JPH02230693A - Thin film el display element - Google Patents
Thin film el display elementInfo
- Publication number
- JPH02230693A JPH02230693A JP1052488A JP5248889A JPH02230693A JP H02230693 A JPH02230693 A JP H02230693A JP 1052488 A JP1052488 A JP 1052488A JP 5248889 A JP5248889 A JP 5248889A JP H02230693 A JPH02230693 A JP H02230693A
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- transparent
- film
- transparent conductive
- transparent electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 81
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000011521 glass Substances 0.000 abstract description 5
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000011572 manganese Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000005083 Zinc sulfide Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- -1 S13N4 is formedj7 Chemical class 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 240000001973 Ficus microcarpa Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80516—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/17—Passive-matrix OLED displays
- H10K59/179—Interconnections, e.g. wiring lines or terminals
- H10K59/1795—Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利用分野〉
この発明は、薄膜エレクトロルミネブセンス(以下、E
Lと略称する)表示素子に関する。[Detailed Description of the Invention] Industrial Application Fields This invention relates to thin film electroluminescence (hereinafter referred to as E
(abbreviated as L)).
く従来の技術〉
従来、薄膜EL表示素子としては、たとえば、第7図に
示すような構造のものがある。この薄膜EL表示素子は
、以下のように作成される。すなわち、透明基板70」
二に、たとえばITO(錫添加酸化インジウム)等の透
明導電膜より成る複数の帯状の透明電極7lを互いに平
行になるようにパターン形成したのち、たとえばA0.
tO 3, S io ,TiOzなどの酸化物あるい
はS13N4等の窒化物質より成る第1誘電体層72を
形成j7、この第1誘電体層上にZnS,ZnSeなど
の母体材料にMn等の活性物質がドーブされた発光層7
3を形成する。そl7て、上記発光層73上に上記第1
誘電体層72と同様の物質から成る第2誘電体層74を
形成し、この第2誘電体層74上に上記透明電極7lと
直交する方向にAf2等から成る互いに平行な複数の帯
状の背面電極75をパターン形成する。BACKGROUND ART Conventionally, a thin film EL display element has a structure as shown in FIG. 7, for example. This thin film EL display element is produced as follows. That is, the transparent substrate 70''
Second, after patterning a plurality of strip-shaped transparent electrodes 7l made of a transparent conductive film such as ITO (tin-doped indium oxide) so as to be parallel to each other, for example, A0.
A first dielectric layer 72 made of an oxide such as tO 3 , S io , TiOz or a nitride such as S13N4 is formedj7, and an active material such as Mn is formed on the first dielectric layer as a base material such as ZnS or ZnSe. A light emitting layer 7 doped with
form 3. Then, the first layer is placed on the light emitting layer 73.
A second dielectric layer 74 made of the same material as the dielectric layer 72 is formed, and a plurality of parallel strip-shaped back surfaces made of Af2 or the like are formed on the second dielectric layer 74 in a direction perpendicular to the transparent electrode 7l. Electrodes 75 are patterned.
このようにして作成された薄膜EL表示素子は、透明電
極7lおよび背面電極75に選択的に電圧を印加するこ
とによって、発光層73における発光部分を透明電極7
1および背面電極75の組み合わせから成るドットごと
に選ぶことができ、このことにより所望のドブトマトリ
クス表示を行うことができる。The thin film EL display element thus created can be manufactured by selectively applying a voltage to the transparent electrode 7l and the back electrode 75, thereby changing the light emitting portion of the light emitting layer 73 to the transparent electrode 7l.
1 and the back electrode 75, and thereby a desired dot matrix display can be performed.
〈発明が解決しようとする課題〉
ところで、薄膜EL素子は、近年、表示面積の大型化あ
るいは大表示容量化の方向にある。このため、透明電極
の幅が細くなりあるいは長さが長くなることにより透明
電極のライン抵抗が高くなる傾向にある。一方、走査ラ
イン数が増加ずるため、lラインの駆動時間を短くする
必要がある。<Problems to be Solved by the Invention> Incidentally, in recent years, thin film EL elements have been trending toward larger display areas or larger display capacities. Therefore, as the width of the transparent electrode becomes narrower or the length thereof becomes longer, the line resistance of the transparent electrode tends to increase. On the other hand, since the number of scanning lines increases, it is necessary to shorten the driving time of the l line.
このIラインの駆動時間は、絵素の発光か非発光かを決
定するだめの変調電圧の充電時間と薄膜EL素子を発光
させるための書き込み電圧の印加時間とからなり、それ
ぞれの時間は薄膜EL素子が容量性であるため、絵素容
量と透明電極の抵抗値により決まる。絵素容量は、薄膜
EL素子の発光特性に強く影響するため大きく変更する
ことは不可能であり、したがって1ラインの駆動時間を
短くするためには、透明電極の抵抗値を低く抑えること
が必要となってくる。The driving time of this I line consists of the charging time of the modulation voltage that determines whether the pixel emits light or not, and the time of applying the writing voltage to make the thin film EL element emit light. Since the element is capacitive, it is determined by the pixel capacitance and the resistance value of the transparent electrode. The pixel capacitance strongly affects the light emitting characteristics of thin-film EL elements, so it is impossible to change it significantly. Therefore, in order to shorten the driving time of one line, it is necessary to keep the resistance value of the transparent electrode low. It becomes.
また、大型ELバネルの場合だ(』でなく、階調表示を
行う場合にも、絵素の階調度を決定する変!I1電圧を
短時間で充電する必要があり、透明電極の抵抗値の低減
が不可欠になっている。In addition, when performing gradation display (not the case with large EL panels), it is necessary to charge the I1 voltage that determines the gradation level of the picture element in a short time, and the resistance value of the transparent electrode Reduction has become essential.
一方、薄膜EL表示素子の消費電力は、透明電極の抵抗
値が低い方が少なくなり、この面からも透明電極の抵抗
値の低減が望まれている。On the other hand, the power consumption of a thin film EL display element decreases when the resistance value of the transparent electrode is low, and from this point of view as well, it is desired to reduce the resistance value of the transparent electrode.
ところが、透明電極の比抵抗には限界があり、また、薄
膜E L素子の絶縁耐圧は、透明電極の膜厚に強く依存
し、ある値以上厚く出来ないため、透明電極をITO等
の透明導電膜のみで形成する従来の方法では、ライン抵
抗の十分低い透明電極を実現することは不可能であった
。However, there is a limit to the specific resistance of the transparent electrode, and the dielectric strength of the thin film EL element strongly depends on the thickness of the transparent electrode, and it cannot be made thicker than a certain value. With the conventional method of forming only a film, it has been impossible to realize a transparent electrode with sufficiently low line resistance.
この対策として、透明導電膜の上部又は下部に低抵抗の
金属導伝膜を形成ずる方法が提案されているが、ELの
絵素内に透明導電膜と低抵抗金属導伝膜が重なった場合
、その重なった部分、特に重なった膜の端部で著しく絶
縁耐圧の低下が起こり絵素の破壊が生じることが多いこ
とや、薄膜E■,素子の製造過程には、透明電極形成後
、発光層あるいは誘電体層等の成膜のため及び熱処理の
ための高温度プロセスが有るため、透明導電膜と低抵抗
金属導電膜が反応し、黒化したり、あるいは抵抗値が著
しく上昇したりするため、この方法は薄膜EL素子に適
用することは不可能であった。As a countermeasure to this problem, a method has been proposed in which a low-resistance metal conductive film is formed above or below the transparent conductive film, but if the transparent conductive film and the low-resistance metal conductive film overlap within the EL picture element, , the dielectric strength drops significantly at the overlapping parts, especially at the edges of the overlapping films, often resulting in destruction of the picture elements. Because there is a high temperature process for forming layers or dielectric layers and for heat treatment, the transparent conductive film and the low resistance metal conductive film may react, resulting in blackening or a significant increase in resistance value. However, this method could not be applied to thin film EL devices.
そこで、この発明の目的は、絶縁耐圧の低下や絵素の黒
化、あるいは製造プロセスにおける透明電極の抵抗値の
上昇などを伴うことなく透明電極の抵抗値を低減するよ
うにした薄膜EL表示素子を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thin film EL display element in which the resistance value of a transparent electrode is reduced without causing a decrease in dielectric strength voltage, blackening of picture elements, or an increase in the resistance value of the transparent electrode during the manufacturing process. Our goal is to provide the following.
〈課題を解決するための手段〉
上記目的を達成するため、この発明は、基板上に、複数
本の帯状の互い仲平行な透明電極、第1誘電体層、EL
発光層、第2誘電体層および上記透明電極の配列方向と
直角な方向で互いに平行な複数本の帯状の背面電極を順
次形成してなる薄膜EL表示素子において、上記透明電
極が、上記背面電極との間で絵素を構成する帯状の透明
導電膜と、上記透明導電膜と平行に形成され、かつ、」
二記透明導電膜の絵素を構成ずる部分以外の部分と接続
される接続部を有する帯状の低抵抗金属導電膜からなる
ことを特徴としている。<Means for Solving the Problems> In order to achieve the above object, the present invention provides a substrate with a plurality of strip-shaped transparent electrodes parallel to each other, a first dielectric layer, and an EL layer.
In a thin film EL display element in which a plurality of strip-shaped back electrodes are sequentially formed in parallel to each other in a direction perpendicular to the arrangement direction of a light emitting layer, a second dielectric layer, and the transparent electrode, the transparent electrode is connected to the back electrode. a band-shaped transparent conductive film constituting a picture element between the transparent conductive film and the transparent conductive film formed parallel to the transparent conductive film;
It is characterized in that it is made of a band-shaped low resistance metal conductive film having a connecting portion that is connected to a portion of the transparent conductive film mentioned above other than the portion constituting the picture element.
く作用〉
」二記構成において、低抵抗金属導電膜の比抵抗が透明
導電膜の比抵抗よりも十分小さいため、その合成ライン
抵抗は透明導電膜のライン抵抗よりも十分小さくなる。In the configuration described in item 2, the specific resistance of the low-resistance metal conductive film is sufficiently lower than the specific resistance of the transparent conductive film, so that the combined line resistance thereof is sufficiently lower than the line resistance of the transparent conductive film.
また、上記抵抗金属導電膜と上記透明導電膜との絵素内
での重なりがないため、EL素子の絶縁耐圧の低下には
つながらない。また、透明電極形成後の高温度プロセス
により、透明導電膜と低抵抗金属導電膜とが反応し、黒
化、あるいは抵抗値の上昇が起こった場合でも絵素内に
は黒化の影響は表れず、表示品質上の低下は無く、抵抗
値の上昇も接続点のみであり、透明電極全体の抵抗値の
上昇は起こらない。Further, since the resistive metal conductive film and the transparent conductive film do not overlap within the picture element, the dielectric strength voltage of the EL element does not decrease. In addition, even if the transparent conductive film and the low-resistance metal conductive film react with each other during the high-temperature process after forming the transparent electrode, resulting in blackening or an increase in resistance, the blackening effect will not be visible within the pixel. Therefore, there is no deterioration in display quality, and the resistance value increases only at the connection point, and the resistance value of the entire transparent electrode does not increase.
く発明の実施例〉 以下、この発明を図示の実施例により詳細に説明する。Examples of the invention Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.
第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■〜■線断面図、第3図は第1図の■−■
線断面図である。FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a sectional view from ■ to ■ in Figure 1, and Figure 3 is a cross-sectional view from ■ to ■ in Figure 1.
FIG.
この第1.2.3図に示すように、ガラス基板6上に、
ITOよりなる透明導電膜lとモリブデン(Mo)より
なる低抵抗金属導電M2を形成し、この透明導電膜1と
低抵抗金属導電膜2とにより透明電極を構成している。As shown in FIG. 1.2.3, on the glass substrate 6,
A transparent conductive film 1 made of ITO and a low-resistance metal conductor M2 made of molybdenum (Mo) are formed, and the transparent conductive film 1 and the low-resistance metal conductor film 2 constitute a transparent electrode.
上記低抵抗金属導電膜2と12ではモリブデン(Mo)
以外にタンタル(Ta),チタンータングステン合金(
Ti−W)等を使用することができる。The low resistance metal conductive films 2 and 12 are made of molybdenum (Mo).
In addition, tantalum (Ta), titanium-tungsten alloy (
Ti-W), etc. can be used.
次に、上記パターン化した透明電極−1二に、第1誘電
体層7、発光層8および第2誘電体層9をこの順に順次
積層し、更に、この第2誘電体層9上にAρから成る背
面電極3を成模し、パターン化]2、2重絶縁構造を有
する薄膜EL素子を形成(7ている。Next, the first dielectric layer 7, the light emitting layer 8, and the second dielectric layer 9 are sequentially laminated in this order on the patterned transparent electrode-12, and furthermore, Aρ The back electrode 3 consisting of is patterned]2, and a thin film EL element having a double insulation structure is formed (7).
上記透明導電膜1と低抵抗金属導電膜2との接続は、上
記透明導電膜1の上記背面電極3との間で絵素を構成ず
る部分5以外の部分との接続部4で行なっている。The connection between the transparent conductive film 1 and the low-resistance metal conductive film 2 is made at a connection portion 4 between the transparent conductive film 1 and the back electrode 3 other than the portion 5 that constitutes a picture element. .
次に、第4図に基づいて、本実施例の薄膜EL表示素子
の製造工程ならびに膜の詳細構成を説明する。Next, based on FIG. 4, the manufacturing process of the thin film EL display element of this example and the detailed structure of the film will be explained.
透光性のガラス基板6の表面上にモリブデン等から成る
低抵抗金属導電膜をスパッタリング法により膜厚100
0〜5000人程度成膜し、フォトエッチングなどによ
ってパターン化し、補助電極と17での低抵抗金属導電
模2を形成する。A low-resistance metal conductive film made of molybdenum or the like is deposited on the surface of a transparent glass substrate 6 to a thickness of 100 mm by sputtering.
Approximately 0 to 5,000 people deposit the film and pattern it by photo-etching or the like to form an auxiliary electrode and a low-resistance metal conductive pattern 2 at 17.
次に、その上にITO等などの透明導電膜をスパッタリ
ング法で模厚100(1〜souA程度に成膜し、その
後エッチング等によりパターン化し、主電極としての透
明導電膜1を形成する。この時、低抵抗金属導電膜2と
透明導電膜1は絵素の構成されない領域にある接続郎4
(第1図参照)のみで重なっており、その他の部分のガ
ラス基板上には、どちらか一方の膜が成模されているか
、膜がついていない状態となっている。Next, a transparent conductive film such as ITO is formed thereon by sputtering to a thickness of about 100 (1 to souA), and then patterned by etching or the like to form the transparent conductive film 1 as the main electrode. At this time, the low-resistance metal conductive film 2 and the transparent conductive film 1 are connected to a connecting hole 4 in an area where no picture element is formed.
(See FIG. 1), and on the other parts of the glass substrate, one of the films is imitated or no film is attached.
次に、Sin,をスパッタリング法によって成膜して膜
厚が200〜800人程度の膜7aを形成し、さらにS
iNをスパッタリング法で成膜して膜厚1000〜30
00人程度の膜7bを形成する。この膜7aと膜7bと
の積層膜が第1誘導体層7を構成する。Next, a film 7a having a thickness of about 200 to 800 layers is formed by forming a film of Sin, by a sputtering method, and then
Form a film of iN by sputtering method to a film thickness of 1000 to 30
A film 7b of about 00 people is formed. The laminated film of this film 7a and film 7b constitutes the first dielectric layer 7.
次に、電子ビーム蒸着法によってZnS−Mnずなわち
Mnが0,5%程度にドーブされたZnSを蒸着させて
発光層8を6000〜9000人程度の膜厚で形成する
。この後に真空アニールなどによってアニール処理を施
し、これによって硫化亜鉛(ZnS)中の亜鉛(Zn)
の位置に活性物質、たとえばマンガン(Mn)が置換さ
れる。Next, ZnS--Mn, that is, ZnS doped with about 0.5% Mn, is deposited by electron beam evaporation to form a light-emitting layer 8 with a thickness of about 6,000 to 9,000 layers. After this, an annealing treatment such as vacuum annealing is performed, whereby zinc (Zn) in zinc sulfide (ZnS)
An active substance, such as manganese (Mn), is substituted at the position.
この後SiNをスパッタリング法で成膜1,て膜厚I0
00〜3000人程度の膜9aを形成し、さらにAク,
0,をスパッタリング法で成膜し、膜厚が200〜60
0人程度の膜9bを形成する。この膜9aと膜9bとの
積層膜が第2誘電体層9を構成する。After this, SiN was formed into a film by sputtering method, and the film thickness was I0.
Form a film 9a of about 00 to 3000 people, and then
0, was formed into a film by sputtering method, and the film thickness was 200 to 60 mm.
A film 9b of about 0 people is formed. The laminated film of this film 9a and film 9b constitutes the second dielectric layer 9.
次に、Aρを真空蒸着法で膜厚2000〜6000人程
度成膜し、その後、フォトエッチング等でパターンを形
成し背面電極3とする。Next, Aρ is deposited to a thickness of about 2,000 to 6,000 layers by vacuum evaporation, and then a pattern is formed by photo-etching or the like to form the back electrode 3.
このようにして作成された薄膜EL表示素子の両電極間
に交流電源12を接続してこの薄膜EL表示素子を発光
させた場合、変調電圧の充電のための電流及び発光電流
は、主に低抵抗金属導電膜2を通り接続郎4を介して絵
素に流れることになる。したがって、透明導電膜tのみ
の場合と較べ十分にライン抵抗が低下する。When the AC power supply 12 is connected between both electrodes of the thin film EL display element created in this way to cause the thin film EL display element to emit light, the current for charging the modulation voltage and the light emitting current are mainly low. It passes through the resistive metal conductive film 2 and flows to the picture element via the connector 4. Therefore, the line resistance is sufficiently reduced compared to the case where only the transparent conductive film t is used.
第5図はこのことを具体的に説明した図であり、本実施
例の薄膜EL表示素子の場合の抵抗値と従来例の場合の
抵抗値とを比較したものである。この図から分かるよう
に、透明電極のライン抵抗は、低抵抗金属導電膜を用い
ない従来例の場合は5100Ωであるのに対し、低抵抗
金属導電膜を用いた本実施例の場合は863Ωとなり大
幅に改善される。FIG. 5 is a diagram specifically explaining this, and compares the resistance value in the case of the thin film EL display element of this example with the resistance value in the case of the conventional example. As can be seen from this figure, the line resistance of the transparent electrode is 5100 Ω in the conventional example that does not use a low-resistance metal conductive film, whereas it is 863 Ω in this example using a low-resistance metal conductive film. Significantly improved.
尚、発光層8のうちの低抵抗金属導電膜2と背面電極3
とで挟まれた部会も発光するが、この低抵抗金属導電膜
2の幅を十分小さくし、この低抵抗金属導電膜2と透明
導電膜1との間を十分に狭くすることで、その発光レベ
ルをほとんど問題にならないレベルとすることができる
。また、第6図に示すように、1絵素を4分割すなわち
透明電極を2分割、背面電極を2分割(2た構造のEL
素子に用いることで、より一層低抵抗金属導伝膜部の発
光を目立たなくすることが可能となる。Note that the low resistance metal conductive film 2 and the back electrode 3 of the light emitting layer 8
The section sandwiched between the two also emits light, but by making the width of the low-resistance metal conductive film 2 sufficiently small and the space between the low-resistance metal conductive film 2 and the transparent conductive film 1 sufficiently narrow, the light emission can be suppressed. The level can be set to a level where it hardly becomes a problem. In addition, as shown in Figure 6, one pixel is divided into four parts, that is, the transparent electrode is divided into two parts, and the back electrode is divided into two parts (an EL structure with two parts).
By using it in an element, it becomes possible to make the light emission from the low-resistance metal conductive film part even more inconspicuous.
本実施例においては、背面電極としてAl2を用いノこ
場合について説明したが、背面電極にITO等の透明電
極を用いた透過型薄膜EL素子につ0ても同様に前面透
明電極の抵抗値の低減は可能である。In this example, the case where Al2 is used as the back electrode is explained, but the resistance value of the front transparent electrode can be similarly applied to a transmission type thin film EL element using a transparent electrode such as ITO as the back electrode. Reduction is possible.
く発明の効果〉
以上より明らかなように、この発明の薄膜EL表示素子
は、透明電極が、背面電極との間で絵素を構成する帯状
の透明導電膜と、上記透明導電膜と平行に形成され、か
つ、」一記透明導電膜の絵素を構成する部分以外の部分
と接続される接続郎を有する帯状の低抵抗金属導電膜か
らなっているので、低抵抗金属導電膜の比抵抗が透明導
電膜の比抵抗よりも十分小さいため、その合成ライン抵
抗は透明導電膜のライン抵抗よりも十分小さくなり、ま
た、」二記抵抗金属導電膜と上記透明導電膜との絵素内
での重なりがないため、EL素子の絶縁耐圧が低下する
ことはなく、さらに、透明電極形成後の高温度プロセス
により、透明導電膜と低抵抗金属導電膜とが反応し、黒
化、ある0(よ抵抗値の上昇が起こった場合でら絵素内
には黒化の影響:よ表れず、表示品質五の低下は無く、
抵抗値の」二昇も接続部のみであり、透明電極全体の抵
抗値の」二昇は起こらない。Effects of the Invention> As is clear from the above, in the thin film EL display element of the present invention, the transparent electrode has a strip-shaped transparent conductive film that constitutes a picture element between it and the back electrode, and the transparent conductive film is parallel to the transparent conductive film. The specific resistance of the low-resistance metal conductive film is low because it is formed of a band-shaped low-resistance metal conductive film having a connecting hole that is formed and connected to parts other than the parts constituting picture elements of the transparent conductive film. is sufficiently smaller than the specific resistance of the transparent conductive film, so the combined line resistance is sufficiently smaller than the line resistance of the transparent conductive film. Because there is no overlap, the dielectric strength of the EL element does not decrease.Furthermore, the high temperature process after forming the transparent electrode causes the transparent conductive film and the low resistance metal conductive film to react, causing blackening and some 0( When the resistance value increases, the effect of blackening does not appear within the picture element, and there is no deterioration in display quality.
The increase in resistance value occurs only at the connection portion, and the resistance value does not increase in the entire transparent electrode.
第1図はこの発明の一実施例の構成を示す平面図、第2
図は第1図の■一汀線断面図、第3図は第1図の■一■
線断面図、第4図はL記実施例の製造工程と膜の詳細構
成を説明する図、第5図は上記実施例と従来例との透明
電極のライン抵抗値の比較を示す図、第6図は他の実施
例の構成を示す平面図、第7図は従来例の構成を示す斜
視図である。
!・・・透明導電膜、2・・低抵抗金属導電膜、3・・
・背面電極、4・・・接続部、5・・絵素郎分、6・・
・ガラス基板、7・・第1誘電体層、訃・・発光層、9
・・・第2誘電体層。
特 許 出 願 人 シャープ株式会社代 理 人
弁理士 青山 葆 はかl名第1図
第3図
第4図
第2図
第5図
第7図FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, and FIG.
The figure is ■1 shore line cross-sectional view of Figure 1, and Figure 3 is ■1■ of Figure 1.
4 is a diagram illustrating the manufacturing process and detailed structure of the film of the embodiment described in L. FIG. FIG. 6 is a plan view showing the structure of another embodiment, and FIG. 7 is a perspective view showing the structure of a conventional example. ! ...Transparent conductive film, 2..Low resistance metal conductive film, 3..
・Back electrode, 4...Connection part, 5...Esaro part, 6...
-Glass substrate, 7...first dielectric layer, -light emitting layer, 9
...Second dielectric layer. Patent applicant: Sharp Corporation Agent
Patent Attorney Aoyama Aoyama Name: Figure 1 Figure 3 Figure 4 Figure 2 Figure 5 Figure 7
Claims (1)
極、第1誘電体層、EL発光層、第2誘電体層および上
記透明電極の配列方向と直角な方向で互いに平行な複数
本の帯状の背面電極を順次形成してなる薄膜EL表示素
子において、 上記透明電極が、上記背面電極との間で絵素を構成す
る帯状の透明導電膜と、上記透明導電膜と平行に形成さ
れ、かつ、上記透明導電膜の絵素を構成する部分以外の
部分と接続される接続部を有する帯状の低抵抗金属導電
膜からなることを特徴とする薄膜EL表示素子。(1) On a substrate, a plurality of strip-shaped transparent electrodes parallel to each other, a first dielectric layer, an EL light emitting layer, a second dielectric layer, and a plurality of strips parallel to each other in a direction perpendicular to the arrangement direction of the transparent electrodes. In a thin film EL display element formed by successively forming a strip-shaped back electrode, the transparent electrode is formed parallel to a strip-shaped transparent conductive film that forms a picture element between the transparent electrode and the transparent conductive film. and a thin film EL display element comprising a band-shaped low resistance metal conductive film having a connecting portion connected to a portion of the transparent conductive film other than the portion constituting a picture element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052488A JPH02230693A (en) | 1989-03-02 | 1989-03-02 | Thin film el display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052488A JPH02230693A (en) | 1989-03-02 | 1989-03-02 | Thin film el display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02230693A true JPH02230693A (en) | 1990-09-13 |
Family
ID=12916100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1052488A Pending JPH02230693A (en) | 1989-03-02 | 1989-03-02 | Thin film el display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02230693A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126391A (en) * | 1990-09-17 | 1992-04-27 | Sharp Corp | Thin film electroluminescent panel |
JPH05299177A (en) * | 1992-04-22 | 1993-11-12 | Sharp Corp | Thin film electroluminescence element |
WO2000060907A1 (en) | 1999-04-02 | 2000-10-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence display device and method of producing the same |
-
1989
- 1989-03-02 JP JP1052488A patent/JPH02230693A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126391A (en) * | 1990-09-17 | 1992-04-27 | Sharp Corp | Thin film electroluminescent panel |
JPH05299177A (en) * | 1992-04-22 | 1993-11-12 | Sharp Corp | Thin film electroluminescence element |
WO2000060907A1 (en) | 1999-04-02 | 2000-10-12 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence display device and method of producing the same |
US6525467B1 (en) | 1999-04-02 | 2003-02-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence display device and method of producing the same |
KR100694959B1 (en) * | 1999-04-02 | 2007-03-14 | 이데미쓰 고산 가부시키가이샤 | Organic electroluminescent display device and manufacturing method thereof |
JP2010080453A (en) * | 1999-04-02 | 2010-04-08 | Idemitsu Kosan Co Ltd | Organic electroluminescent display and method for manufacturing the same |
JP4608105B2 (en) * | 1999-04-02 | 2011-01-05 | 出光興産株式会社 | Organic electroluminescence display device and manufacturing method thereof |
JP2011060785A (en) * | 1999-04-02 | 2011-03-24 | Idemitsu Kosan Co Ltd | Organic electroluminescent display device and method for producing the same |
EP2261982A3 (en) * | 1999-04-02 | 2011-07-13 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence display device and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5399936A (en) | Organic electroluminescent device | |
WO2000001204A9 (en) | Electroluminescent display | |
US5400047A (en) | High brightness thin film electroluminescent display with low OHM electrodes | |
US5923119A (en) | Organic thin-film electroluminescent display device, method for driving the same and method for fabricating the same | |
JPH08180974A (en) | El element and manufacture thereof | |
KR100296724B1 (en) | Organic electroluminescent element | |
JP2001196190A (en) | Organic thin film luminous display | |
JPH02230693A (en) | Thin film el display element | |
JPH01134895A (en) | Thin film el panel | |
JPS62272499A (en) | Thin film el panel | |
JPH0482197A (en) | Thin film electroluminescent (el) element | |
JP2003092190A (en) | Organic electroluminescent element and method for manufacturing the same | |
JP2621057B2 (en) | Thin film EL element | |
JPH02165592A (en) | Thin el element | |
JPH0254894A (en) | Thin film el display element | |
JP2502560B2 (en) | Method for forming dielectric film | |
JP3984005B2 (en) | Inorganic thin film electroluminescence device | |
JPS6344685A (en) | Thin film image display device | |
JP2004311205A (en) | Passive matrix type organic thin-film light emitting display, and manufacturing method of passive matrix type organic thin-film light emitting display | |
JPS61263096A (en) | Thin film el element | |
JPS63298990A (en) | Thin film el element | |
JPS63216295A (en) | Thin film el device | |
JPH0577160B2 (en) | ||
JPS63108698A (en) | Thin film electroluminescence display device | |
JPS60178481A (en) | Electroluminescence display unit |