[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02256802A - Speed control method for underwater traveling body - Google Patents

Speed control method for underwater traveling body

Info

Publication number
JPH02256802A
JPH02256802A JP7644489A JP7644489A JPH02256802A JP H02256802 A JPH02256802 A JP H02256802A JP 7644489 A JP7644489 A JP 7644489A JP 7644489 A JP7644489 A JP 7644489A JP H02256802 A JPH02256802 A JP H02256802A
Authority
JP
Japan
Prior art keywords
control signal
signal
speed
set value
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7644489A
Other languages
Japanese (ja)
Inventor
Shinji Arinaga
真司 有永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7644489A priority Critical patent/JPH02256802A/en
Publication of JPH02256802A publication Critical patent/JPH02256802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To hasten a speed response at an underwater traveling body equipped with a Rankine cycle type engine by controlling a fuel supply quantity through the use of the differential value of a speed control signal. CONSTITUTION:A control signal 21 to a water feed pump return flow regulation valve 5, is synthesized from a signal obtained by means of a PID controller 19 through the variation of a pressure set value 15 and a turbine entrance pressure 8, and the signal of a water feed pump return flow regulation valve opening set value 17. Also, a control signal 22 to a fuel flow regulation valve 6, is synthesized from a signal obtained by means of a PID controller 20 through the variation of a temperature set value 16 and a turbine entrance temperature 7, and the signal of a fuel flow regulation valve opening set value 18, and a signal obtained by multiplying the differential value of a speed command 9 by means of a differential device 23 by a gain 24. As a result, the control signal 22 of the fuel flow changes faster than the control signal 21 of the water feed flow, so the ascent of the turbine entrance temperature 7 is restrained, and the speed response of an underwater traveling body can be made faster.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はランキンサイクル型エンジンをそなえた水中航
走体の速度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the speed of an underwater vehicle equipped with a Rankine cycle engine.

〔従来の技術〕[Conventional technology]

従来の速度制御方式は、第2図に示すように、速度指令
9が出されると、その速度を実現するためのタービン入
口圧力、温度8.7の各設定値15.16が計算される
。そして、実際のタービン入口圧力8がこの圧力設定値
15になるように、給水ポンプ戻り流量調節バルブ5の
開度を、またタービン入口温度7が温度設定値16にな
るように燃料流量調節バルブ6の開度を調節する。この
ときの制御信号は次のようにして合成される。
In the conventional speed control method, as shown in FIG. 2, when a speed command 9 is issued, each set value 15.16 of turbine inlet pressure and temperature 8.7 is calculated to achieve the speed. Then, the opening degree of the feed water pump return flow rate control valve 5 is adjusted so that the actual turbine inlet pressure 8 becomes the pressure set value 15, and the fuel flow rate control valve 6 is adjusted so that the turbine inlet temperature 7 becomes the temperature set value 16. Adjust the opening. The control signals at this time are synthesized as follows.

まず、設定圧力、温度を実現するための給水流量および
燃料流量を静的バラ°ンス計算より求める。この流量を
流すためのバルブ開度信号が求まる。この信号に、設定
値と実測値の偏差をとってPID制御器19.20から
出力される信号を加算したものを制御信号としている。
First, the water supply flow rate and fuel flow rate to achieve the set pressure and temperature are determined by static balance calculation. A valve opening signal for flowing this flow rate is determined. The control signal is obtained by adding to this signal a signal output from the PID controller 19, 20 after calculating the deviation between the set value and the actual measurement value.

このとき、バルブ開度信号の方に重みをおき、PIDの
ゲインはできるだけ小さくしている。
At this time, more weight is given to the valve opening signal, and the PID gain is made as small as possible.

なお、第2図において、1は燃焼器、2はタービン、3
はコンデンサ、4は給水ポンプ、5は給水ポンプ戻り流
量調節バルブ、6は燃料流量調節バルブ、7はタービン
入口温度、8はタービン入口圧力、9は速度指令、10
はランプ関数発生器、11,12,13.14は関数発
生器、15は圧力設定値、16は温度設定値、17は給
水ポンプ戻り流量調節バルブ開度設定値、18は燃料流
量調節バルブ開度設定値、19.20はPID制御器、
21は給水ポンプ戻り流量調節バルブ制御信号、22は
燃料流量調節バルブ制御信号を示す。
In Fig. 2, 1 is a combustor, 2 is a turbine, and 3 is a combustor.
is a capacitor, 4 is a water supply pump, 5 is a water supply pump return flow rate control valve, 6 is a fuel flow rate control valve, 7 is a turbine inlet temperature, 8 is a turbine inlet pressure, 9 is a speed command, 10
is a ramp function generator, 11, 12, 13.14 is a function generator, 15 is a pressure setting value, 16 is a temperature setting value, 17 is a water pump return flow rate adjustment valve opening setting value, 18 is a fuel flow rate adjustment valve opening value. degree setting value, 19.20 is PID controller,
Reference numeral 21 indicates a water supply pump return flow rate control valve control signal, and 22 indicates a fuel flow rate control valve control signal.

は同時に減少し1、またほとんど静的バランス点どt\
りに減少していく。速度は、それにともなって減少して
いくが、燃焼器炉内の熱容量が非常に大きいため、燃料
を減少させても炉内の温度はすぐには下がらず、また給
水は減少していくため、タービン入口温度は上昇してし
まう。そのため、圧力の低下速度も遅くなり、整定する
のに長時間を要し速度制御の応答が遅くなる。また逆に
低速から高速に移行する場合も、逆に燃料を増加しても
炉内温度はすぐには上がらず、給水は増加するためタフ
ビン入口温度は低くして、この場合も速度の応答は遅く
なる。
simultaneously decreases to 1, and almost static balance point t\
It gradually decreases. The speed will decrease accordingly, but since the heat capacity inside the combustor furnace is very large, the temperature inside the furnace will not drop immediately even if the fuel is reduced, and the water supply will decrease. The turbine inlet temperature will rise. Therefore, the pressure decreases at a slow rate, and it takes a long time to settle, resulting in a slow speed control response. Conversely, when shifting from low speed to high speed, even if the fuel is increased, the temperature inside the furnace does not rise immediately, and the water supply increases, so the temperature at the inlet of the tough bin is kept low, and in this case too, the speed response is Become slow.

本発明の課題は、上記従来の問題点を解消し、速度の応
答を速くすることができる水中航走体の速度制御方法を
提供することである。
An object of the present invention is to provide a speed control method for an underwater vehicle that can solve the above-mentioned conventional problems and increase speed response.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による水中航走体の速度制御方法は、水中航走体
のプロペラを回転させるタービンと、同タービンへ供給
される熱媒を加熱する燃焼器と、上記タービンから上記
燃焼器へ熱媒を循環させる流体ポンプとからなるランキ
ンサイクル型エンジンを備え、速度制御信号に基づき上
記燃焼器に供給される燃料と、上記タービンへ供給され
る熱媒の供給量を調整して速度制御を行う方法において
、上記速度制御信号の微分値を用いて燃料の供給量を制
御することを特徴とする。即ち、本発明においては、燃
料流量の変化を給水流量よりも速く、また、静的バラン
ス点よりも減速時は小さく、加速時には大きくするため
に、燃料の制御信号に速度指令の微分値にゲインを掛け
たものを加えるようになされている。
A method for controlling the speed of an underwater vehicle according to the present invention includes: a turbine that rotates a propeller of an underwater vehicle; a combustor that heats a heat medium supplied to the turbine; and a combustor that heats a heat medium supplied to the turbine; In a method comprising a Rankine cycle engine consisting of a circulating fluid pump, and controlling the speed by adjusting the amount of fuel supplied to the combustor and the amount of heat medium supplied to the turbine based on a speed control signal. , the fuel supply amount is controlled using the differential value of the speed control signal. That is, in the present invention, in order to change the fuel flow rate faster than the water supply flow rate, and to make it smaller during deceleration and larger during acceleration than the static balance point, a gain is added to the differential value of the speed command in the fuel control signal. It is designed to add the product multiplied by .

〔作 用〕[For production]

本発明方法によれば、燃料流量の信号は給水流量の信号
よりも速く変化するため、タービン入口温度の上昇が抑
えられ、応答を速くすることができる。また、速度指令
の微分値は変速時のみにあ装置の一例を示すブロック図
であり、第2図に示すものと同一部分には、同一符号を
付して説明する。
According to the method of the present invention, since the fuel flow rate signal changes faster than the feed water flow rate signal, an increase in turbine inlet temperature can be suppressed and response can be made faster. This is a block diagram showing an example of a device in which the differential value of the speed command is applied only during gear shifting, and the same parts as those shown in FIG. 2 will be described with the same reference numerals.

第1図においては、第2図に示すものに微分器23とゲ
イン24が付加されている。第1図において、速度指令
9は、ランプ関数発生器10を通り、この信号から関数
発生器11〜14により各設定値が得られる。給水ポン
プ戻り流量調節バルブ5への制御信号21は、圧力設定
値15とタービン入口圧力8の偏差からPID制御器1
9により得られる信号と、給水ポンプ戻り流量調節バル
ブ開度設定値17の信号から合成される。また燃料流量
調節バルブ6への制御信号22は、温度設定値16とタ
ービン入口温度7の偏差からPID制御器20により得
られる信号と、燃料流ffi調節バルブ開度設定値18
の信号および微分器23による速度指令9の微分値にゲ
イン24を掛けた信号とから合成される。
In FIG. 1, a differentiator 23 and a gain 24 are added to those shown in FIG. In FIG. 1, a speed command 9 passes through a ramp function generator 10, and each setting value is obtained from this signal by function generators 11-14. A control signal 21 to the feedwater pump return flow rate control valve 5 is generated from the PID controller 1 based on the deviation between the pressure setting value 15 and the turbine inlet pressure 8.
9 and the signal of the water supply pump return flow rate control valve opening setting value 17. The control signal 22 to the fuel flow control valve 6 includes a signal obtained by the PID controller 20 from the deviation between the temperature set value 16 and the turbine inlet temperature 7, and a fuel flow ffi control valve opening set value 18.
and a signal obtained by multiplying the differential value of the speed command 9 by the differentiator 23 by the gain 24.

前記の各バルブ開度設定値17.18は、静的バランス
から得られるもので、この信号のとかりに変化させれば
、速度は指令どおりに変化する。
The above-mentioned valve opening set values 17 and 18 are obtained from static balance, and if this signal is changed, the speed will change according to the command.

そのとき、多少の変動はあるのでPID制御器19.2
0で補正するようにする。しかし、前にも述べたように
、燃焼器1の炉内の熱容量が大きいため、燃料流量調節
バルブ6と給水ポンプ戻り流量調節バルブ5と静的バラ
ンス点に沿って変化させると、タービン入口温度7は温
度設定値16から大きくずれてしまう。そこで、燃料流
量調節バルブ6への制御信号に微分器23による速度指
令9の微分値を加えることにより、給水変化よりも、燃
料変化の方を速くすることができ、また、静的バランス
点よりも減速時は少なく、加速時は多く供給されるので
、温度偏差を抑えることができ、速度の応答を速くする
ことができる。この微分値の信号は、変速時のみで定速
航走時は影響を及ぼさない。
At that time, since there are some fluctuations, the PID controller 19.2
Correct it with 0. However, as mentioned before, since the heat capacity in the furnace of the combustor 1 is large, if the fuel flow rate control valve 6 and the feed water pump return flow rate control valve 5 are varied along the static balance point, the turbine inlet temperature 7 deviates significantly from the temperature set value 16. Therefore, by adding the differential value of the speed command 9 by the differentiator 23 to the control signal to the fuel flow rate control valve 6, the fuel change can be made faster than the water supply change, and the static balance point can be made faster. Since less is supplied during deceleration and more is supplied during acceleration, temperature deviation can be suppressed and speed response can be made faster. This differential value signal is used only when changing gears and has no effect when cruising at a constant speed.

抑えることができるので金属材料への負担を軽減できる
Since it can be suppressed, the burden on metal materials can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するのに用いられる装置の一
例を示すブロック図、第2図は従来の速度制御装置のブ
ロック図である。 5・・・給水ポンプ戻り流量調節バルブ、6・・・燃料
流量調節バルブ、19.20・・・PID制御器、23
・・・微分器、24・・・ゲイン。
FIG. 1 is a block diagram showing an example of a device used to carry out the method of the present invention, and FIG. 2 is a block diagram of a conventional speed control device. 5... Water supply pump return flow rate control valve, 6... Fuel flow rate control valve, 19.20... PID controller, 23
...differentiator, 24...gain.

Claims (1)

【特許請求の範囲】[Claims] 水中航走体のプロペラを回転させるタービンと、同ター
ビンへ供給される熱媒を加熱する燃焼器と、上記タービ
ンから上記燃焼器へ熱媒を循環させる流体ポンプとから
なるランキンサイクル型エンジンを備え、速度制御信号
に基づき上記燃焼器に供給される燃料と、上記タービン
へ供給される熱媒の供給量を調整して速度制御を行う方
法において、上記速度制御信号の微分値を用いて燃料の
供給量を制御することを特徴とする水中航走体の速度制
御方法。
It is equipped with a Rankine cycle engine consisting of a turbine that rotates a propeller of an underwater vehicle, a combustor that heats a heat medium supplied to the turbine, and a fluid pump that circulates the heat medium from the turbine to the combustor. , a method of performing speed control by adjusting the amount of fuel supplied to the combustor and the amount of heat medium supplied to the turbine based on a speed control signal, in which the differential value of the speed control signal is used to control the amount of fuel. A method for controlling the speed of an underwater vehicle, characterized by controlling the amount of supply.
JP7644489A 1989-03-30 1989-03-30 Speed control method for underwater traveling body Pending JPH02256802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7644489A JPH02256802A (en) 1989-03-30 1989-03-30 Speed control method for underwater traveling body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7644489A JPH02256802A (en) 1989-03-30 1989-03-30 Speed control method for underwater traveling body

Publications (1)

Publication Number Publication Date
JPH02256802A true JPH02256802A (en) 1990-10-17

Family

ID=13605323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7644489A Pending JPH02256802A (en) 1989-03-30 1989-03-30 Speed control method for underwater traveling body

Country Status (1)

Country Link
JP (1) JPH02256802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109210381A (en) * 2018-11-02 2019-01-15 中国石油天然气集团公司 A kind of oil pipeline variable frequency pump combines regulator with regulating valve
CN109340576A (en) * 2018-11-02 2019-02-15 中国石油天然气集团公司 A kind of oil pipeline regulator and its oil pipeline pressure regulation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014163A (en) * 1983-07-06 1985-01-24 Hitachi Ltd Ultrasonic sensor
JPS61228300A (en) * 1985-03-30 1986-10-11 三菱重工業株式会社 Drive for propeller of underwater sailing body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014163A (en) * 1983-07-06 1985-01-24 Hitachi Ltd Ultrasonic sensor
JPS61228300A (en) * 1985-03-30 1986-10-11 三菱重工業株式会社 Drive for propeller of underwater sailing body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109210381A (en) * 2018-11-02 2019-01-15 中国石油天然气集团公司 A kind of oil pipeline variable frequency pump combines regulator with regulating valve
CN109340576A (en) * 2018-11-02 2019-02-15 中国石油天然气集团公司 A kind of oil pipeline regulator and its oil pipeline pressure regulation method

Similar Documents

Publication Publication Date Title
US4680927A (en) Control system for Cheng dual-fluid cycle engine system
US3417737A (en) Once-through boiler control system
HU177409B (en) Method and apparatus for the start-control of the steamturbine of reheater heaving bypass-system
US5472312A (en) Water level regulating system
US3253994A (en) Method of controlling a nuclear reactor plant and apparatus therefor
CN113803179B (en) Engine control method and device and electronic equipment
KR840001677A (en) Bypass device for steam turbine
JPH02256802A (en) Speed control method for underwater traveling body
JP2535740B2 (en) Speed control method of underwater vehicle
JP2811662B2 (en) Alkali metal engine control device
JP2664050B2 (en) Speed control method of underwater vehicle
GB845013A (en) Regulation of thermal power plants
US4417438A (en) Control system for Cheng dual-fluid cycle engine system
SU442312A1 (en) Control system of the boiler turbine unit
JPS585409A (en) Method of controlling regulating valve for pressure- change operation
CN116146357B (en) Feedforward control method of electric fuel pump
SU1134751A1 (en) Device for controlling gas temperature upstream of gas turbine of steam-gas plant with steam generator
SU499407A1 (en) Steam turbine control method
SU1183780A1 (en) Apparatus for automatic regulation of temperature condition of straight-through boiler
RU2151342C1 (en) Device for temperature control of boiler unit steam
SU1325248A1 (en) Method of automatic control of straight-through boiler
SU916888A1 (en) Method of automatic control of medium condition at superheater outlet
SU840424A1 (en) Power unit automatic control system
SU1052779A1 (en) Method of controlling steam pressure in common inlet main of turbines
SU848703A1 (en) Method of regulating pressure in line for steam takeoff from turbine