JPH02230895A - Acoustic signal input device - Google Patents
Acoustic signal input deviceInfo
- Publication number
- JPH02230895A JPH02230895A JP5145489A JP5145489A JPH02230895A JP H02230895 A JPH02230895 A JP H02230895A JP 5145489 A JP5145489 A JP 5145489A JP 5145489 A JP5145489 A JP 5145489A JP H02230895 A JPH02230895 A JP H02230895A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- characteristic
- equalizer
- microphone
- control section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 16
- 230000005236 sound signal Effects 0.000 claims description 9
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、音声認識装置や各種の音響信号収録装置の音
響信号入力装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an audio signal input device for a speech recognition device and various audio signal recording devices.
音声認識装置や各種音響信号収録装置には、収音環境の
雑音・騒音の有無などに応じて無指向性マイクロホンや
一次傾度もしくはそれ以上の音圧傾度を有した指向性マ
イクロホンが用いられる。Speech recognition devices and various acoustic signal recording devices use omnidirectional microphones or directional microphones with a first-order gradient or higher sound pressure gradient, depending on the presence or absence of noise in the sound collection environment.
これらの各種マイクロホンは、近年の電気音響変換材料
の製造技術やLSI技術の進歩によって、小型軽量で高
性能化が実現されてきている。しかし、指向性マイクロ
ホンの場合には、小型化が進んでくると、マイクロホン
振動板前面と後面間の音響端子間距離の減少によって、
実使用時の音源とマイクロホン間の距離Lが変化したと
きの、特に低周波数での惑度周波数特性が大幅に変化し
てくる問題がある。これは近接効果として周知の事であ
るが、その実測例を第3図に示しておく.この例は、市
販品のタイピン形マイクロホンの場合であって、その外
形寸法は9mmφX35mmであった。第3図において
明らかなように、このマイクロホンでは、音源とマイク
ロホンとの距離が約3Qcmのときに感度周波数特性が
平坦となり(曲線S1)、この距離よりも近づいて使用
すると低周波数での感度が上昇してくる事実がある゛(
曲IS2は距離IQcm,S3は5cm,S4は2.5
cm,35は1,25cmSS6はQcmである).こ
の結果、収音された音響信号は原信号にたいして大きく
異なった音質となることが一般的に経験される。また、
このような周波数特性の変化を逆用して、低周波数での
音質増強を特徴として使用している分野があることも事
実である。しかし、マイクロホン収音時の感度周波数特
性が、使用時の距離変化によって変化することは特に音
声認識処理装置に対して好ましくないことは勿論一般の
音楽音響収録用においても好ましいことではない.
さらに、収音用マイクロホンや話者に近接して会議卓や
壁などの反射体の存在が音響伝送特性に大きく影響する
ことも事実であり、この場合はマイクロホンの指向特性
にはあまり関係しない。第4図は、反射体と話者および
マイクロホン間の距離を30cmとして、話者・マイク
ロホン間の距離Lを10.50.90cm (曲線S7
, S8,S9)と変化したときの話者マイクロホン間
の伝送周波数特性を示したものである。これから分かる
ように、話者、マイクロホン、反射体間相互の配置変化
によってその伝送周波数特性は大きく変化してくる。These various microphones have been made smaller, lighter, and higher in performance due to recent advances in electroacoustic conversion material manufacturing technology and LSI technology. However, in the case of directional microphones, as miniaturization progresses, the distance between the acoustic terminals between the front and rear surfaces of the microphone diaphragm decreases.
There is a problem in that when the distance L between the sound source and the microphone changes during actual use, the noise frequency characteristics, especially at low frequencies, change significantly. This is well known as the proximity effect, and an example of its actual measurement is shown in Figure 3. This example is a case of a commercially available tie pin type microphone, and its external dimensions were 9 mmφ x 35 mm. As is clear from Fig. 3, the sensitivity frequency characteristic of this microphone becomes flat when the distance between the sound source and the microphone is approximately 3Qcm (curve S1), and when it is used closer than this distance, the sensitivity at low frequencies decreases. There is a fact that it is rising゛(
Song IS2 is distance IQcm, S3 is 5cm, S4 is 2.5
cm, 35 is 1.25cm SS6 is Qcm). As a result, it is generally experienced that the collected audio signal has a sound quality that is significantly different from the original signal. Also,
It is also true that there are fields in which such changes in frequency characteristics are used adversely to enhance sound quality at low frequencies. However, the fact that the sensitivity frequency characteristics of the microphone during sound collection change due to changes in distance during use is not particularly desirable for voice recognition processing devices, but is also not desirable for general music sound recording. Furthermore, it is also true that the presence of a reflector such as a conference table or a wall in the vicinity of the sound collection microphone or the speaker greatly affects the acoustic transmission characteristics, and in this case it has little to do with the directional characteristics of the microphone. In Figure 4, the distance between the reflector, the speaker, and the microphone is 30 cm, and the distance L between the speaker and the microphone is 10.50.90 cm (curve S7
, S8, S9) shows the transmission frequency characteristics between the speaker microphones. As can be seen, the transmission frequency characteristics change greatly depending on the mutual arrangement of the speaker, the microphone, and the reflector.
第3図および第4図のような伝送周波数特性の変化を生
じた条件下で収音した音声を認識処理した結果、約20
%の認識率の低下を生じた。なお、この結果は、認識難
度の高い類似単語を用いた場合であるため、実際にはこ
れよりも小さい値をとることになるとみられるが、それ
でも実使用に際しては許容できる範囲となるものではな
い。As a result of recognition processing of voices collected under conditions that caused changes in transmission frequency characteristics as shown in Figures 3 and 4, approximately 20
% reduction in recognition rate. Note that this result is obtained when similar words with a high degree of recognition difficulty are used, so the actual value is likely to be smaller than this, but it is still not within an acceptable range for actual use. .
本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、話者・マイクロホン間の収録距
離の変化や反射体の影響による伝送周波数特性の変化に
対して、マイクロホンからの出力信号レベル周波数特性
が、平坦系で収音したときの伝送特性と等しくなるよう
な出力信号特性を得ることができる音響入力装置を提供
することにある。The present invention has been made in view of the above points, and its purpose is to compensate for changes in the transmission frequency characteristics due to changes in the recording distance between the speaker and the microphone and the effects of reflectors. An object of the present invention is to provide an audio input device capable of obtaining an output signal characteristic such that the output signal level frequency characteristic of the sound is equal to the transmission characteristic when sound is collected in a flat system.
このような課題・を解決するために本発明は、マイクロ
ホンの音響信号出力をイコライザと周波数分析部とに同
時に供給すると共に、周波数分析部で分析されたデータ
と予め標準パターンとして特性制御部に登録しておいた
各周波数帯域毎のレベル値とを各周波数毎に比較したと
きに生ずるレベル差を用いてイコライザの利得周波数特
性を特性制御部にて制御するようにしたものである。In order to solve these problems, the present invention simultaneously supplies the acoustic signal output of the microphone to the equalizer and the frequency analysis section, and also registers the data analyzed by the frequency analysis section in the characteristic control section in advance as a standard pattern. The gain frequency characteristic of the equalizer is controlled by the characteristic control section using the level difference that occurs when the level values for each frequency band are compared for each frequency.
本発明による音響信号人力装置においては、音源からマ
イクロホンまでの収音距離の変化や反射体の影響による
伝送周波数特性の変化(音響伝送ひずみ)を除去して平
坦な伝送周波数特性を得ることができる。In the acoustic signal human power device according to the present invention, it is possible to obtain flat transmission frequency characteristics by removing changes in transmission frequency characteristics (acoustic transmission distortion) due to changes in sound collection distance from the sound source to the microphone and the influence of reflectors. .
まず、本発明の特徴と従来技術との差異について述べる
。本発明は、マイクロホンの音声出力信号の周波数スペ
クトル特性と、既に蓄えられている特定話者もしくは男
性および女性の周波数スペクトル特性の標準パターンを
選択して対比し、その差から伝送周波数特性の変化をイ
コライザで補償し、平坦な収音特性を実現せんとするこ
とを最も主要な特徴とする。従来技術においては、この
ような特性を有した音響入力装置は見当たらない。First, the features of the present invention and the differences from the prior art will be described. The present invention selects and compares the frequency spectrum characteristics of the audio output signal of the microphone with standard patterns of the frequency spectrum characteristics of specific speakers or men and women that have already been stored, and detects changes in the transmission frequency characteristics from the difference. The main feature is that it compensates with an equalizer and attempts to achieve flat sound pickup characteristics. In the prior art, no acoustic input device having such characteristics has been found.
第1図は本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.
同図において、1は指向性もしくは無指向性のマイクロ
ホン、2は伝送周波数特性補正用のイコライザ、3は周
波数分析部、4は特性制御部、5は信号出力端子、Sは
マイクロホン1との距離Lの位置にある音源である。In the figure, 1 is a directional or omnidirectional microphone, 2 is an equalizer for correcting transmission frequency characteristics, 3 is a frequency analysis section, 4 is a characteristic control section, 5 is a signal output terminal, and S is the distance from microphone 1 This is the sound source located at the L position.
次に、第1図の装置の動作について説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained.
マイクロホン1で収音された音声信号aは、イコライザ
2と周波数分析部3に入力される。周波数分析部3に入
力された音声信号aは、例えば1/3オクターブもしく
はそれ以上の周波数帯域幅で細分割された各帯域に存在
する音声信号レベルが、長時間(数秒間)の時間間隔で
連続的に検出される。このときの分析結果の例を第2図
に点線S10で示す。第2図で、横軸は周波数、縦軸は
長時間実効値レベルである。点線SIOで示す値bが特
性制御部4に転送される。特性制御部4では、既に音声
の標準パターンとして登録されている値、例えば第2図
の実&iS20で示した値が選択されて、点線SIOの
特性と比較される。このとき、実線と点線とのレベル差
が、音声収音時の話者・マイクロホン間の音響伝送系で
生じた周波数特性偏差となる。この周波数特性偏差を生
じた要因の中には、先の第3図,第4図で示した収音時
のマイクロホン距離の変化や反射体による特性変化の他
に、使用するマイクロホンの違いによる特性変化などが
含まれたオーバオールで評価される。The audio signal a picked up by the microphone 1 is input to an equalizer 2 and a frequency analysis section 3. The audio signal a input to the frequency analysis unit 3 is subdivided into a frequency bandwidth of, for example, 1/3 octave or more, and the audio signal level existing in each band is determined at long time intervals (several seconds). Continuously detected. An example of the analysis result at this time is shown in FIG. 2 by a dotted line S10. In FIG. 2, the horizontal axis is frequency and the vertical axis is long-term effective value level. The value b indicated by the dotted line SIO is transferred to the characteristic control section 4. The characteristic control unit 4 selects a value that has already been registered as a standard audio pattern, for example, the value shown by ACT&iS20 in FIG. 2, and compares it with the characteristic of the dotted line SIO. At this time, the level difference between the solid line and the dotted line is the frequency characteristic deviation that occurs in the sound transmission system between the speaker and the microphone during voice collection. Among the factors that caused this frequency characteristic deviation, in addition to changes in the microphone distance during sound collection and characteristic changes due to reflectors as shown in Figures 3 and 4, there are also characteristics due to differences in the microphones used. It will be evaluated on an overall basis, including changes.
゜次に、特性制御部4で求められた周波数特性偏差をも
とに、イコライザ2へ、その伝送周波数特性を補正する
ためのデータCが送出される。この結果、各話者音声に
対して平坦系で収音したと同じ周波数特性を有した信号
出力が出力端子5へ出力されることとなる。さらに、こ
れらの動作は、時間軸上で連続的に実行されて行くため
、話者の位置変動に伴って変化する伝送周波数特性の変
化に追従して、伝送周波数特性の補正が達成されること
となる。Next, based on the frequency characteristic deviation determined by the characteristic control section 4, data C for correcting the transmission frequency characteristic is sent to the equalizer 2. As a result, a signal output having the same frequency characteristics as if the voice of each speaker was collected using a flat system is outputted to the output terminal 5. Furthermore, since these operations are performed continuously on the time axis, correction of the transmission frequency characteristics can be achieved by following changes in the transmission frequency characteristics that change as the speaker's position changes. becomes.
なお、音声の標準パターンの登録方法としては以下の方
法があげられる。その第1は、個人対応の標準パターン
を登録する方法で、あらかじめ学習用の短文章等を反射
体のない静かな室内で発声し、平坦な周波数特性を有す
るマイクロホンを用いて収音、分析して行なうものであ
る。この標準パターンを使用するのは、話者を特定した
場合に有効となる。第2は、音声認識装置を使用する話
者の音声スペクトル特性の平均値を登録するもので、こ
の場合は特に男性と女性とではその特性が低周波数で大
きく異なるため、別々に分けて登録するのが合理的であ
る。さらに、第3の方法は、音声スペクトル特性の類似
度の高いもの同士の平均値でパターン化を行なうもので
、特徴的な標準パターンを複数通り用意して置くことに
よって、より精密な伝送周波数特性の平坦化を実現する
ものである。Note that the following methods can be cited as methods for registering standard speech patterns. The first method is to register a standard pattern for each individual, in which short sentences for learning are uttered in a quiet room with no reflectors, and the sound is collected and analyzed using a microphone with a flat frequency response. This is what we do. Using this standard pattern is effective when the speaker is identified. The second method is to register the average value of the voice spectrum characteristics of the speaker using the speech recognition device.In this case, the characteristics of men and women are particularly different at low frequencies, so they are registered separately. is reasonable. Furthermore, the third method creates a pattern using the average value of audio spectrum characteristics with a high degree of similarity.By preparing multiple characteristic standard patterns, more precise transmission frequency characteristics can be obtained. This achieves flattening of the surface area.
以上説明したように本発明は、周波数分析部で分析され
たデータと、予め特性制御部に登録しておいた標準パタ
ーンにおけるレベル値とを各周波数毎に比較したときに
生ずるレベル差を用いてイコライザの利得周波数特性を
特性制御部にて制御することにより、各話者音声に対し
て平坦系で収音したと同じ周波数特性を有する信号出力
を得ることができるので、音源と収音用マイクロホン間
の距離の変化や反射体の影響によって音響収音系で生ず
る感度周波数特性の変化が補正できる利点がある。従っ
て、音声は常に平坦な人出力伝送系が確保された状態で
収音されるため、音声認識装置や各種の収録装置などの
音響信号入力装置に使用することによって、認識率の低
下要因の減少や音声ひずみのないクリャな音質での収音
が可能になるという利点がある。As explained above, the present invention uses the level difference that occurs when the data analyzed by the frequency analysis section and the level value in the standard pattern registered in advance in the characteristic control section are compared for each frequency. By controlling the gain frequency characteristics of the equalizer using the characteristic control section, it is possible to obtain a signal output having the same frequency characteristics as those collected by a flat system for each speaker's voice. This has the advantage of being able to compensate for changes in the sensitivity frequency characteristics that occur in the acoustic pickup system due to changes in the distance between the two or the effects of reflectors. Therefore, since the voice is always collected with a flat human output transmission system ensured, it can be used in audio signal input devices such as voice recognition devices and various recording devices to reduce the factors that reduce the recognition rate. This has the advantage that it is possible to collect sound with clear sound quality without audio distortion.
第1図は本発明による音響信号入力装置の実施例を示す
系統図、第2図は標準音声の周波数スペクトル特性(実
線)と使用時の入力音声の周波数スペクトル特性(点線
)の分析結果を示す周波数特性図、第3図は従来例によ
る市販のタイピン形指向性マイクロホンの距離による感
度周波数特性の変化の様子を実測によって示す周波数特
性図、第4図は反射体の影響による音源・マイクロホン
間の伝送周波数特性を示す周波数特性図である。
1・・・マイクロホン、2・・・イコライザ、3・・・
周波数分析部、4・・・特性制御部、5・・・信号出力
端子、S・・・音源。Fig. 1 is a system diagram showing an embodiment of the audio signal input device according to the present invention, and Fig. 2 shows the analysis results of the frequency spectrum characteristics of standard audio (solid line) and the frequency spectrum characteristics of input audio during use (dotted line). Frequency characteristic diagram. Figure 3 is a frequency characteristic diagram showing the change in sensitivity frequency characteristics depending on the distance of a commercially available tie-pin type directional microphone based on actual measurements. Figure 4 is a frequency characteristic diagram showing the change in sensitivity frequency characteristics depending on the distance of a commercially available tie-pin type directional microphone. FIG. 3 is a frequency characteristic diagram showing transmission frequency characteristics. 1...Microphone, 2...Equalizer, 3...
Frequency analysis section, 4...Characteristics control section, 5...Signal output terminal, S...Sound source.
Claims (1)
特性を可変するイコライザと、前記マイクロホンの出力
信号を所要伝送周波数帯域内で複数の周波数帯域に分割
して各周波数帯域毎の信号レベルを分析する周波数分析
部と、この周波数分析部で得られた周波数帯域毎のレベ
ル分布データの蓄積機能を有するとともに前記イコライ
ザを制御する特性制御部とから構成された音響信号入力
装置であって、前記マイクロホンの音響信号出力を前記
イコライザと周波数分析部とに同時に供給すると共に、
前記周波数分析部で分析されたデータと予め標準パター
ンとして前記特性制御部に登録しておいた各周波数帯域
毎のレベル値とを各周波数毎に比較したときに生ずるレ
ベル差を用いて前記イコライザの利得周波数特性を前記
特性制御部にて制御することを特徴とする音響信号入力
装置。A microphone for picking up audio signals, an equalizer for varying gain frequency characteristics, and dividing the output signal of the microphone into a plurality of frequency bands within a required transmission frequency band and analyzing the signal level for each frequency band. An acoustic signal input device comprising a frequency analysis section and a characteristic control section that has a function of accumulating level distribution data for each frequency band obtained by the frequency analysis section and controls the equalizer, simultaneously supplying an acoustic signal output to the equalizer and the frequency analysis section;
The equalizer is adjusted by using the level difference that occurs when comparing the data analyzed by the frequency analysis section and the level value for each frequency band that has been registered in advance as a standard pattern in the characteristic control section for each frequency. An acoustic signal input device characterized in that a gain frequency characteristic is controlled by the characteristic control section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5145489A JPH02230895A (en) | 1989-03-03 | 1989-03-03 | Acoustic signal input device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5145489A JPH02230895A (en) | 1989-03-03 | 1989-03-03 | Acoustic signal input device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02230895A true JPH02230895A (en) | 1990-09-13 |
Family
ID=12887380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5145489A Pending JPH02230895A (en) | 1989-03-03 | 1989-03-03 | Acoustic signal input device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02230895A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060902A (en) * | 2006-08-31 | 2008-03-13 | Nippon Hoso Kyokai <Nhk> | Unidirectional microphone |
WO2008099641A1 (en) * | 2007-02-14 | 2008-08-21 | Panasonic Corporation | Mems microphone device |
US10094862B2 (en) | 2016-08-30 | 2018-10-09 | Fujitsu Limited | Sound processing device and sound processing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5642413A (en) * | 1979-09-14 | 1981-04-20 | Victor Co Of Japan Ltd | Sound-field singla correcting device |
-
1989
- 1989-03-03 JP JP5145489A patent/JPH02230895A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5642413A (en) * | 1979-09-14 | 1981-04-20 | Victor Co Of Japan Ltd | Sound-field singla correcting device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060902A (en) * | 2006-08-31 | 2008-03-13 | Nippon Hoso Kyokai <Nhk> | Unidirectional microphone |
WO2008099641A1 (en) * | 2007-02-14 | 2008-08-21 | Panasonic Corporation | Mems microphone device |
JP2008199353A (en) * | 2007-02-14 | 2008-08-28 | Matsushita Electric Ind Co Ltd | Mems microphone apparatus |
US10094862B2 (en) | 2016-08-30 | 2018-10-09 | Fujitsu Limited | Sound processing device and sound processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11818534B2 (en) | Forming virtual microphone arrays using dual omnidirectional microphone array (DOMA) | |
US8611554B2 (en) | Hearing assistance apparatus | |
US11354088B2 (en) | Media-compensated pass-through and mode-switching | |
US8818805B2 (en) | Sound processing apparatus, sound processing method and program | |
CN108882136A (en) | binaural hearing aid system with coordinated sound processing | |
CN1575042B (en) | Hearing aid with microphone of adjustable directional characteristics and hearing aid operating method | |
JP2000278786A (en) | Microphone system | |
JPH02230895A (en) | Acoustic signal input device | |
JPH02230896A (en) | Acoustic signal input device | |
JPH09116362A (en) | Automatic volume control equipment | |
US20230359430A1 (en) | Media-compensated pass-through and mode-switching | |
US10897665B2 (en) | Method of decreasing the effect of an interference sound and sound playback device | |
JP2569621B2 (en) | Microphone device | |
JP3234784B2 (en) | Transmission voice circuit | |
JP2001517884A (en) | Signal separation device | |
JPS6230080Y2 (en) | ||
JPH0229100A (en) | Voice recognition device | |
CN116437267A (en) | Adaptive array microphone noise reduction device | |
JPH05130689A (en) | Speaker device | |
JPS6128294A (en) | Characteristic control-type microphone by sound source distance | |
EP3148215A1 (en) | A method of modifying audio signal frequency and system for modifying audio signal frequency | |
JPS63260210A (en) | Automatic gain controller | |
JPS63318807A (en) | Voice input gain controller | |
JPH0243893A (en) | Voice recognition device |