、ファイバ波長分散の大きいファイバを長距離伝送でき
る光変調方式を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an optical modulation method that allows long-distance transmission through a fiber with large fiber chromatic dispersion even at transmission speeds of several gigabits/second or more.
第1図および第2図は本発明の原理説明図である。第1
図は、マツハツエンダ干渉計型光変調器の各部の光の電
界を表している0図中E0は入力光の電界の振幅、ω。FIG. 1 and FIG. 2 are diagrams explaining the principle of the present invention. 1st
The figure shows the electric field of light at each part of the Matsuhatsu Enda interferometer type optical modulator. In the figure, E0 is the amplitude of the electric field of input light, ω.
は電界の角周波数、tは時間、φ、、φ、はそれぞれ光
導波路AおよびBにおいて変調された位相を表す、 1
Eout(t)は出力光の電界であり、詳細を(1)式
に示す。is the angular frequency of the electric field, t is the time, φ, , φ represent the modulated phase in the optical waveguides A and B, respectively, 1
Eout(t) is the electric field of output light, details of which are shown in equation (1).
EOut(t)=EO/2 (COS(ωot +φA
)+C05(ω。t÷φ1))
=Eo/2(X”+Y”) ””C05(ωot−ta
n−’ (Y/X))ただし X=CQS (φa )
+ C03(φ、)Y=SIN(φA) + 5I
N(φm)(1)弐かられかる様にEou t (t)
にはjan−’ (Y/X)の位相変調がかかっている
。これは以下に示す様に波長チャーピングとなる。EOut(t)=EO/2 (COS(ωot +φA
)+C05(ω.t÷φ1)) =Eo/2(X”+Y”) ””C05(ωot-ta
n-' (Y/X)) However, X=CQS (φa)
+ C03(φ,)Y=SIN(φA) + 5I
N(φm) (1) Eou t (t)
is subjected to phase modulation of jan-' (Y/X). This results in wavelength chirping as shown below.
ω。t−tan−’ (Y/X)をΦとおくと、 角周
波数はω(t)=dΦ/dt ” ωe−d(tan
−’(Y/X))/dt、 また波長はλ・2πC/
ω(t) (cは光速)より。ω. If t-tan-' (Y/X) is Φ, the angular frequency is ω(t)=dΦ/dt ” ωe-d(tan
-'(Y/X))/dt, and the wavelength is λ・2πC/
From ω(t) (c is the speed of light).
Δω=−d(tan −’(Y/X))/dt が波
長チャーピングを引き起こす。Δω=−d(tan −′(Y/X))/dt causes wavelength chirping.
ここで位相の変調を以下のようにおこなう。Here, phase modulation is performed as follows.
φ、〉0. φ、 < O,ABS(φA ) >
ABS(φ、)ABS(φ、−φA)NO(光出力旧g
h) 。φ, 〉0. φ, < O, ABS (φA) >
ABS (φ,) ABS (φ, -φA) NO (light output old g
h).
ABS(φ、−φm ) #Z (光出力Low)た
だしABS(φ)はφの絶対値を表す。ABS(φ, -φm) #Z (Low optical output) However, ABS(φ) represents the absolute value of φ.
この時の各部の動作波形を図2に示す。FIG. 2 shows the operating waveforms of each part at this time.
fに示す樟に出力光強度が立ち上がる部分で出力光の位
相が遅れ、立ち下がる部分では位相が進む。The phase of the output light is delayed in the portion where the output light intensity rises as shown in f, and the phase advances in the portion where it falls.
これに対応して中心波長がgに示す様に立ち上がり部分
で長波長側に、立ち下がり部分で短波長側に動く。Correspondingly, the center wavelength moves to the long wavelength side in the rising portion and to the short wavelength side in the falling portion, as shown in g.
従来はφ、・−φ、という条件で変調をおこなっていた
。この場合Eou t (t)は(2)式となる。Conventionally, modulation was performed under the conditions of φ, .-φ. In this case, Eout(t) is expressed as equation (2).
Bout(t)=EoCO5(φ) C05(ωat)
−−−(2)ただし φ=φ^・−φ層
この場合φの変調により光電界の振幅が変調されるだけ
で変調に伴う波長変動は生じない。Bout(t)=EoCO5(φ) C05(ωat)
---(2) However, φ=φ^·−φ layer In this case, modulation of φ only modulates the amplitude of the optical electric field, and no wavelength fluctuation occurs due to the modulation.
本発明では、変調器の各導波路の位相を非対称に変調す
ることにより、出力光の中心波長を図2のgに示す様に
、立ち上がり部分で長波長側に。In the present invention, by asymmetrically modulating the phase of each waveguide of the modulator, the center wavelength of the output light is shifted to the longer wavelength side at the rising edge, as shown in g in FIG.
また、立ち下がり部分で短波長側に動く様にした。Also, it was made to move toward the shorter wavelength side at the falling edge.
一方、ファイバの波長分散は1.3μ−帯零分散シング
ルモードファイバを、損失の最も小さい1.55μ−帯
で使用する場合に大きい、このときの分散係数は量大2
0ps八−へ一であり、波長が長い程ファイバを伝播す
る速度が遅くなる。On the other hand, the chromatic dispersion of the fiber is large when a 1.3μ-band zero-dispersion single mode fiber is used in the 1.55μ-band, which has the lowest loss.
0 ps, and the longer the wavelength, the slower the speed of propagation through the fiber.
従って1本発明によって生じさせた波長チ中−ピングに
より、ファイバ分散により光パルスの立ち上がり部分が
遅れ1立ち下がり部分が進み、パルス圧縮を生じる。こ
れは、変調側波帯とファイバの波長分散によって生じる
波形法がりを補償する方向に働き、伝送可能なファイバ
長を改善する作用をする。Therefore, due to the wavelength chipping produced by the present invention, the rising portion of the optical pulse is delayed due to fiber dispersion, and the falling portion is advanced, resulting in pulse compression. This works to compensate for waveform distortion caused by modulation sidebands and fiber wavelength dispersion, and works to improve the fiber length that can be transmitted.
マツハツエンダ干渉計型光変調器において、光の位相変
調には電気光学効果を用いる。すなわち電気光学効果を
持つ物質の屈折率を電界により変化させることにより、
光の位相を変化させる。Matsuhatsu Enda interferometer type optical modulator uses electro-optic effect for optical phase modulation. In other words, by changing the refractive index of a substance that has an electro-optical effect using an electric field,
Change the phase of light.
従って、マツハツエンダ干渉計型光変調器において、二
つの光導波路を伝播する光の位相を非対称に変調する方
法としていくつかの方法が考えられる。一つは、各導波
路をそれぞれ異なる駆動電圧で変調する方法である。二
つ目は駆動電圧は同じであるが電極の断面構造を非対称
にすることにより、光導波路への変調電界のかかり方を
非対称にする方法である。三つ目は各導波路でそれぞれ
電極長を変えて光が屈折率変化を惑しる導波路長を変え
る方法である。Therefore, in the Matsuhatsu Enda interferometer type optical modulator, several methods can be considered for asymmetrically modulating the phase of the light propagating through the two optical waveguides. One method is to modulate each waveguide with a different drive voltage. The second method uses the same driving voltage but makes the cross-sectional structure of the electrode asymmetrical, thereby making the modulation electric field applied to the optical waveguide asymmetrical. The third method is to change the length of the electrodes in each waveguide to change the waveguide length in which the light confuses the change in refractive index.
図3に第1の実施例を示す。これは、駆動電圧振幅を非
対称にかける例であり、Z板電気光学結晶を想定してい
る。X板およびY板電気光学結晶でも同様に実施できる
。図中、1は位相変調を大きくかける方の光導波路であ
り、2は位相変調を小さくかける方の光導波路である。FIG. 3 shows a first embodiment. This is an example of applying the drive voltage amplitude asymmetrically, and assumes a Z-plate electro-optic crystal. The same method can be applied to X-plate and Y-plate electro-optic crystals. In the figure, 1 is an optical waveguide to which a large phase modulation is applied, and 2 is an optical waveguide to which a small phase modulation is applied.
3は変調用電極であり、4はアース電極である。3と4
で進行波型電極を構成している。5は終端抵抗であり進
行波型電極の特性インピーダンスと整合している。6は
光導波路1の位相変調を行うための駆動回路、7は光導
波路2の位相変調を行うための駆動回路、である。3 is a modulation electrode, and 4 is a ground electrode. 3 and 4
This constitutes a traveling wave electrode. 5 is a terminating resistor that matches the characteristic impedance of the traveling wave electrode. 6 is a drive circuit for performing phase modulation of the optical waveguide 1, and 7 is a drive circuit for performing phase modulation of the optical waveguide 2.
第4図は第1の実施例の動作を示すタイムチャート図で
ある。vlは光導波路1の位相変調を行う駆動波形であ
り、V2は光導波路2の位相変調を行う駆動波形である
。■1と■2で極性を逆にし、駆動電圧振幅は■1の方
を大きくことにより位相変調を非対称にかける。FIG. 4 is a time chart showing the operation of the first embodiment. vl is a drive waveform that performs phase modulation of the optical waveguide 1, and V2 is a drive waveform that performs phase modulation of the optical waveguide 2. By reversing the polarities in (1) and (2) and making the driving voltage amplitude larger in (1), phase modulation is applied asymmetrically.
第5図に第2の実施例を示す。これは、電極長を非対称
にして位相変調を非対称にかけるものであり、Z板電気
光学結晶を想定している。第5図〜第11図まで図中の
1〜4の記号の意味は図3の記号の意味と同じである。FIG. 5 shows a second embodiment. This is to apply phase modulation asymmetrically by making the electrode length asymmetric, and assumes a Z-plate electro-optic crystal. The meanings of symbols 1 to 4 in FIGS. 5 to 11 are the same as those in FIG. 3.
第6図に第3の実施例を示す、これは2電極長を非対称
にして位相変調を非対称にかけるものであり、X板また
はY板電気光学結晶を想定している。A third embodiment is shown in FIG. 6, in which the lengths of the two electrodes are made asymmetric to apply phase modulation asymmetrically, and an X-plate or Y-plate electro-optic crystal is assumed.
第7図に第4の実施例を示す0図7は、変調器の断面構
造を示している。本実施例は、電極の断面構造を非対称
にすることにより位相変調を非対称にかけるものであり
、2板電気光学結晶を想定している6本例では、光導波
路2から少し位置をずらして電極を配置している。FIG. 7 shows a fourth embodiment. FIG. 7 shows a cross-sectional structure of a modulator. In this example, phase modulation is applied asymmetrically by making the cross-sectional structure of the electrode asymmetric. In this example, a two-plate electro-optic crystal is assumed, the electrode is slightly shifted from the optical waveguide 2. are placed.
第8図に第5の実施例を示す。本実施例は電極の断面構
造を非対称にすることにより位相変調を非対称にかける
ものであり、X板またはY仮電気光学結晶を想定してい
る0本例では、光導波路2と電極間の距離を太き(して
いる。FIG. 8 shows a fifth embodiment. In this example, phase modulation is applied asymmetrically by making the cross-sectional structure of the electrode asymmetric. thick (has).
第9図に第6の実施例を示す。本実施例は電極の断面構
造を非対称にすることにより位相変調を非対称にかける
ものであり、X板またはY仮電気光学結晶を想定してい
る。一つの変調用電極で光導波路1.2を変調しており
、光導波路2と電極間の距離を大きくしている。FIG. 9 shows a sixth embodiment. This embodiment applies asymmetric phase modulation by making the cross-sectional structure of the electrode asymmetric, and assumes an X plate or a Y pseudoelectro-optic crystal. The optical waveguide 1.2 is modulated by one modulation electrode, and the distance between the optical waveguide 2 and the electrode is increased.
第10図に第7の実施例を示す、これは、光導波路1だ
けを変調するものであり、Z板電気光学結晶を想定して
いる。A seventh embodiment is shown in FIG. 10, in which only the optical waveguide 1 is modulated, and a Z-plate electro-optic crystal is assumed.
第11図に第8の実施例を示す。これは、光導波路1だ
けを変調するものであり、X仮またはY板電気光学結晶
を想定している。FIG. 11 shows an eighth embodiment. This modulates only the optical waveguide 1, and assumes an X-plate or Y-plate electro-optic crystal.
第12図は波長分散によって生じる最小受光電力の劣化
、すなわちパワーペナルティの計算結果である。ファイ
バ伝送によって生じるパワーペナルティの許容値を0.
5dBとした場合、従来の変調方法では許容できる波長
分散値が500〜700 p s / n mであるの
に対し2位相変調比を5:1にした場合には1500
p s / n m以上と改善される。第13図は異な
る位相変調比で同様の計算をおこなったものであり、変
調比が2:1以上あれば良いことがわかる。FIG. 12 shows the calculation result of the deterioration of the minimum received light power caused by chromatic dispersion, that is, the power penalty. The allowable value of the power penalty caused by fiber transmission is set to 0.
When setting the wavelength dispersion to 5 dB, the allowable wavelength dispersion value in conventional modulation methods is 500 to 700 ps/nm, whereas when the two-phase modulation ratio is set to 5:1, it is 1500 ps/nm.
It is improved to more than ps/nm. FIG. 13 shows similar calculations performed using different phase modulation ratios, and it can be seen that it is sufficient if the modulation ratio is 2:1 or more.
以上の計算結果かられかる様に1本発明によれば従来の
変調方式に較べて、ファイバ伝送特性が改善され、高速
光通信装置の性能向上に寄与するところが大きい。As can be seen from the above calculation results, the present invention improves fiber transmission characteristics as compared to conventional modulation systems, and greatly contributes to improving the performance of high-speed optical communication devices.
第1図および第2図は本発明の原理を示す図。
第3図は本発明の第1の実施例の構成図。
第4図は第1の実施例の動作を示すタイムチャート図。
第5図は本発明の第2の実施例を示す図。
第6図は本発明の第3の実施例を示す図。
第7図は本発明の第4の実施例を示す図。
第8図は本発明の第5の実施例を示す図。
第9図は本発明の第6の実施例を示す図。
第1O図は本発明の第7の実施例を示す図。
第11図は本発明の第8の実施例を示す図。
第12図および第13図は本発明によるファイバ伝送特
性改善の計算結果を示す図である。
図中。
l;位相変調を大きくかける方の光導波路。
2 位相変調を小さ(かける方の光導波路。
3 変調用電極。
4、アース電極。
5、終端抵抗。
6、光導波路lの位相変調を行うための駆動回路。
7:光導波路2の位相変調を行うための駆動駆回路であ
る。
図面の浄書(内容に変になし)
O
77CoSCw、t+φA)
φA>o・
φδくQノ /φAI> /φEl・/me−φAl岬
Q (えhigh)lφδ−φ4/却疋(尤10wジ
本4e−輯f)原 1里1示す図 0)第 1f!!
本4egR’)、!、理1示す図(2)第
圓FIG. 1 and FIG. 2 are diagrams showing the principle of the present invention. FIG. 3 is a configuration diagram of the first embodiment of the present invention. FIG. 4 is a time chart showing the operation of the first embodiment. FIG. 5 is a diagram showing a second embodiment of the present invention. FIG. 6 is a diagram showing a third embodiment of the present invention. FIG. 7 is a diagram showing a fourth embodiment of the present invention. FIG. 8 is a diagram showing a fifth embodiment of the present invention. FIG. 9 is a diagram showing a sixth embodiment of the present invention. FIG. 1O is a diagram showing a seventh embodiment of the present invention. FIG. 11 is a diagram showing an eighth embodiment of the present invention. FIGS. 12 and 13 are diagrams showing calculation results for improving fiber transmission characteristics according to the present invention. In the figure. l: Optical waveguide that applies large phase modulation. 2. Optical waveguide that reduces the phase modulation. 3. Electrode for modulation. 4. Earth electrode. 5. Termination resistor. 6. Drive circuit for performing phase modulation of optical waveguide 1. 7. Phase modulation of optical waveguide 2. This is a drive circuit for performing the following. Engraving of the drawing (no change in content) O 77CoSCw, t+φA) φA>o・φδkuQノ /φAI> /φEl・/me−φAl MisakiQ (high)lφδ - φ4/Negative (尤10w じ本4e-輯f) Hara 1ri 1 diagram 0) 1st f! ! Book4egR'),! , Diagram (2) showing the principle 1
Claims (1)
波路を伝播する光の位相を非対称に変調することにより
、変調器出力光の立ち上がり部分の中心波長を長波長側
に動かし、立ち下がり部分の中心波長を短波長側に動か
すことを特徴とする光変調方式。In a Mach-Zehnder interferometer type optical modulator, by asymmetrically modulating the phase of light propagating through two optical waveguides, the center wavelength of the rising part of the modulator output light is moved to the longer wavelength side, and the center wavelength of the falling part is shifted to the longer wavelength side. An optical modulation method characterized by moving the wavelength toward shorter wavelengths.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1061534A JP2679223B2 (en) | 1989-03-14 | 1989-03-14 | Optical modulation method and optical modulator |
CA002011954A CA2011954C (en) | 1989-03-14 | 1990-03-12 | Optical modulator |
US07/492,129 US5074631A (en) | 1989-03-14 | 1990-03-13 | Optical modulator |
DE69033696T DE69033696T2 (en) | 1989-03-14 | 1990-03-14 | Optical modulator |
EP90104811A EP0387832B1 (en) | 1989-03-14 | 1990-03-14 | Optical modulator |
EP95109629A EP0674210B1 (en) | 1989-03-14 | 1990-03-14 | Optical modulator |
DE69025481T DE69025481T2 (en) | 1989-03-14 | 1990-03-14 | Optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1061534A JP2679223B2 (en) | 1989-03-14 | 1989-03-14 | Optical modulation method and optical modulator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7261891A Division JPH0886991A (en) | 1995-10-09 | 1995-10-09 | Method and device for transmitting light and light transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02269309A true JPH02269309A (en) | 1990-11-02 |
JP2679223B2 JP2679223B2 (en) | 1997-11-19 |
Family
ID=13173867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1061534A Expired - Lifetime JP2679223B2 (en) | 1989-03-14 | 1989-03-14 | Optical modulation method and optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2679223B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2685834A1 (en) * | 1991-12-31 | 1993-07-02 | France Telecom | LONG - DISTANCE FIBER - OPTICAL DIGITAL TRANSMISSION SYSTEM WITH DISTORTION EMISSION COMPENSATION. |
US5343322A (en) * | 1991-12-31 | 1994-08-30 | France Telecom | System of very-long-distance digital transmission by optical fiber with compensation for distortions at reception |
EP0661577A2 (en) * | 1993-12-28 | 1995-07-05 | Fujitsu Limited | Optical modulator with controllable chirp |
JPH0886991A (en) * | 1995-10-09 | 1996-04-02 | Fujitsu Ltd | Method and device for transmitting light and light transmission system |
JPH08316909A (en) * | 1995-05-16 | 1996-11-29 | Toshiba Corp | Optical transmission system and module and driving method for optical modulator |
JPH0990301A (en) * | 1995-09-28 | 1997-04-04 | Nec Corp | Mach-zehunder modulator and its driving method |
US5973816A (en) * | 1997-08-28 | 1999-10-26 | Fujitsu Limited | Method and apparatus of driving an optical modulator to measure, and compensation for dispersion in an optical transmission line |
US6052496A (en) * | 1995-05-18 | 2000-04-18 | Integrated Optical Components Limited | Integrated optical modulators |
US6831774B2 (en) | 2000-07-07 | 2004-12-14 | Nippon Telegraph And Telephone Corporation | Multi-wavelength generating method and apparatus based on flattening of optical spectrum |
WO2008108154A1 (en) | 2007-03-06 | 2008-09-12 | Ngk Insulators, Ltd. | Optical phase modulator |
JP2010145973A (en) * | 2008-12-22 | 2010-07-01 | Fujitsu Ltd | Optical module, method of manufacturing the same, and optical transmitter |
JP2016224315A (en) * | 2015-06-01 | 2016-12-28 | 住友大阪セメント株式会社 | Method for driving waveguide type optical element, and waveguide type optical element used in drive method |
JP2017083608A (en) * | 2015-10-27 | 2017-05-18 | 住友大阪セメント株式会社 | Optical modulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61212125A (en) * | 1985-03-15 | 1986-09-20 | Nec Corp | Method and device for transmitting optical pulse |
JPS6263917A (en) * | 1985-09-17 | 1987-03-20 | Fujitsu Ltd | Optical modulator |
JPS63261220A (en) * | 1987-04-20 | 1988-10-27 | Fujitsu Ltd | Light modulating element |
JPS63292110A (en) * | 1987-05-26 | 1988-11-29 | Asahi Glass Co Ltd | Waveguide type optical frequency shifter |
-
1989
- 1989-03-14 JP JP1061534A patent/JP2679223B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61212125A (en) * | 1985-03-15 | 1986-09-20 | Nec Corp | Method and device for transmitting optical pulse |
JPS6263917A (en) * | 1985-09-17 | 1987-03-20 | Fujitsu Ltd | Optical modulator |
JPS63261220A (en) * | 1987-04-20 | 1988-10-27 | Fujitsu Ltd | Light modulating element |
JPS63292110A (en) * | 1987-05-26 | 1988-11-29 | Asahi Glass Co Ltd | Waveguide type optical frequency shifter |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5343322A (en) * | 1991-12-31 | 1994-08-30 | France Telecom | System of very-long-distance digital transmission by optical fiber with compensation for distortions at reception |
US5373382A (en) * | 1991-12-31 | 1994-12-13 | France Telecom | System of long-distance digital transmission by optical fiber with compensation for distortions at source of transmission |
FR2685834A1 (en) * | 1991-12-31 | 1993-07-02 | France Telecom | LONG - DISTANCE FIBER - OPTICAL DIGITAL TRANSMISSION SYSTEM WITH DISTORTION EMISSION COMPENSATION. |
EP0661577A2 (en) * | 1993-12-28 | 1995-07-05 | Fujitsu Limited | Optical modulator with controllable chirp |
EP0661577A3 (en) * | 1993-12-28 | 1995-11-29 | Fujitsu Ltd | Optical modulator for producing a controllable chirp. |
JPH08316909A (en) * | 1995-05-16 | 1996-11-29 | Toshiba Corp | Optical transmission system and module and driving method for optical modulator |
US6052496A (en) * | 1995-05-18 | 2000-04-18 | Integrated Optical Components Limited | Integrated optical modulators |
JPH0990301A (en) * | 1995-09-28 | 1997-04-04 | Nec Corp | Mach-zehunder modulator and its driving method |
JPH0886991A (en) * | 1995-10-09 | 1996-04-02 | Fujitsu Ltd | Method and device for transmitting light and light transmission system |
US5973816A (en) * | 1997-08-28 | 1999-10-26 | Fujitsu Limited | Method and apparatus of driving an optical modulator to measure, and compensation for dispersion in an optical transmission line |
US5982530A (en) * | 1997-08-28 | 1999-11-09 | Fujitsu Limited | Apparatus for driving an optical modulator to measure, and compensate for, dispersion in an optical transmission line |
US6262828B1 (en) | 1997-08-28 | 2001-07-17 | Fujitsu Limited | Method and apparatus of driving an optical modulator to measure, and compensate for, dispersion in an optical transmission line |
US6831774B2 (en) | 2000-07-07 | 2004-12-14 | Nippon Telegraph And Telephone Corporation | Multi-wavelength generating method and apparatus based on flattening of optical spectrum |
WO2008108154A1 (en) | 2007-03-06 | 2008-09-12 | Ngk Insulators, Ltd. | Optical phase modulator |
US7869669B2 (en) | 2007-03-06 | 2011-01-11 | Ngk Insulators, Ltd. | Optical phase modulator |
JP5171808B2 (en) * | 2007-03-06 | 2013-03-27 | 日本碍子株式会社 | Optical phase modulator |
JP2010145973A (en) * | 2008-12-22 | 2010-07-01 | Fujitsu Ltd | Optical module, method of manufacturing the same, and optical transmitter |
JP2016224315A (en) * | 2015-06-01 | 2016-12-28 | 住友大阪セメント株式会社 | Method for driving waveguide type optical element, and waveguide type optical element used in drive method |
JP2017083608A (en) * | 2015-10-27 | 2017-05-18 | 住友大阪セメント株式会社 | Optical modulator |
Also Published As
Publication number | Publication date |
---|---|
JP2679223B2 (en) | 1997-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0674210B1 (en) | Optical modulator | |
US5477375A (en) | Optical soliton generator | |
EP2545408B1 (en) | Optical modulators with controllable chirp | |
US6961166B2 (en) | Optical digital external modulator | |
US5157744A (en) | Soliton generator | |
US6501867B2 (en) | Chirp compensated Mach-Zehnder electro-optic modulator | |
US6341031B1 (en) | Optical pulse generation using a high order function waveguide interferometer | |
NO309748B1 (en) | Electro-optical modulator and method for modulating an optical signal | |
US6052496A (en) | Integrated optical modulators | |
US5995685A (en) | Optical modulator and an optical modulating method | |
JPH02269309A (en) | Optical modulating system | |
US5889607A (en) | Optical modulator, optical short pulse generating device, optical waveform shaping device, and optical demultiplexer device | |
US6552838B2 (en) | LiNbO3 Mach-Zehnder modulator with low drive voltage requirement and adjustable chirp | |
JP2658387B2 (en) | Optical modulator, driving method thereof, and optical modulator driving device | |
JP2823872B2 (en) | Optical transmitter | |
JPH0713111A (en) | Apparatus and method for modulation of polarized-light optical signal | |
JPH0886991A (en) | Method and device for transmitting light and light transmission system | |
KR100688072B1 (en) | Integrated optical modulator and method for manufacturing the same | |
GB2270173A (en) | Optical modulator | |
Aoki et al. | Single-drive X-cut thin-sheet LiNbO/sub 3/optical modulator with chirp adjusted using asymmetric CPW electrode | |
JP6597052B2 (en) | Light modulator | |
JPH05224163A (en) | Light transmitter | |
WO2021103294A1 (en) | Distributed light intensity modulator | |
US6370283B1 (en) | Electro-optic modulator for generating solitons | |
WO2024164793A1 (en) | Electro-optical modulator and transmitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 12 |