JPH02267217A - 高Cr系耐熱鋼の強化熱処理法 - Google Patents
高Cr系耐熱鋼の強化熱処理法Info
- Publication number
- JPH02267217A JPH02267217A JP8650189A JP8650189A JPH02267217A JP H02267217 A JPH02267217 A JP H02267217A JP 8650189 A JP8650189 A JP 8650189A JP 8650189 A JP8650189 A JP 8650189A JP H02267217 A JPH02267217 A JP H02267217A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- heat treatment
- intermediate heat
- strength
- subjected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 33
- 239000010959 steel Substances 0.000 title claims abstract description 33
- 238000010438 heat treatment Methods 0.000 title claims abstract description 23
- 238000005728 strengthening Methods 0.000 title claims description 4
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 14
- 238000005496 tempering Methods 0.000 claims abstract description 10
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 14
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 238000001556 precipitation Methods 0.000 description 8
- 238000012733 comparative method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高Cr系耐熱鋼の高強度化に関するものであり
、特に高温におけるクリープ強度が極めて優秀で且つ高
靭性特性を有した高Cr系耐熱鋼の強化熱処理法に係わ
るものである。
、特に高温におけるクリープ強度が極めて優秀で且つ高
靭性特性を有した高Cr系耐熱鋼の強化熱処理法に係わ
るものである。
高温高効率型高速増殖炉や高温火力発電プラント用材料
として、クリープ強度が掻めで優秀で、且つオーステナ
イト系ステンレス鋼に見られるような応力腐食割れの心
配が少ない高Cr系耐熱鋼が強く要望されている。
として、クリープ強度が掻めで優秀で、且つオーステナ
イト系ステンレス鋼に見られるような応力腐食割れの心
配が少ない高Cr系耐熱鋼が強く要望されている。
この種の用途に供される鋼の例としては、米国A37M
規格A387 Gr、91に規格化されている鋼種があ
るが、この鋼は、9%程度のCrを含有させて焼入れ性
と耐食性を向上させ、さらに1%程度のMo及び少量の
Nb、 V添加によって析出強化を計った鋼である。
規格A387 Gr、91に規格化されている鋼種があ
るが、この鋼は、9%程度のCrを含有させて焼入れ性
と耐食性を向上させ、さらに1%程度のMo及び少量の
Nb、 V添加によって析出強化を計った鋼である。
しかしながら従来綱では、焼入れもしくは焼ならし後、
マルテンサイトのラス界面に沿ってCが濃縮した残留オ
ーステナイト相が必ず生成する。
マルテンサイトのラス界面に沿ってCが濃縮した残留オ
ーステナイト相が必ず生成する。
そして、このオーステナイト相が高温の焼もどし時に分
解してM3C,?bCi及びM23C6という粗大炭化
物が析出することによって、本来クリープ抵抗として重
要な析出強化に寄与すべきCがマトリックス中において
著しく減少し、且つマルテンサイト・ラス界面自身も著
しく脆弱なものになるという重大な欠点を有している。
解してM3C,?bCi及びM23C6という粗大炭化
物が析出することによって、本来クリープ抵抗として重
要な析出強化に寄与すべきCがマトリックス中において
著しく減少し、且つマルテンサイト・ラス界面自身も著
しく脆弱なものになるという重大な欠点を有している。
本発明はこのような事情に鑑み創案されたもので、高C
r系鋼に適切な中間熱処理を施すことによって予め残留
オーステナイトを消失せしめた後読もどじを行ない、マ
トリックスを均一な析出によって強化することによって
、結果的に高Cr系鋼に高いクリープ強度を持たせるこ
とに成功したものである。
r系鋼に適切な中間熱処理を施すことによって予め残留
オーステナイトを消失せしめた後読もどじを行ない、マ
トリックスを均一な析出によって強化することによって
、結果的に高Cr系鋼に高いクリープ強度を持たせるこ
とに成功したものである。
本発明の特徴とするところは、重量比でC:0.03〜
0.15%、Si:0.05〜1%、Mn : 0.1
〜1.5%、Cr:8〜13%、Ni:0.01〜1%
、Mo:0.5〜2.5%、V : 0.05〜0.5
%、Nb:0.01〜0.12%、N : 0.002
〜0.1%を含有し、残部Fe及び不可避的不純物から
なる成分系を有する高Cr系鋼を焼入れもしくは焼なら
し後、450〜600℃の温度範囲の中間熱処理工程に
よって残留オーステナイト相を消滅せしめ予めマルテン
サイト一相とした後、700〜800℃の温度範囲の焼
もどしを行なうことにより、極めて均−且つ微細な炭窒
化物分散状態を得るところにある。
0.15%、Si:0.05〜1%、Mn : 0.1
〜1.5%、Cr:8〜13%、Ni:0.01〜1%
、Mo:0.5〜2.5%、V : 0.05〜0.5
%、Nb:0.01〜0.12%、N : 0.002
〜0.1%を含有し、残部Fe及び不可避的不純物から
なる成分系を有する高Cr系鋼を焼入れもしくは焼なら
し後、450〜600℃の温度範囲の中間熱処理工程に
よって残留オーステナイト相を消滅せしめ予めマルテン
サイト一相とした後、700〜800℃の温度範囲の焼
もどしを行なうことにより、極めて均−且つ微細な炭窒
化物分散状態を得るところにある。
以下本発明の限定理由を説明する。
まずCは、十分な高温強度を確保し、且つδフェライト
の析出による二相化を防止するという点から0.03%
以上必要であるが、0.15%を超えると溶接性を害す
るため好ましくない。このためCIは0.03〜0.1
5%とする。
の析出による二相化を防止するという点から0.03%
以上必要であるが、0.15%を超えると溶接性を害す
るため好ましくない。このためCIは0.03〜0.1
5%とする。
Siは脱酸剤として重要であり最低0.05%を必要と
する。しかし、靭性及び溶接性に対して悪影響を与える
ものであり、1%を越えて添加した場合、靭性及び溶接
性を損なう、したがって5illは0.05〜1%とす
る。
する。しかし、靭性及び溶接性に対して悪影響を与える
ものであり、1%を越えて添加した場合、靭性及び溶接
性を損なう、したがって5illは0.05〜1%とす
る。
Mnは脱酸及び強度確保上重要であるため最低0、1%
を確保する必要があるが、1.5%を超えると靭性の点
から好ましくない、このためMn量は0、1−1.5%
とする。
を確保する必要があるが、1.5%を超えると靭性の点
から好ましくない、このためMn量は0、1−1.5%
とする。
Crは強度と耐食性を確保する上で重要であるため最低
8%必要であるが、13%を超えると溶接性を著しく損
なう。したがってCr量は8〜13%とする。
8%必要であるが、13%を超えると溶接性を著しく損
なう。したがってCr量は8〜13%とする。
Niはδフェライトの生成を抑制することから0.01
%以上が添加される。しかし1%を超えると加工性に悪
影響を与えるため上限は1%とし、下限を0.01%と
する。
%以上が添加される。しかし1%を超えると加工性に悪
影響を与えるため上限は1%とし、下限を0.01%と
する。
Moは基地中に固溶した場合においても、また炭化物と
して析出した場合においても著しいクリープ抵抗となり
、本発明鋼の重要添加元素であるため、高温強度を確保
するという点から最低0.5%必要であるが、2.5%
を超えるとδフェライトが生成し、且つ溶接性及び耐酸
化性をも損なう。したがってMo量は0.5〜2.5%
とする。
して析出した場合においても著しいクリープ抵抗となり
、本発明鋼の重要添加元素であるため、高温強度を確保
するという点から最低0.5%必要であるが、2.5%
を超えるとδフェライトが生成し、且つ溶接性及び耐酸
化性をも損なう。したがってMo量は0.5〜2.5%
とする。
■は炭窒化物として析出して強度を確保する上で重要で
あるため最低0.05%が必要であるが、0.5%を越
えると溶接性を著しく損なう。したがってv4は0.0
5〜0.5%とする。
あるため最低0.05%が必要であるが、0.5%を越
えると溶接性を著しく損なう。したがってv4は0.0
5〜0.5%とする。
Nbは■同様炭窒化物として析出して強度を確保する上
で重要であるため、最低0゜01%が必要であるが、0
.12%を超えると溶接性を槓なう。したがってNbl
は0.01〜0.12%とする。
で重要であるため、最低0゜01%が必要であるが、0
.12%を超えると溶接性を槓なう。したがってNbl
は0.01〜0.12%とする。
Nはマトリックス中に固溶しても、また、窒化物として
析出しても著しいクリープ抵抗として高温強度に寄与す
るため最低0.002%を必要とする。
析出しても著しいクリープ抵抗として高温強度に寄与す
るため最低0.002%を必要とする。
しかし、0.1%を越えて添加した場合、靭性及び溶接
性を損なう。したがってN量は0.002〜0.1%と
する。
性を損なう。したがってN量は0.002〜0.1%と
する。
次に残留オーステナイトを分解せしめる中間熱処理工程
について述べる。残留オーステナイト相の分解温度を予
め調べた所、450〜600℃の温度範囲内での保定に
よる中間熱処理工程によって残留オーステナイト相の分
解が完了することがわかった。この場合450″C未満
では残留オーステナイト相は全く分解しないため効果が
な(、また600℃を越える温度での処理では1.残留
オーステナイト相の分解は完了するがマトリックスの回
復までがこれに伴ない、不必要な軟化を招いてしまう。
について述べる。残留オーステナイト相の分解温度を予
め調べた所、450〜600℃の温度範囲内での保定に
よる中間熱処理工程によって残留オーステナイト相の分
解が完了することがわかった。この場合450″C未満
では残留オーステナイト相は全く分解しないため効果が
な(、また600℃を越える温度での処理では1.残留
オーステナイト相の分解は完了するがマトリックスの回
復までがこれに伴ない、不必要な軟化を招いてしまう。
よって中間熱処理工程の温度域は450〜600℃の範
囲とする。
囲とする。
さらに中間熱処理後の焼もどしの温度は炭化物の析出脆
化による靭性の低下を除去するため700℃以上を要す
るが、再結晶と炭化物の極端な凝集粗大化を防止するた
め800℃以下とする。
化による靭性の低下を除去するため700℃以上を要す
るが、再結晶と炭化物の極端な凝集粗大化を防止するた
め800℃以下とする。
以上の熱処理によって、マルテンサイト・ラス界面上の
粗大析出が少なく、マトリックス中に微細且つ均一な析
出物が分散する高強度高Cr系耐熱鋼が得られる。
粗大析出が少なく、マトリックス中に微細且つ均一な析
出物が分散する高強度高Cr系耐熱鋼が得られる。
実施例1
まず第1表に示す成分範囲の供試鋼を作製し、これに5
25℃の中間熱処理を施した後750 ’Cの焼もどし
を行ない、550℃124kgf/ma”の条件のクリ
ープ破断試験及びシャルピー衝撃試験を行った。
25℃の中間熱処理を施した後750 ’Cの焼もどし
を行ない、550℃124kgf/ma”の条件のクリ
ープ破断試験及びシャルピー衝撃試験を行った。
第1表に示す綱のうちぬ1〜NcL4は本発明の成分範
囲内の鋼であり、Nα5〜No、 12は全て本発明の
成分範囲外の比較鋼である。比較tgNα5はC1N1
16はSi、に7はMn、Na3及びに9はMO,、N
o、 10は■、No、11はNb、阻12はNがそれ
ぞれ本発明成分の範囲外である。比較mNα5はCが本
発明成分を下回るためクリープ破断強度が低くまたδフ
エライト析出のため靭性も著しく低下している。
囲内の鋼であり、Nα5〜No、 12は全て本発明の
成分範囲外の比較鋼である。比較tgNα5はC1N1
16はSi、に7はMn、Na3及びに9はMO,、N
o、 10は■、No、11はNb、阻12はNがそれ
ぞれ本発明成分の範囲外である。比較mNα5はCが本
発明成分を下回るためクリープ破断強度が低くまたδフ
エライト析出のため靭性も著しく低下している。
比較鋼隘6と阻7はそれぞれSiとMnが本発明成分を
上回って添加されているため靭性が低下している。比較
鋼に8はMoが本発明成分未満であるためクリープ破断
強度が低く、Nα9はMoが本発明成分を越えているた
めδフェライトを析出し靭性が低下している。また、比
較mNo、 10 、 No、 11及びN。
上回って添加されているため靭性が低下している。比較
鋼に8はMoが本発明成分未満であるためクリープ破断
強度が低く、Nα9はMoが本発明成分を越えているた
めδフェライトを析出し靭性が低下している。また、比
較mNo、 10 、 No、 11及びN。
12はそれぞれV、Nb及びNが本発明成分未満である
ためクリープ破断強度が低い。それに対し、本発明成分
を満足する鋼Nr11〜顯4は全て充分なりリープ破断
強度と靭性を有する。
ためクリープ破断強度が低い。それに対し、本発明成分
を満足する鋼Nr11〜顯4は全て充分なりリープ破断
強度と靭性を有する。
実施例2
次に、第2表に示す成分範囲の供試網を作製し、これに
第3表のA−Jに示す10通りの方法の熱処理を施した
後、550℃124kgf/dノ条件のクリープ破断試
験及びシャルピー衝撃試験を行なった。第3表に示す熱
処理法のうちA−Dは本発明法であり、E−Jは比較法
である。比較法Eは中間熱処理を施さない方法、F及び
Gは中間熱処理温度が450℃未満の方法、11は中間
熱処理温度が600”Cを越える方法、■は中間熱処理
後の焼もどし温度が700℃未満の方法、Jは焼もどし
温度が800℃を越える方法であり、いずれも本発明の
範囲外の方法である。比較法E−Gは残留オーステナイ
トが分解していない状態で焼もどしているため粗大析出
が顕著に起こりクリープ破断強度が低く、比較法Hでは
残留オーステナイトの分解は完全であるが回復までもが
これに伴ないクリープ破断強度が低い。また比較法■は
クリープ破断強度は充分であるが焼もどしが不充分であ
るため靭性が著しく低い。一方比較法Jは焼もどし温度
が高いため析出物の凝集粗大化と回復が起こり、クリー
プ破断強度が極めて低い。それに対し、本発明の熱処理
法A−Dによる鋼は全て充分なりリープ破断強度と靭性
を有する。
第3表のA−Jに示す10通りの方法の熱処理を施した
後、550℃124kgf/dノ条件のクリープ破断試
験及びシャルピー衝撃試験を行なった。第3表に示す熱
処理法のうちA−Dは本発明法であり、E−Jは比較法
である。比較法Eは中間熱処理を施さない方法、F及び
Gは中間熱処理温度が450℃未満の方法、11は中間
熱処理温度が600”Cを越える方法、■は中間熱処理
後の焼もどし温度が700℃未満の方法、Jは焼もどし
温度が800℃を越える方法であり、いずれも本発明の
範囲外の方法である。比較法E−Gは残留オーステナイ
トが分解していない状態で焼もどしているため粗大析出
が顕著に起こりクリープ破断強度が低く、比較法Hでは
残留オーステナイトの分解は完全であるが回復までもが
これに伴ないクリープ破断強度が低い。また比較法■は
クリープ破断強度は充分であるが焼もどしが不充分であ
るため靭性が著しく低い。一方比較法Jは焼もどし温度
が高いため析出物の凝集粗大化と回復が起こり、クリー
プ破断強度が極めて低い。それに対し、本発明の熱処理
法A−Dによる鋼は全て充分なりリープ破断強度と靭性
を有する。
(発明の効果)
本発明によれば、特に高温におけるクリープ強度が極め
て優秀でかつ高靭性特性を有した高Cr系耐熱鋼を得る
ことができる。
て優秀でかつ高靭性特性を有した高Cr系耐熱鋼を得る
ことができる。
手続補正書 (自発)
平成 1年7 月14日
(1)明細書す
る。
1頁の第1表を別紙のとおり補正す
Claims (1)
- 【特許請求の範囲】 重量比で C:0.03〜0.15%、 Si:0.05〜1%、 Mn:0.1〜1.5%、 Cr:8〜13%、 Ni:0.01〜1%、 Mo:0.5〜2.5%、 V:0.05〜0.5%、 Nb:0.01〜0.12%、 N:0.002〜0.1%、 残部Fe及び不可避的不純物からなる高Cr系鋼を焼入
れもしくは焼ならし後、450〜600℃の温度範囲の
中間熱処理工程によって残留オーステナイト相を消滅せ
しめ予めマルテンサイト一相とした後、700〜800
℃の温度範囲の焼もどしを行うことを特徴とする極めて
均一且つ微細な炭窒化物分散状態を具備した高強度且つ
高靭性の耐熱鋼を得る高Cr系耐熱鋼の強化熱処理法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8650189A JPH02267217A (ja) | 1989-04-05 | 1989-04-05 | 高Cr系耐熱鋼の強化熱処理法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8650189A JPH02267217A (ja) | 1989-04-05 | 1989-04-05 | 高Cr系耐熱鋼の強化熱処理法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02267217A true JPH02267217A (ja) | 1990-11-01 |
Family
ID=13888727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8650189A Pending JPH02267217A (ja) | 1989-04-05 | 1989-04-05 | 高Cr系耐熱鋼の強化熱処理法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02267217A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136888A1 (ja) * | 2015-02-27 | 2016-09-01 | 国立研究開発法人物質・材料研究機構 | フェライト系耐熱鋼とその製造方法 |
US11220733B1 (en) | 2020-08-31 | 2022-01-11 | University Of Science And Technology Beijing | Low carbon martensitic high temperature strength steel and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200912A (ja) * | 1984-03-26 | 1985-10-11 | Toshiba Corp | 高クロム鋼からなる鋳物の熱処理方法 |
JPS6196026A (ja) * | 1984-10-17 | 1986-05-14 | Mitsubishi Heavy Ind Ltd | 高温圧力容器用高クロム鋳鋼の熱処理方法 |
-
1989
- 1989-04-05 JP JP8650189A patent/JPH02267217A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60200912A (ja) * | 1984-03-26 | 1985-10-11 | Toshiba Corp | 高クロム鋼からなる鋳物の熱処理方法 |
JPS6196026A (ja) * | 1984-10-17 | 1986-05-14 | Mitsubishi Heavy Ind Ltd | 高温圧力容器用高クロム鋳鋼の熱処理方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136888A1 (ja) * | 2015-02-27 | 2016-09-01 | 国立研究開発法人物質・材料研究機構 | フェライト系耐熱鋼とその製造方法 |
JPWO2016136888A1 (ja) * | 2015-02-27 | 2017-12-21 | 国立研究開発法人物質・材料研究機構 | フェライト系耐熱鋼とその製造方法 |
EP3263732A4 (en) * | 2015-02-27 | 2018-07-11 | National Institute for Materials Science | Ferrite-based heat-resistant steel and method for producing same |
US10519524B2 (en) | 2015-02-27 | 2019-12-31 | National Institute For Materials Science | Ferritic heat-resistant steel and method for producing the same |
US11220733B1 (en) | 2020-08-31 | 2022-01-11 | University Of Science And Technology Beijing | Low carbon martensitic high temperature strength steel and preparation method thereof |
WO2022041207A1 (zh) * | 2020-08-31 | 2022-03-03 | 北京科技大学 | 一种高温高强低碳马氏体热强钢及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3534413B2 (ja) | 高温強度に優れたフェライト系耐熱鋼及びその製造方法 | |
JPH0421718A (ja) | 耐硫化物応力割れ性に優れた高強度鋼の製造法 | |
US4049430A (en) | Precipitation hardenable stainless steel | |
JP2001026820A (ja) | 耐応力腐食割れ性に優れた95ksiグレードマルテンサイト系ステンレス鋼の製造方法 | |
JPH02267217A (ja) | 高Cr系耐熱鋼の強化熱処理法 | |
JP3819848B2 (ja) | 耐熱鋼及びその製造方法 | |
JP2000226614A (ja) | 耐応力腐食割れ性に優れた高靭性マルテンサイト系ステンレス鋼の製造方法 | |
JPH0543986A (ja) | 溶接熱影響部の強度低下の小さい高クロムフエライト耐熱鋼 | |
JP2689198B2 (ja) | クリープ強度に優れたマルテンサイト系耐熱鋼 | |
JP3368413B2 (ja) | 高Crフェライト系耐熱鋼の製造方法 | |
JPH06264189A (ja) | 低温衝撃特性のすぐれた高強度高靭性ステンレス鋼およびその製造方法 | |
JPH08134585A (ja) | 高温強度及び耐酸化性に優れたフェライト系耐熱鋼及びその製造方法 | |
JPH055891B2 (ja) | ||
JPH03274223A (ja) | 高Cr系耐熱鋼の強靭化熱処理法 | |
JPH07110970B2 (ja) | 耐応力腐食割れ性の優れた針状フェライトステンレス鋼の製造方法 | |
JPH0288716A (ja) | 高クリープ破断強度を有する高Crフェライト系耐熱鋼管の製造方法 | |
JPH05311344A (ja) | 高温強度ならびに靱性に優れたフェライト系耐熱鋼 | |
JPH01172517A (ja) | 耐応力腐食割れ性の優れたステンレス鋼の製造方法 | |
JPH05311346A (ja) | 高クリープ強度を有するフェライト系耐熱鋼 | |
WO2003050318A1 (en) | 0303 steel for making pipe molds | |
JPH1143719A (ja) | 高温強度と靭性に優れたフェライト系耐熱鋼の熱処理方法 | |
JP4774633B2 (ja) | マルテンサイト系耐熱鋼の製造方法 | |
JP2824698B2 (ja) | 溶接性ならびに靭性を改善した低合金耐熱鋼の製造方法 | |
JPS62290849A (ja) | 地熱蒸気タ−ビン用ロ−タ | |
JPS5825420A (ja) | 焼戻しマルテンサイト組織を有する耐硫化物応力腐食割れ性の優れた低合金高張力鋼の製造法 |