[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0224787B2 - - Google Patents

Info

Publication number
JPH0224787B2
JPH0224787B2 JP57130122A JP13012282A JPH0224787B2 JP H0224787 B2 JPH0224787 B2 JP H0224787B2 JP 57130122 A JP57130122 A JP 57130122A JP 13012282 A JP13012282 A JP 13012282A JP H0224787 B2 JPH0224787 B2 JP H0224787B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
gas
aluminum
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57130122A
Other languages
Japanese (ja)
Other versions
JPS5921577A (en
Inventor
Ju Onda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP57130122A priority Critical patent/JPS5921577A/en
Publication of JPS5921577A publication Critical patent/JPS5921577A/en
Publication of JPH0224787B2 publication Critical patent/JPH0224787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エンジニアリングセラミツクスとし
て好適な炭化珪素焼結体の製造方法に関する。 炭化珪素は、高温での安定性が高く、耐摩耗性
において優れ、熱伝導率が高く、熱膨張率が小さ
く、また、耐酸化性に優れていて化学的にも安定
な材料であり、高温構造材、熱機関、熱交換器あ
るいは熱間摺動機用として有望視されている。 炭化珪素は、共有結合性の強い化合物であるた
めに炭化珪素単独では、高密度の焼結体を得るの
が困難である。このため従来は、その焼結性を改
善するために、硼素、アルミニウム、ベリリウ
ム、あるいは、その窒化物あるいは炭化物等を単
味、または、複合して焼結助剤として添加し、反
応焼結法、常圧焼結法、ホツトプレス、あるいは
HIP法を適用しての焼結が行われて来た。 しかしながら、反応焼結法においては、未反応
珪素が残留してそのため高温において著しい強度
低下を生じ、また、前記添加剤を用いる常圧焼結
法、ホツトプレス、HIP等においては、炭化珪素
中への添加剤の偏折、あるいは粒界における脆い
相の形成等によつて、焼結体の高温強度、耐クリ
ープ性に非常に悪い影響を与えるという問題があ
つた。 本発明は、かかる従来の炭化珪素の焼結に当つ
ての問題点を解決するために焼結助剤の添加をせ
ずに、粒界の清浄化を図り、炭化珪素の緻密化焼
結を促進させる方法を提供し、焼結体の密度が理
論密度の93%以上であり、1400℃での3点曲げ強
さが60Kg/mm2以上である高密度高強度炭化珪素焼
結体を得ることを目的とするものである。 そして、本発明は、窒素雰囲気常圧焼結法にお
いて、炭化珪素表面を、窒化アルミニウム、酸窒
化アルミニウム等のアルミニウムの窒素化合物で
被覆し、且つ、焼結過程で窒素分圧をコントロー
ルすることによつて炭化珪素の非収縮性初期焼結
を抑制して、高温域で窒素分圧を低減することに
よつて収縮性焼結を促進できるという知見に基い
て完成されたものである。 本発明において、アルミニウムの窒素化合物の
皮膜は、窒素圧をコントロールして、高温域まで
の炭化珪素の表面拡散と蒸発凝縮を抑制して2000
℃〜2350℃の焼結温度域での焼結駆動力を保持し
て緻密な焼結体を得るとともに、窒素分圧を下げ
ることで窒化物皮膜を徐々に分解させ、また分解
したAlを炭化珪素粒子中へ固溶させて、有害な
残留粒界相を減少させる作用も奏する。しかし、
多量の分解蒸気の発生は、それが焼結阻害ともな
るので皮膜は極めて薄いものである必要がある。 通常、AlN皮膜形成のためには、AlCl3,AlI3
(NH43AlF6,(CH36Al2の如きアルミニウム化
合物をNH3またはN2ガス中で反応させて炭化珪
素表面にAlNを形成させるいわゆる化学気相反
応法を適用する。この場合、反応ガスの濃度が高
すぎると粒の著しい凝集や、AlN粉末の生成が
起るので、均一な皮膜を作るためには低濃度の反
応ガスを用いる必要がある。N2ガスを使用する
場合にはH2ガスを混合して流さなくては反応が
進行しない。またNH3ガス中の水分量が多いと
AlNの被膜形成が阻害されるのでNH3ガス中の
水分量は10ppm以下であることが望ましい。さら
に、均一膜生成のためには炭化珪素粉末は反応中
に撹拌されることが望ましく高温炉中での試料転
動装置や流動層を用いることが有効である。
AlCl3とNH3を用いる場合被膜の均一生成には
1000℃〜1150℃が望ましい。 また、かかる窒化物を炭化珪素粉末に被覆する
方法として、窒素雰囲気で容易に窒化物に転換す
る金属単独、あるいは、酸化物、ハロゲン化物等
の化合物皮膜を設け、その後成形体の窒素雰囲気
中の焼結過程で窒化物に転換する方法も採ること
ができる。例えば、硫酸アルミニウムアンモニウ
ム、アルミニウムイソプロポキシド、硝酸アルミ
ニウム、硫酸アルミニウム等の溶媒に可溶なアル
ミニウム化合物を用いて、溶媒に溶かした上記ア
ルミニウム化合物を炭化珪素粉末に被膜して、ア
ルミニウム化合物を窒素雰囲気中で加熱分解させ
て、窒化物皮膜を形成させる方法を採用する。 具体的には、硫酸アルミニウムアンモニウムを
用いる場合は炭酸水素アンモニウムを同時に添加
してNH4AlO(OH)HCO3の皮膜を合成して、こ
れを180℃以上で熱分解してAl2O3膜とする。 アルミニウムとプロポキシドを用いる場合はエ
タノールに溶解して、150℃以上で加熱分解させ
る。このような熱分解により、炭化珪素粉末は
Alを主成分とするAl化合物又はAl単体皮膜によ
り被覆される。 上記のように被膜された炭化珪素粉末は前述の
AlNにより被膜された炭化珪素粉末と同様に炭
素質添加剤を加えて成形後、室温から1000℃では
前記と同様の流通方式で昇温し1200〜1600℃の温
度で数時間保持してN2気流中窒化処理すること
により被膜アルミナは窒化物に転換し、以後の昇
温過程と焼結過程では前述の窒化アルミニウムと
同様に機能する。 次に、本発明において炭素質添加剤は、やや余
剰に存在し高温においてガラス相を形成して高温
強度を劣化させる酸化物系夾雑物等を還元除去
し、また遊離の珪素が存在する場合には捕捉体と
して機能させる。さらに、焼結時には炭化珪素の
分解を抑制し、窒化物被膜層の分解を促進させる
効果を有するものである。そのためには分散の良
い固定炭素を得る目的から微粒状態のカーボンブ
ラツク、フエノール樹脂、コールタールピツチ、
アセチレンブラツクを使用することができる。し
かしながら、多量に使用すると焼結体の強度やカ
サ密度に悪影響を与えるので炭化珪素全量に対
し、2重量%以下の添加が望ましい。 前述のように表面被覆を施した炭化珪素は炭素
質添加剤を加えて後述の方法によりアセトン、ジ
ブチルフタレート、ポリビニルアルコール等の溶
媒を用いて、混合し、乾燥後、ラバープレスを用
いて静水圧加圧等により成形する。 成形体の加熱昇温の第一段階は、主として、分
解ガス除去のため、窒素、水素、アルゴン、ヘリ
ウム、アンモニアガス等を通しながら50〜100
℃/hのゆつくりした速度で500℃程度まで昇温
する。500℃からは100〜200℃/hで昇温し、
1000〜1200℃で窒素雰囲気加圧を開始する。窒素
雰囲気は窒素単体、又は窒素にHe,H2,炭化水
素のうち少なくとも1種の少量ガスを含む混合気
体で行う。窒素分圧が3気圧以下の場合非収縮性
の初期焼結が起つていることから、窒化膜による
炭化珪素の初期焼結の抑制効果が薄くなり、また
10気圧を超えては、炭化珪素の焼結駆動力の保持
はそれ以上の効果が見られない。窒素加圧後、成
形体は、200〜400℃/hで昇温し、表面拡散、蒸
発凝縮を抑えて焼結駆動力を保持し、炭化珪素の
結晶成長を抑えることができる。2000℃を超え焼
結温度に達したならば真空に引いて窒素分圧を下
げアルゴンガスのような不活性ガス置換を行つて
窒化物被膜の分解減少を図る。しかしながら、
2350℃の温度を超えると炭化珪素の粒成長が発生
し、100ミクロン以上の板状結晶の生長が見られ、
焼結物の緻密化を阻害し、強度が低下する。従つ
て、本発明における窒化物被覆炭化珪素粉末成形
体の焼結は2000℃から2350℃の範囲、特に2100℃
から2200℃の温度域にあることが望ましい。 本発明の具体的な実施態様と効果を実施例に基
いて、以下に説明する。 〔実施例 1〕 炭化珪素粉末として炭化珪素含有率97%比表面
積10m2/g平均粒径0.5μmのα型炭化珪素微粉末
を用いた。 この粉末約30gにAlN表面被膜の気相コーテ
イングを行つた。炉内試料部の温度は1000℃〜
1200℃でAlCl3ガスとNH3ガスが試料部付近まで
接触しないように2重構造としAlCl3ガスは固体
のAlCl3を170℃に加熱しH2ガスをキヤリアーと
して反応炉に導いた。AlCl3輸送管は途中で析出
が起らないように保温した。NH3ガスはArガス
と混合して流しNH3ガスは毎分9c.c.、AlCl3は毎
分3c.c.の流量で流し試料を炉内で連続的に転動さ
せながら1時間から4時間反応処理した。NH3
ガスは水分量10ppm以下に精製したものを用い
た。コーテイング処理による重量増加率と化学分
析によるAl含有率を第1表に示す。 このようにして得られたコーテイング粉末100
重量部と平均粒径200Åのカーボンブラツク1重
量部又はノボラツクフエノール樹脂4重量部をポ
リビニルアルコール溶液を加えて、ポツトミルで
2時間混合調整し真空加熱乾燥してアルコール分
を除去した。この原料配合を1400Kg/cm2の圧力で
ラバープレスし50×25×10mmの成形体を得た。そ
の成形体のカサ密度は54〜56%TDであつた。 次に成形体を雰囲気調整可能なカーボン発熱炉
中で露点−70℃、O2が1ppm以下の窒素精製ガス
を用い、0.1%の水素ガスを含むN2気流中で550
℃まで60℃/h,550℃から1050℃まで150℃/h
で昇温し、1050℃でN2雰囲気圧力10気圧にして
400℃/hで昇温した。その後1900〜2100℃の温
度でArガスに置換した。置換は窒素減圧,真空
引き(10 3torr),Arガス置換の順序で約30分間
で行い2100℃で4時間保持して焼成した。 処理条件と焼結体の物理的化学的性質を表2に
示した。 試料No.1は比較のためコーテイング処理をしな
い炭化珪素粉末を用いて純度99.6%のAlN微粉末
2重量%とカーボンブラツク1重量%を添加剤と
して加えて同様の方法で焼結した場合の結果であ
る。 試料No.2〜No.6はコーテイング粉末試料Cを用
いた場合の結果で試料No.7はコーテイング粉末試
料Fを用いた場合の結果である。 表2から明らかなように窒素からArガスへの
置換は2000℃以上が有効である。また試料No.5,
7のように残留Al含有量が1重量%以上のもの
は強度の低下を示す。
The present invention relates to a method for manufacturing a silicon carbide sintered body suitable for engineering ceramics. Silicon carbide has high stability at high temperatures, excellent wear resistance, high thermal conductivity, low coefficient of thermal expansion, and is a chemically stable material with excellent oxidation resistance. It is seen as promising for use in structural materials, heat engines, heat exchangers, and hot sliders. Since silicon carbide is a compound with strong covalent bonding properties, it is difficult to obtain a high-density sintered body using silicon carbide alone. For this reason, conventionally, in order to improve the sinterability, boron, aluminum, beryllium, or their nitrides or carbides were added as a sintering aid singly or in combination, and the reaction sintering method was used. , pressureless sintering method, hot press, or
Sintering has been carried out by applying the HIP method. However, in the reactive sintering method, unreacted silicon remains, resulting in a significant decrease in strength at high temperatures.In addition, in the pressureless sintering method, hot press, HIP, etc. using the above additives, unreacted silicon remains in the silicon carbide. There has been a problem in that the high temperature strength and creep resistance of the sintered body are extremely adversely affected by the polarization of additives or the formation of brittle phases at grain boundaries. In order to solve the problems in the conventional sintering of silicon carbide, the present invention aims to clean the grain boundaries without adding a sintering aid and achieves densification sintering of silicon carbide. To obtain a high-density, high-strength silicon carbide sintered body whose density is 93% or more of the theoretical density and whose three-point bending strength at 1400°C is 60 Kg/mm 2 or more. The purpose is to Further, the present invention involves coating the silicon carbide surface with an aluminum nitrogen compound such as aluminum nitride or aluminum oxynitride in a nitrogen atmosphere pressureless sintering method, and controlling the nitrogen partial pressure during the sintering process. This method was completed based on the knowledge that shrinkage sintering of silicon carbide can be promoted by suppressing non-shrinkage initial sintering and reducing nitrogen partial pressure in a high temperature range. In the present invention, the nitrogen compound film on aluminum controls the nitrogen pressure and suppresses the surface diffusion and evaporation condensation of silicon carbide up to a high temperature range.
In addition to maintaining the sintering driving force in the sintering temperature range of ℃ to 2350℃ to obtain a dense sintered body, the nitride film is gradually decomposed by lowering the nitrogen partial pressure, and the decomposed Al is carbonized. It also has the effect of reducing harmful residual grain boundary phases by solid solution in silicon particles. but,
Since the generation of a large amount of decomposition vapor inhibits sintering, the film needs to be extremely thin. Usually, AlCl 3 , AlI 3 ,
A so-called chemical vapor phase reaction method is applied in which an aluminum compound such as (NH 4 ) 3 AlF 6 or (CH 3 ) 6 Al 2 is reacted in NH 3 or N 2 gas to form AlN on the surface of silicon carbide. In this case, if the concentration of the reaction gas is too high, significant agglomeration of grains and generation of AlN powder will occur, so it is necessary to use a reaction gas at a low concentration in order to form a uniform film. When using N 2 gas, the reaction will not proceed unless H 2 gas is mixed with the flow. Also, if there is a large amount of water in NH 3 gas,
It is desirable that the amount of water in the NH 3 gas is 10 ppm or less since the formation of a AlN film is inhibited. Furthermore, in order to produce a uniform film, it is desirable that the silicon carbide powder be stirred during the reaction, and it is effective to use a sample rolling device in a high temperature furnace or a fluidized bed.
When using AlCl 3 and NH 3 , uniform film formation requires
1000℃~1150℃ is desirable. In addition, as a method for coating silicon carbide powder with such nitrides, a film of a metal alone or a compound such as an oxide or halide that is easily converted into nitride in a nitrogen atmosphere is provided, and then a film of a compound such as an oxide or a halide is provided, and then the molded body is coated in a nitrogen atmosphere. A method of converting it into nitride during the sintering process can also be adopted. For example, using an aluminum compound that is soluble in a solvent such as ammonium aluminum sulfate, aluminum isopropoxide, aluminum nitrate, or aluminum sulfate, the aluminum compound dissolved in the solvent is coated on silicon carbide powder, and the aluminum compound is placed in a nitrogen atmosphere. A method is adopted in which the material is thermally decomposed inside to form a nitride film. Specifically, when using ammonium aluminum sulfate, ammonium hydrogen carbonate is added at the same time to synthesize a film of NH 4 AlO (OH) HCO 3 , which is then thermally decomposed at 180°C or higher to form an Al 2 O 3 film. shall be. When aluminum and propoxide are used, they are dissolved in ethanol and decomposed by heating at 150°C or higher. Through such thermal decomposition, silicon carbide powder is
Covered with an Al compound containing Al as the main component or an Al single film. The silicon carbide powder coated as described above is
After molding with the addition of carbonaceous additives in the same way as AlN-coated silicon carbide powder, the temperature was raised from room temperature to 1000°C using the same flow method as above, and kept at a temperature of 1200 to 1600°C for several hours, followed by N 2 By nitriding in an air stream, the coated alumina is converted to nitride, which functions in the same manner as the aluminum nitride described above in the subsequent temperature raising process and sintering process. Next, in the present invention, the carbonaceous additive is used to reduce and remove oxide-based impurities that are present in a slight surplus and form a glass phase at high temperatures and deteriorate high-temperature strength, and also to functions as a trap. Furthermore, it has the effect of suppressing the decomposition of silicon carbide and promoting the decomposition of the nitride coating layer during sintering. For this purpose, in order to obtain fixed carbon with good dispersion, fine particles of carbon black, phenol resin, coal tar pitch, etc.
Acetylene black can be used. However, if used in a large amount, it will adversely affect the strength and bulk density of the sintered body, so it is desirable to add 2% by weight or less based on the total amount of silicon carbide. The silicon carbide surface-coated as described above is mixed with a carbonaceous additive using a solvent such as acetone, dibutyl phthalate, or polyvinyl alcohol by the method described below, and after drying, isostatic pressure is applied using a rubber press. Shape by applying pressure, etc. The first step of heating the compact is mainly to remove decomposed gas by passing nitrogen, hydrogen, argon, helium, ammonia gas, etc.
The temperature is raised to about 500℃ at a slow rate of ℃/h. From 500℃, the temperature increases at a rate of 100 to 200℃/h.
Start pressurizing the nitrogen atmosphere at 1000-1200°C. The nitrogen atmosphere is nitrogen alone or a mixed gas containing nitrogen and a small amount of at least one of He, H 2 and hydrocarbons. When the nitrogen partial pressure is 3 atm or less, non-shrinkage initial sintering occurs, so the effect of suppressing the initial sintering of silicon carbide by the nitride film becomes weaker, and
When the pressure exceeds 10 atmospheres, no further effect is observed in maintaining the sintering driving force of silicon carbide. After nitrogen pressurization, the molded body is heated at a rate of 200 to 400° C./h, suppressing surface diffusion and evaporation condensation to maintain sintering driving force, and suppressing crystal growth of silicon carbide. When the temperature exceeds 2000°C and reaches the sintering temperature, vacuum is applied to lower the nitrogen partial pressure and replacement with an inert gas such as argon gas is performed to reduce decomposition of the nitride film. however,
When the temperature exceeds 2350℃, grain growth of silicon carbide occurs, and growth of plate-shaped crystals of 100 microns or more is observed.
This inhibits the densification of the sintered product and reduces its strength. Therefore, the nitride-coated silicon carbide powder compact in the present invention is sintered at a temperature in the range of 2000°C to 2350°C, particularly at 2100°C.
It is desirable that the temperature range is between 2200℃ and 2200℃. Specific embodiments and effects of the present invention will be described below based on Examples. [Example 1] As the silicon carbide powder, α-type silicon carbide fine powder having a silicon carbide content of 97%, a specific surface area of 10 m 2 /g, and an average particle size of 0.5 μm was used. Approximately 30 g of this powder was coated with an AlN surface film in a vapor phase. The temperature of the sample part in the furnace is 1000℃ ~
A double structure was used to prevent AlCl 3 gas and NH 3 gas from coming into contact near the sample portion at 1200°C, and solid AlCl 3 was heated to 170°C and led to the reactor using H 2 gas as a carrier. The AlCl 3 transport pipe was kept warm to prevent precipitation during the process. NH 3 gas was mixed with Ar gas and flowed at a flow rate of 9 c.c./min for NH 3 gas and 3 c.c./min for AlCl 3 for 1 hour while continuously rolling the sample in the furnace. The reaction treatment was carried out for 4 hours. NH3
The gas used was purified to a moisture content of 10 ppm or less. Table 1 shows the weight increase rate due to coating treatment and the Al content determined by chemical analysis. Coating powder thus obtained100
A polyvinyl alcohol solution was added to 1 part by weight of carbon black having an average particle size of 200 Å or 4 parts by weight of novolak phenol resin, mixed for 2 hours in a pot mill, and dried under vacuum heat to remove the alcohol content. This raw material mixture was rubber pressed at a pressure of 1400 Kg/cm 2 to obtain a molded product of 50 x 25 x 10 mm. The bulk density of the molded product was 54 to 56% TD. Next, the molded body was placed in a carbon-heating furnace where the atmosphere could be adjusted, using purified nitrogen gas with a dew point of -70°C and O2 of 1 ppm or less, and heated to 550 °C in a N2 gas stream containing 0.1% hydrogen gas.
60℃/h to ℃, 150℃/h from 550℃ to 1050℃
The temperature was increased to 1050℃ and N2 atmosphere pressure was 10 atm.
The temperature was raised at 400°C/h. Thereafter, the atmosphere was replaced with Ar gas at a temperature of 1900 to 2100°C. Replacement was performed in the order of nitrogen depressurization, evacuation (10 3 torr), and Ar gas replacement over a period of about 30 minutes, followed by firing at 2100° C. for 4 hours. Table 2 shows the processing conditions and the physical and chemical properties of the sintered body. For comparison, sample No. 1 is the result of sintering in the same manner using silicon carbide powder without coating treatment and adding 2% by weight of AlN fine powder with a purity of 99.6% and 1% by weight of carbon black as additives. It is. Samples No. 2 to No. 6 are the results when coating powder sample C was used, and sample No. 7 is the results when coating powder sample F was used. As is clear from Table 2, replacing nitrogen with Ar gas is effective at temperatures above 2000°C. In addition, sample No. 5,
Those with a residual Al content of 1% by weight or more, such as No. 7, show a decrease in strength.

【表】【table】

【表】【table】

〔実施例 2〕[Example 2]

実施例1の粉末試料Cを用いて実施例1と同様
な条件で、カーボンブラツク1重量部を添加剤と
して加えてN2ガスのArガス置換温度を2150℃〜
2400℃で行い同温度で焼結した結果を表3に示
す。
Using the powder sample C of Example 1, under the same conditions as Example 1, 1 part by weight of carbon black was added as an additive, and the N 2 gas was replaced with Ar gas at a temperature of 2150°C.
Table 3 shows the results of sintering at 2400°C and the same temperature.

〔実施例 3〕[Example 3]

炭化珪素粉末として炭化珪素含有率97%比表面
積10m2/g平均粒径0.5μmのα型炭化珪素微粉末
を用いた。 この炭化珪素粉末100重量部に対して15重量部
のアルミニウムイソプロポキシドをエタノール溶
液として加え、ポツトミル中で4時間混合し、
150℃で加熱乾燥した。 この結果炭化珪素粉末は2.8重量%の重量増加
を示した化学分析によるAl含有量は1.0重量%で
このよにして得られた主に酸化アルミニウム微粉
により被覆された炭化珪素粉末をその粉末100重
量部と4重量部のノボラツクフエノール樹脂を溶
かしたアセトンと混合してポツトミル中で2時間
混合した後、真空乾燥した。 この配合物を1400Kg/cm2の圧力でラバープレス
して50×25×10mmの成形体を得た。その成形体の
カサ密度は50%TDであつた。 次にカーボン発熱体炉中H2O含有量10ppm以
下のNH3ガスを0.1%含む窒素ガス気流中で50
℃/hで500℃まで昇温し500℃から1550℃まで
100℃/hで昇温し1550℃で2時間保持して還元
窒化した。その後N2雰囲気圧10気圧にして300
℃/hで2100℃まで昇温し、この温度で実施例1
と同様にArガスに置換する。置換は約30分間で
行い、その後2100℃で4時間焼結した。 その結果得られた焼結体はカサ密度96.8%TD
残留Al含有量0.4重量%で室温曲げ強度62.0Kg/
mm2であつた。 〔実施例 4〕 実施例3と同様の炭化珪素粉末100重量部に対
して35重量部の硫酸アルミニウムアンモニウム溶
液0.2mol/と炭酸水素アンモニウム溶液
20mol/とをポツトミル中で2時間混合し、
150℃で加熱乾燥した後Ar雰囲気中900℃で熱処
理した。この処理の結果炭化珪素粉末は3.1重量
%の重量増加を示しAl含有量は1.2重量%で、Al
化合物の主成分はアルミナであつた。このように
して得られたコーテイング粉末を実施例3と同様
の方法で焼結を行つた。その結果得られた焼結体
はカサ密度96.2%TD残留Al含有量0.5重量%で室
温曲げ強度63.3Kg/mm2であつた。 〔実施例 5〕 実施例1の試料No.4と実施例3,4と同様のコ
ーテイング方法による試料を雰囲気窒素圧力を1
〜30気圧の間で焼結実験を行つた。 また雰囲気を変化させて焼結実験を行つた。 その結果を表4に示す。 以上の実施例によつて明らかな通り、本発明方
法により、目的とする密度が理論密度の93%以
上、1400℃での3点曲げ強度60Kg/mm2以上の炭化
珪素焼結体が得られ、エンジニアリングセラミツ
クスとして、その苛酷な諸目的用に充分耐え得る
材料が得られるものである。
As the silicon carbide powder, α-type silicon carbide fine powder having a silicon carbide content of 97%, a specific surface area of 10 m 2 /g, and an average particle size of 0.5 μm was used. To 100 parts by weight of this silicon carbide powder, 15 parts by weight of aluminum isopropoxide was added as an ethanol solution, mixed in a pot mill for 4 hours,
It was dried by heating at 150°C. As a result, the silicon carbide powder showed a weight increase of 2.8% by weight.The Al content according to chemical analysis was 1.0% by weight. and 4 parts by weight of novolac phenol resin were mixed with dissolved acetone, mixed in a pot mill for 2 hours, and then dried in vacuum. This blend was rubber pressed at a pressure of 1400 kg/cm 2 to obtain a molded article of 50 x 25 x 10 mm. The bulk density of the molded product was 50% TD. Next, the carbon heating element was heated in a nitrogen gas stream containing 0.1% NH3 gas with a H2O content of 10ppm or less for 50 minutes.
Increase temperature to 500℃ at ℃/h and from 500℃ to 1550℃
The temperature was increased at a rate of 100°C/h and held at 1550°C for 2 hours to perform reduction nitridation. Then N2 atmosphere pressure is 10 atm and 300
The temperature was raised to 2100℃ at a rate of ℃/h, and at this temperature Example 1
Replace with Ar gas in the same way. Replacement took about 30 minutes, followed by sintering at 2100°C for 4 hours. The resulting sintered body has a bulk density of 96.8% TD.
Room temperature bending strength 62.0Kg/ with residual Al content 0.4% by weight
It was warm in mm2 . [Example 4] 35 parts by weight of an aluminum ammonium sulfate solution (0.2 mol) per 100 parts by weight of the same silicon carbide powder as in Example 3 and an ammonium hydrogen carbonate solution
20mol/ and mixed in a pot mill for 2 hours,
After drying by heating at 150°C, heat treatment was performed at 900°C in an Ar atmosphere. As a result of this treatment, the silicon carbide powder showed a weight increase of 3.1% by weight, and the Al content was 1.2% by weight.
The main component of the compound was alumina. The thus obtained coating powder was sintered in the same manner as in Example 3. The resulting sintered body had a bulk density of 96.2%, a TD residual Al content of 0.5% by weight, and a room temperature bending strength of 63.3 Kg/mm 2 . [Example 5] Sample No. 4 of Example 1 and a sample coated using the same coating method as Examples 3 and 4 were coated with an atmospheric nitrogen pressure of 1
Sintering experiments were conducted between ~30 atm. We also conducted sintering experiments by changing the atmosphere. The results are shown in Table 4. As is clear from the above examples, by the method of the present invention, a silicon carbide sintered body having a target density of 93% or more of the theoretical density and a three-point bending strength of 60 kg/mm 2 or more at 1400°C can be obtained. As engineering ceramics, it is possible to obtain materials that are sufficiently durable for various harsh purposes.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム窒素化合物またはアルミニウム
の窒素化合物に転換可能なアルミニウム単体ある
いはアルミニウムの化合物の皮膜を有する炭化珪
素粉末に少量の炭素質添加剤を添加した粉末成形
体を、3気圧以上の窒素ガス含有非酸化性雰囲気
で、少くとも2000℃まで加熱し、次いで、窒素ガ
ス分圧を低下させた雰囲気中で焼結することを特
徴とする炭化珪素粉末成形体の焼結方法。
1 A powder compact made by adding a small amount of carbonaceous additive to a silicon carbide powder having a film of simple aluminum or an aluminum compound that can be converted into an aluminum nitrogen compound or an aluminum nitrogen compound is heated to a nitrogen gas-containing non-oxidizing atmosphere of 3 atmospheres or more. 1. A method for sintering a silicon carbide powder compact, which comprises heating to at least 2000°C in a neutral atmosphere, and then sintering in an atmosphere with a reduced partial pressure of nitrogen gas.
JP57130122A 1982-07-26 1982-07-26 Method of sintering silicon carbide powder molded body Granted JPS5921577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130122A JPS5921577A (en) 1982-07-26 1982-07-26 Method of sintering silicon carbide powder molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130122A JPS5921577A (en) 1982-07-26 1982-07-26 Method of sintering silicon carbide powder molded body

Publications (2)

Publication Number Publication Date
JPS5921577A JPS5921577A (en) 1984-02-03
JPH0224787B2 true JPH0224787B2 (en) 1990-05-30

Family

ID=15026469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130122A Granted JPS5921577A (en) 1982-07-26 1982-07-26 Method of sintering silicon carbide powder molded body

Country Status (1)

Country Link
JP (1) JPS5921577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620174U (en) * 1992-05-07 1994-03-15 一彦 香味 Side spoiler device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2170511B (en) * 1984-12-17 1989-06-07 Toshiba Ceramics Co Sintered body of silicon carbide
JPS61266353A (en) * 1985-05-20 1986-11-26 東芝セラミツクス株式会社 Silicon carbide base sintered body
JPS6236066A (en) * 1985-08-08 1987-02-17 イビデン株式会社 Silicon carbide base sintered body and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620174U (en) * 1992-05-07 1994-03-15 一彦 香味 Side spoiler device

Also Published As

Publication number Publication date
JPS5921577A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
CA1235146A (en) High thermal conductivity ceramic body
JPS61155263A (en) Manufacture of high heat conductivity ceramic body
JPH0224787B2 (en)
JPH0362643B2 (en)
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JPS6332841B2 (en)
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
GB2215738A (en) Method of preparing silicon carbide sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH0463028B2 (en)
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPS6144767A (en) Manufacture of high density silicon nitride reaction sintered body
JPS6121188B2 (en)
JPS60186473A (en) Silicon nitride sintered body and manufacture
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body
JPH0431364A (en) Production of silicon carbide sintered compact
JPH0559073B2 (en)
JPS62270466A (en) Aluminum nitride base sintered body
JPH0597520A (en) Production of silicon carbide-based material
JPS62283871A (en) Manufacture of silicon carbide sintered body
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body