JPH02232549A - Photometer measuring apparatus for effluent from centrifugal extractor - Google Patents
Photometer measuring apparatus for effluent from centrifugal extractorInfo
- Publication number
- JPH02232549A JPH02232549A JP1053267A JP5326789A JPH02232549A JP H02232549 A JPH02232549 A JP H02232549A JP 1053267 A JP1053267 A JP 1053267A JP 5326789 A JP5326789 A JP 5326789A JP H02232549 A JPH02232549 A JP H02232549A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- flow cell
- centrifugal extractor
- effluent
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 238000005352 clarification Methods 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 12
- 239000000725 suspension Substances 0.000 abstract description 8
- 239000000839 emulsion Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 2
- 239000006228 supernatant Substances 0.000 abstract 2
- 238000002835 absorbance Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Sampling And Sample Adjustment (AREA)
- Optical Measuring Cells (AREA)
Abstract
Description
本発明は、遠心抽出器からの流出液をフローセルに導き
、フォトメータによって吸光、蛍光分析を行う装置に関
するものである。The present invention relates to a device that guides the effluent from a centrifugal extractor to a flow cell and performs absorption and fluorescence analysis using a photometer.
高速炉燃料再処理の化学処理抽出工程において、遠心抽
出器からの流出液はブローセルに導かれて、照射した光
の吸収量あるいは蛍光強度をフォトメータで測定し、計
算によって溶液中の咳物質濃度等を求めている。ところ
が遠心抽出器からの流出液は、水相と有機相が高速で混
合分離されて出てくる為、流出液中には多量に気泡やエ
マルジョンを包含しているから、光の吸収、散乱が著し
く、満足な測定ができにくい。
そこで、従来は、遠心抽出器からの流出液を一l静置し
、脱泡したものをフローセルに送るようにしていた。第
4図に、R.T.Jubln,UraniumPhot
omctor Experience aL ORNI
、.Ol?NL/CFRP−88l3に記載されている
装置を示し、簡単に説明すると、遠心抽出器1から出た
流出液を中間ボット2に一時溜め、液中の気泡を除去し
たのちポンプ3でフローセル4に送り、光ファイバー5
を用いて照射した光の吸収量を光ファイバー5を介して
フォトメータ6でn1定していた。In the chemical extraction process of fast reactor fuel reprocessing, the effluent from the centrifugal extractor is guided to a blow cell, and the absorption amount or fluorescence intensity of the irradiated light is measured with a photometer, and the concentration of cough substances in the solution is determined by calculation. I'm looking for something like that. However, in the effluent from a centrifugal extractor, the aqueous phase and organic phase are mixed and separated at high speed, and the effluent contains a large amount of air bubbles and emulsion, which causes light absorption and scattering. It is extremely difficult to make satisfactory measurements. Therefore, conventionally, one liter of the effluent from the centrifugal extractor was allowed to stand still, and the defoamed liquid was sent to the flow cell. In FIG. 4, R. T. Jubln, UraniumPhoto
omctor Experience aL ORNI
,. Ol? The device described in NL/CFRP-88l3 is shown and briefly explained. The effluent from the centrifugal extractor 1 is temporarily stored in the intermediate bot 2, and after air bubbles are removed from the liquid, it is transferred to the flow cell 4 using the pump 3. feed, optical fiber 5
The absorption amount of light irradiated using the optical fiber 5 was determined by a photometer 6 as n1.
上記のように、遠心抽出器からの懸濁流出液を静置して
気泡を除くには数分を必要とし、従ってこれをフローセ
ルに送って側定するまでには数分の時間遅れとなり、こ
れでは遠心抽出器の正確な運転制御をする上で時間がか
かり過ぎてしまった。また、数分程度の静置では液中の
エマルジョンは殆ど消失しないから、AP1定上、大き
な誤差を生じる要因となっていた。
本発明者等は、遠心抽出器からフローセルに至る短距離
且つ短時間の間に、確実に消泡し同時にエマルジョンに
よる懸濁を消失させることができないかと種々研究を重
ねてきた。その結果、意外にも比較的簡単に解消させる
ことができる手段がわかり、本発明を完成するに至った
のである。As mentioned above, it takes several minutes to let the suspension effluent from the centrifugal extractor stand still and remove air bubbles, so there is a delay of several minutes before it is sent to the flow cell for lateralization. This took too much time to accurately control the operation of the centrifugal extractor. Furthermore, since the emulsion in the liquid hardly disappears after being left standing for about several minutes, this has been a cause of large errors in the AP1 determination. The present inventors have conducted various studies to find out whether it is possible to reliably defoam and at the same time eliminate suspension caused by an emulsion over a short distance and a short period of time from the centrifugal extractor to the flow cell. As a result, they surprisingly found a means to solve the problem relatively easily and completed the present invention.
本発明にあっては、遠心抽出器からフローセルに至る配
管に、親水性分離膜および/または親油性分離膜を単独
または数枚重ね合せて介装した清澄フィルターを設け、
該清澄フィルターを通過した液をフローセルに送り込む
と共に、その液を上記遠心抽出器に戻す液移送手段を設
けることによって、上記した目的を達成するようにした
ものである。
上記の液移送手段は、フローセルの液出口側にバッファ
ータンクを接続し、そのタンク内部圧力の減圧と加圧を
可能とする配管を取付け、上記バッファ−タンクの減圧
と加圧により清澄フィルターを通過する液の流れ方向を
反転可能としたものでもよいし、また、フローセルの液
出口側に接続する水流ポンプを設け、その水流ポンプで
吸引した液を遠心抽出器へ戻すようにしたものでもよい
。In the present invention, a clarification filter in which a hydrophilic separation membrane and/or a lipophilic separation membrane is interposed either singly or in a stack of several layers is provided in the piping leading from the centrifugal extractor to the flow cell,
The above object is achieved by providing a liquid transfer means for sending the liquid that has passed through the clarification filter into the flow cell and returning the liquid to the centrifugal extractor. The above liquid transfer means connects a buffer tank to the liquid outlet side of the flow cell, attaches piping that allows the tank's internal pressure to be reduced and increased, and passes through the clarification filter by reducing and increasing the pressure in the buffer tank. The flow direction of the liquid may be reversed, or a water pump connected to the liquid outlet side of the flow cell may be provided, and the liquid sucked by the water pump may be returned to the centrifugal extractor.
遠心抽出器からの流出液は、液移送手段によって、清澄
フィルターを通過したのちフローセルに送り込まれるが
、清澄フィルターに介装した親水性分離膜および/また
は親油性分離膜は懸濁流出液をよく清澄化するので、フ
ローセル内に送り込まれた液には気泡やエマルジョンが
すっかり除去されている。従ってフォトメータによる測
定は高精度に行われる。フローセル内の岐は、測定後、
遠心抽出器に戻される。The effluent from the centrifugal extractor is sent to the flow cell after passing through the clarification filter by the liquid transfer means, but the hydrophilic separation membrane and/or lipophilic separation membrane interposed in the clarification filter can effectively remove the suspended effluent. Because it is clarified, the liquid sent into the flow cell is completely free of air bubbles and emulsions. Therefore, measurements using a photometer are performed with high precision. After measurement, the branch in the flow cell is
Returned to centrifugal extractor.
【実施例1
ffil図に本発明の第1実施例を示す。図において、
第4図の従来例と同じ機器には同じ符号を付している。
遠心抽出器1からフローセル4に至る配管には清澄フィ
ルター7が設けられている。この清澄フィルター7は、
第2図に示すように、耐放射線性、耐酸性、耐溶媒性に
優れた+4質であるステンレス製のホルダー7a内に気
密パッキン7bとともに、対象とする溶液の性質や懸濁
度、液移送の条件等によって、シート状の親水性分離膜
および/または親油性分離膜7Cをili独または数枚
重ね合せて介装してなるものである。
通常は、流出液の水相川にはガラス繊維製の例えば厚さ
OJ5sv、保留粒子径0.5μmの親水性分離膜を用
い、流出液の有機相川にはポリエチレン、テフロン、ポ
リエチレンテレフタレート及びポリイミド等で作られた
例えば厚さ0 . 5sm+、保留粒子径0,5μ一の
親油性分離膜を用いる。
遠心抽出器1から出た流出液を清澄フィルター7の抵抗
に抗して通過させ、フローセル4に送り込むと共に、測
定後は液をもとの遠心抽出器1に戻すための液移送手段
8として、第1実施例は、真空源に繋がる減圧バルブ■
,、圧空源に繋がる加圧バルブv4、及び圧抜きバルブ
V,を取付けた配管を上部に連結したバッファータンク
9を設け、そのバッファータンク9の底部はバルブV’
、流量センサー10を取付けた配管によってフローセル
4の液出口側に連結し、遠心抽出器1とフローセル4の
液入口側とはバルブv1、清澄フィルター7を取付けた
配管によって連結している。
液移送に際しては先ず真空源に繋がる減圧バルブV!の
操作で予めバッファータンク9内を減圧状態にしておき
、次にバルブV,,V,を開けて、遠心抽出器1からの
流出液を清澄フィルター7、フローセル4、流量センサ
ー10を通過してバッファータンク9に吸い込むように
する。こうして懸濁流出液が清澄フィルター7を通過す
ると、その気泡、エマルジョンは除去あるいは捕集され
て完全に清澄になる。一方、流量センサー10により液
の通過を感知すると信号が発せられてバルブV, 、V
2が閉じられた後、フォトメータ6から出た光が光ファ
イバー5を介してフローセル4に導かれ、吸光、蛍光M
l定がフォトメータ6で行われる。フローセル4内の液
は上記のように清澄であるから、測定の荀度は極めて高
い。?JFJ定終了後は、圧抜きバルブV5を開けてバ
ッファータンク9内の減圧を破り、圧空源に繋がる加圧
バルブV4の操作でバッファータンク9内を加圧状態に
したのち、次にバルブV,,V2を開いて、溜まってい
る液をもと来た経路を経て遠心抽出器1に戻したのち、
バルブV, 、V,を閉じ、圧抜きバルブV,を開けて
バッファータンク9内を常圧にする。上記したバルブ制
御キフォトメータによる測定を順番に自動的に動作させ
るにはシーケンサ等で行い、Δ−1定を繰返す。
上記した第1実施例では、バッファータンク9内の減圧
によって遠心抽出器1からの懸濁流出液を清澄フィルタ
ー7に通して清澄化した液をフローセル4に送り込み、
測定後はバッファ−タンク9内の加圧によって同じ清澄
フィルタ−7を液が逆に通ってもと来た経路を経て遠心
抽出器1に戻されるようにした。しがし、この発明はこ
れに限られるものではなく、第4図に示す第2実施例の
ように、フローセル4の液出口側に水流ポンプ11およ
びバルブV 6 ヲ設ケ、水流ポンプ11によって清澄
フィルター7を通らずに遠心抽出器1へ戻すようにして
もい。
【発明の効果】
本発明によれば、遠心抽出器がらの懸濁流出液が清澄フ
ィルターを通過する数10秒程度の短時間の間に完全に
清澄化することができ、このため、フォトメータによる
測定結果を短時間で工程にフィードバックして運転管理
することが初めて可能となる。そればかりでなく、清澄
フィルターを通過した懸濁液は完全に清澄されるため高
い分析精度が得られる。清澄フィルター自体はti造が
rmiaだし小型なものでょいがら、狭い設置場所にも
装置できる。
バッファータンク内の負正によって流出液を清澄フィル
ターに吸い込み、測定後は該バッファータンク内の加圧
によって清澄フィルターから排出するようにすると、フ
ィルターに何等かの付着物があっても、逆洗浄をかけら
れた状態となるため常に綺麗にしておくことができるの
で長期使用に耐え、また高放射線下での機器の故障頻度
が少ない装置たらしめるうえて有効である。
また、フ4ローセルの液出口側にポンプを設けて吸引し
た液を遠心抽出器に戻すときには、フローセル内に気泡
が溜り難いといった効果が期待できるし、常に流出液を
循環しているため数秒間隔で濃度測定を行うことができ
るので、細かく運転制御ができるし、流m調節が容易で
ある。[Embodiment 1] A first embodiment of the present invention is shown in the ffil diagram. In the figure,
The same equipment as in the conventional example shown in FIG. 4 is given the same reference numeral. A clarifying filter 7 is provided in the piping from the centrifugal extractor 1 to the flow cell 4. This clarifying filter 7 is
As shown in Fig. 2, a holder 7a made of +4 quality stainless steel with excellent radiation resistance, acid resistance, and solvent resistance is housed with an airtight packing 7b to determine the properties of the target solution, the degree of suspension, and the liquid transfer. Depending on the conditions, etc., sheet-like hydrophilic separation membranes and/or lipophilic separation membranes 7C are interposed either individually or by stacking several sheets. Usually, a hydrophilic separation membrane made of glass fiber with a thickness of OJ5sv and a retention particle size of 0.5 μm is used for the aqueous phase of the effluent, and polyethylene, Teflon, polyethylene terephthalate, polyimide, etc. are used for the organic phase of the effluent. For example, if the thickness is 0. A lipophilic separation membrane with a retention particle size of 0.5 μm and a retention particle size of 0.5 μm is used. As a liquid transfer means 8 for passing the effluent from the centrifugal extractor 1 against the resistance of the clarifying filter 7 and feeding it into the flow cell 4, and returning the liquid to the original centrifugal extractor 1 after measurement, The first example is a pressure reducing valve connected to a vacuum source.
, , a buffer tank 9 connected to the upper part is connected to piping equipped with a pressurizing valve v4 connected to a compressed air source, and a depressurizing valve V, and the bottom of the buffer tank 9 is connected to a valve V'.
The centrifugal extractor 1 and the liquid inlet side of the flow cell 4 are connected by a pipe to which a valve v1 and a clarifying filter 7 are attached. When transferring liquid, the first thing to do is to connect the pressure reducing valve V! to the vacuum source! The inside of the buffer tank 9 is brought into a reduced pressure state in advance by the operation, and then the valves V,,V, are opened to allow the effluent from the centrifugal extractor 1 to pass through the clarifying filter 7, the flow cell 4, and the flow rate sensor 10. Make sure to suck it into the buffer tank 9. When the suspension effluent passes through the clarification filter 7, its bubbles and emulsion are removed or collected, making it completely clarified. On the other hand, when the flow rate sensor 10 detects the passage of liquid, a signal is generated and the valves V, , V
2 is closed, the light emitted from the photometer 6 is guided to the flow cell 4 via the optical fiber 5, where light absorption and fluorescence M
A photometer 6 performs the l determination. Since the liquid in the flow cell 4 is clear as described above, the clarity of the measurement is extremely high. ? After the JFJ period is completed, open the pressure release valve V5 to break the reduced pressure in the buffer tank 9, pressurize the buffer tank 9 by operating the pressurization valve V4 connected to the compressed air source, and then open the valves V, , V2 is opened and the accumulated liquid is returned to the centrifugal extractor 1 through the original path, and then
Close the valves V, , V, and open the pressure relief valve V to bring the inside of the buffer tank 9 to normal pressure. In order to automatically operate the measurements by the above-mentioned valve control photometer in sequence, a sequencer or the like is used to repeat the Δ-1 constant. In the first embodiment described above, the suspension effluent from the centrifugal extractor 1 is passed through the clarification filter 7 by reducing the pressure in the buffer tank 9, and the clarified liquid is sent to the flow cell 4.
After the measurement, the pressure in the buffer tank 9 was applied so that the liquid passed through the same clarifying filter 7 in the reverse direction and was returned to the centrifugal extractor 1 through the original route. However, the present invention is not limited to this, and as in the second embodiment shown in FIG. The water may be returned to the centrifugal extractor 1 without passing through the clarification filter 7. Effects of the Invention According to the present invention, the suspension effluent from the centrifugal extractor can be completely clarified in a short period of about 10 seconds when it passes through the clarification filter. For the first time, it is possible to quickly feed back the measurement results to the process for operational management. Not only that, but the suspension that passes through the clarification filter is completely clarified, resulting in high analytical accuracy. The clarification filter itself is made of rmia Ti construction and is small, so it can be installed in narrow spaces. If the effluent is sucked into the clarification filter by the negative and positive inside the buffer tank, and then discharged from the clarification filter by the pressurization inside the buffer tank after measurement, even if there is some kind of deposit on the filter, backwashing will not be necessary. Since it is kept in a suspended state, it can be kept clean at all times, which is effective in making the device durable for long-term use and less likely to malfunction under high radiation conditions. In addition, when a pump is installed on the liquid outlet side of the flow cell and the sucked liquid is returned to the centrifugal extractor, it can be expected that air bubbles will not easily accumulate in the flow cell, and the effluent is constantly circulated at intervals of several seconds. Since the concentration can be measured at the same time, the operation can be precisely controlled and the flow rate m can be easily adjusted.
第1図は本発明になる装置の第1実施例の説明図、第2
図は清澄フィルターの断面図、第3図は本発明になる装
置の第2実施例の説明図、第4図は従来の装置の説明図
である。
1・・・遠心抽出器、4・・・フローセル、6・・・フ
ォトメータ、
7・・・清澄フィルター
8・・・液移送手
段、
9・・・バッファータンク、
1・・・水流ポンプ。FIG. 1 is an explanatory diagram of the first embodiment of the device according to the present invention;
The figure is a sectional view of a clarifying filter, FIG. 3 is an explanatory diagram of a second embodiment of the device according to the present invention, and FIG. 4 is an explanatory diagram of a conventional device. DESCRIPTION OF SYMBOLS 1... Centrifugal extractor, 4... Flow cell, 6... Photometer, 7... Clarifying filter 8... Liquid transfer means, 9... Buffer tank, 1... Water pump.
Claims (1)
トメータで測定する装置において、遠心抽出器からフロ
ーセルに至る配管に、親水性分離膜および/または親油
性分離膜を単独または数枚重ね合せて介装した清澄フィ
ルターを設け、上記遠心抽出器からの流出液を清澄フィ
ルターに通過させてからフローセルに送り込むと共に、
その液を上記遠心抽出器に戻す液移送手段を備えたこと
を特徴とする遠心抽出器からの流出液のフォトメータ測
定装置。 2、上記の液移送手段は、フローセルの液出口側にバッ
ファータンクを接続し、そのタンク内部圧力の減圧と加
圧を可能とする配管を取付け、上記バッファータンクの
減圧と加圧により清澄フィルターを通過する液の流れ方
向を反転可能とした請求項1の遠心抽出器からの流出液
のフォトメータ測定装置。 3、上記の液移送手段は、フローセルの液出口側に接続
する水流ポンプを設け、その水流ポンプで吸引した液を
遠心抽出器へ戻すようにした請求項1の遠心抽出器から
の流出液のフォトメータ測定装置。[Claims] 1. In a device that guides the effluent from a centrifugal extractor to a flow cell and measures it with a photometer, a hydrophilic separation membrane and/or a lipophilic separation membrane is installed in the piping from the centrifugal extractor to the flow cell. A clarification filter is provided either singly or in a stack of several filters, and the effluent from the centrifugal extractor is passed through the clarification filter and then sent to the flow cell.
A photometer measuring device for a liquid effluent from a centrifugal extractor, characterized in that it is equipped with liquid transfer means for returning the liquid to the centrifugal extractor. 2. The above liquid transfer means connects a buffer tank to the liquid outlet side of the flow cell, and attaches piping that enables the internal pressure of the tank to be reduced and pressurized. 2. A photometer measuring device for a liquid effluent from a centrifugal extractor according to claim 1, wherein the flow direction of the liquid passing therethrough can be reversed. 3. The above-mentioned liquid transfer means is provided with a water pump connected to the liquid outlet side of the flow cell, and the liquid sucked by the water pump is returned to the centrifugal extractor. Photometer measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5326789A JPH0612330B2 (en) | 1989-03-06 | 1989-03-06 | Photometer measuring device of effluent from centrifugal extractor. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5326789A JPH0612330B2 (en) | 1989-03-06 | 1989-03-06 | Photometer measuring device of effluent from centrifugal extractor. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02232549A true JPH02232549A (en) | 1990-09-14 |
JPH0612330B2 JPH0612330B2 (en) | 1994-02-16 |
Family
ID=12937986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5326789A Expired - Fee Related JPH0612330B2 (en) | 1989-03-06 | 1989-03-06 | Photometer measuring device of effluent from centrifugal extractor. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0612330B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033885A1 (en) * | 2004-09-16 | 2006-03-30 | Rosemount Analytical, Inc. | Turbidity sensor |
US8681097B2 (en) | 2005-04-06 | 2014-03-25 | Sony Corporation | Reproducing device, setting changing method, and setting changing device |
-
1989
- 1989-03-06 JP JP5326789A patent/JPH0612330B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033885A1 (en) * | 2004-09-16 | 2006-03-30 | Rosemount Analytical, Inc. | Turbidity sensor |
US8681097B2 (en) | 2005-04-06 | 2014-03-25 | Sony Corporation | Reproducing device, setting changing method, and setting changing device |
US9076358B2 (en) | 2005-04-06 | 2015-07-07 | Sony Corporation | Reproducing device, setting changing method, and setting changing device |
US10242429B2 (en) | 2005-04-06 | 2019-03-26 | Sony Corporation | Reproducing device, setting changing method, and setting changing device |
Also Published As
Publication number | Publication date |
---|---|
JPH0612330B2 (en) | 1994-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration | |
DE60011618T2 (en) | METHOD AND DEVICE FOR TESTING THE INFECTITY OF FILTRATION MEMBRANES | |
KR101301457B1 (en) | Method for testing separation modules | |
US9250176B2 (en) | Flexible sample container | |
US20080237142A1 (en) | Systems and methods for concentrating substances in fluid samples | |
JP6402263B2 (en) | Interface module for filter integrity testing | |
JP2009085898A (en) | Bioassay device | |
US3680962A (en) | Contaminant detector comprising means for selectively applying pressure to liquify bubbles | |
JP2002315598A (en) | Method for instrument processing of particle using filter, and apparatus for the same | |
Anderson | Concentration of dilute industrial wastes by Direct osmosis | |
US10976228B2 (en) | Extraction of materials from liquids | |
JPH02232549A (en) | Photometer measuring apparatus for effluent from centrifugal extractor | |
JP3243677B2 (en) | Leak detector for membrane breakage in membrane filtration device | |
Grote et al. | Integration of reverse‐osmosis unit operations in biotechnology process design | |
McDonogh et al. | Separation efficiency of membranes in biotechnology: an experimental and mathematical study of flux control | |
JP5878038B2 (en) | Water quality measurement system | |
JPH0760073A (en) | Membrane separation apparatus | |
JPH09108550A (en) | Membrane separator, method for detecting leakage thereof, and operation method for the same | |
CN209143773U (en) | Combined films separating experiment device | |
DE19726379C2 (en) | Test adapter for the integrity test of winding modules connected in series | |
JP3232425B2 (en) | Filtration membrane leak detection method and device | |
CN209848691U (en) | Multifunctional membrane separation device | |
JP2001099775A (en) | Method of tensing integrity of depth filter | |
JP2020028819A (en) | Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same | |
JPS62116234A (en) | Apparatus for measuring impurities of pure water system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |