JPH02239109A - Production of aluminum nitride powder - Google Patents
Production of aluminum nitride powderInfo
- Publication number
- JPH02239109A JPH02239109A JP5507089A JP5507089A JPH02239109A JP H02239109 A JPH02239109 A JP H02239109A JP 5507089 A JP5507089 A JP 5507089A JP 5507089 A JP5507089 A JP 5507089A JP H02239109 A JPH02239109 A JP H02239109A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- ammonia
- alkylaluminum
- gas
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 32
- 239000000843 powder Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 239000007789 gas Substances 0.000 abstract description 27
- 125000005234 alkyl aluminium group Chemical group 0.000 abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 14
- 239000002245 particle Substances 0.000 abstract description 12
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 abstract description 10
- 239000012159 carrier gas Substances 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 239000007792 gaseous phase Substances 0.000 abstract 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 235000010210 aluminium Nutrition 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- -1 aluminum compound Chemical class 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010574 gas phase reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、窒化アルミニウム粉末の製造方法に関し、詳
しくは窒化アルミニウム基板等に用いられる熱伝導性の
良好な窒化アルミニウム粉末の製造方法に関する.
〔従来技術〕
近年マイクロエレクトロニクスの分野では益々高集積化
、高出力化を目指す傾向にあり、従来から用いられてき
たアルミナ基板では半導体実装用の放熱基板としては不
十分になってきている.その結果、窒化アルミニウム基
板が高熱伝導性、耐熱性、高絶縁性をもつ新しい放熱基
板として注目されている。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing aluminum nitride powder, and more particularly to a method for producing aluminum nitride powder with good thermal conductivity, which is used for aluminum nitride substrates, etc. [Prior art] In recent years, the field of microelectronics has been aiming for higher integration and higher output, and the alumina substrates that have been used in the past are becoming insufficient as heat dissipation substrates for semiconductor mounting.As a result, , aluminum nitride substrates are attracting attention as a new heat dissipation substrate with high thermal conductivity, heat resistance, and high insulation properties.
このように、窒化アルミニウム基板に用いられる窒化ア
ルミニウム粉末の製造方法としては、従来より以下に示
すような方法が知られている。As described above, the following methods are conventionally known as methods for producing aluminum nitride powder used for aluminum nitride substrates.
例えば、(1)金属アルミニウムを窒素あるいはアンモ
ニア雰囲気中で加熱する方法(特開昭50−16019
9)、(2)アルミナ粉末とカーボン粉末とを混合し、
窒素あるいはアンモニア雰囲気中で加熱する方法(特開
昭60−180906)、(3)有機アルミニウム化合
物とアミン類との反応生成物を加熱処理する方法(特開
昭53−68700) 、(4)塩化アルミニウムもし
くは臭化アルミニウムガスのいずれかあるいは両者の混
合ガスとアンモニアガスを気相反応させる方法(特開昭
61−91008) 、(5)有機アルミニウム化合物
とアンモニアガスとを気相で反応させて窒化アルミニウ
ム粉末を製造する方法(特開昭63−60102)等が
挙げられる.
〔発明が解決しようとする課題]
しかしながら、上述の有機アルミニウム化合物とアンモ
ニアガスとを気相で反応させて得られる窒化アルミニウ
ム前駆体が超微粒子であり、その結晶化において各粒子
間の融着が起こり、非常に凝集度の高い粒子の集合体に
なっているものと思われる.従って、それを焼結せしめ
て得られた窒化アルミニウム粉末の密度は小さく、電子
機器材料用セラミソクスとして用いる場合の耐熱性、高
絶縁性、特に熱伝導性が未だ不充分であり、これら要求
を解決すべくその開発が望まれていた。For example, (1) a method of heating metal aluminum in a nitrogen or ammonia atmosphere (Japanese Unexamined Patent Publication No. 50-16019
9), (2) Mixing alumina powder and carbon powder,
A method of heating in a nitrogen or ammonia atmosphere (JP-A-60-180906), (3) a method of heat-treating a reaction product of an organoaluminum compound and amines (JP-A-53-68700), (4) Chlorination A method of reacting aluminum or aluminum bromide gas, or a mixture of both, with ammonia gas in the gas phase (JP-A-61-91008), (5) Nitriding by reacting an organic aluminum compound with ammonia gas in the gas phase. Examples include a method for producing aluminum powder (Japanese Unexamined Patent Publication No. 63-60102). [Problems to be Solved by the Invention] However, the aluminum nitride precursor obtained by reacting the above-mentioned organoaluminum compound and ammonia gas in the gas phase is ultrafine particles, and fusion between particles occurs during crystallization. It is thought that this occurs, forming a collection of particles with a very high degree of aggregation. Therefore, the density of aluminum nitride powder obtained by sintering it is low, and its heat resistance, high insulation properties, and especially thermal conductivity are still insufficient when used as ceramic materials for electronic equipment. Its development was highly desired.
本発明者等は、上記課題を解決すべく焼結体の熱伝導性
と気相反応条件との相関について鋭意研究した結果、ア
ルキルアルミニウムとアンモニアとを特定の比率で供給
し、反応することにより生成粒子径が均一で、且つ、焼
結したその焼結体中の結晶粒子が均一な分布を示す高純
度窒化アルミニウム粉末を得る方法を見出し本発明を完
成するに至ったものである。すなわち、本発明の窒化ア
ルミニウム粉末の製造方法は、アルキルアルミニウムと
アンモニアとを気相で反応させて窒化アルミニウム粉末
を製造するにあたり、反応系に供給するアルキルアルミ
ニウムとアンモニアのモル比が1:1〜1:lOOであ
り、且つ、該アルキルアルミニウムの系内全ガスに対す
る体積比が0.01〜0.2であることを特徴とするも
のである。In order to solve the above problem, the present inventors conducted intensive research on the correlation between the thermal conductivity of the sintered body and the gas phase reaction conditions. The present invention was accomplished by discovering a method for obtaining high-purity aluminum nitride powder that has a uniform particle size and a uniform distribution of crystal grains in the sintered body. That is, in the method for producing aluminum nitride powder of the present invention, when producing aluminum nitride powder by reacting aluminum alkyl and ammonia in the gas phase, the molar ratio of aluminum alkyl and ammonia supplied to the reaction system is 1:1 to 1. 1:1OO, and the volume ratio of the alkyl aluminum to the total gas in the system is 0.01 to 0.2.
本発明におけるアルキルアルミニウムとしては、トリア
ルキルアルミニウム及びジアルキルアルミニウムハライ
ドが使用でき、具体的には、トリメチルアルミニウム、
トリエチルアルミニウム、トリイソブチルアルミニウム
、ジメチルアルミニウムハラ・イド、ジエチルアルミニ
ウムハライド、ジイソブチルアルミニウムハライド等が
挙げられるが、工業的に大量生産されているトリエチル
アルミニウム、トリイソブチルアルミニウムの使用が経
済面からしても有利であり、中でもトリエチルアルミニ
ウムが好ましく用いられる。As the alkyl aluminum in the present invention, trialkylaluminum and dialkyl aluminum halide can be used, and specifically, trimethylaluminum, trimethylaluminum,
Examples include triethylaluminum, triisobutylaluminum, dimethylaluminum halide, diethylaluminum halide, diisobutylaluminum halide, etc., but it is economically advantageous to use triethylaluminum and triisobutylaluminum, which are industrially mass-produced. Of these, triethylaluminum is preferably used.
これらアルキルアルミニウムは反応器へガス状で供給す
ることが重要である。液状で供給すると該化合物の蒸発
潜熱のために間欠的に反応器の安定性が阻害されること
により、生成する窒化アルミニウム前駆体の粒子径が不
揃いとなり好ましくない.
ガス状で供給する方法としては、アルキルアルミニウム
を加熱し蒸気分として供給してもよいが、窒素、水素、
ヘリウム、アルゴン等の非酸化性ガスもしくはこれらの
混合ガスをキャリャーガスとした飽和蒸気として供給し
てもよい。この時のアルキルアルミニウム槽は、キャリ
ャーガス導入量及びアルキルアルミニウムの供給量に応
し、微細に可変できるように保温制御する。例えば、キ
ャリャーガス導入量を一定としてアルキルアルミニウム
槽内温度の変化によりアルキルアルミニウム供給量を制
御する等、該槽の形態に応じて行い、その時の温度は1
20〜170 ’Cが好ましい。It is important to supply these alkyl aluminums to the reactor in gaseous form. When supplied in liquid form, the stability of the reactor is intermittently impaired due to the latent heat of vaporization of the compound, which is undesirable as the particle size of the aluminum nitride precursor produced becomes irregular. As a method of supplying in gaseous form, aluminum alkyl may be heated and supplied as steam, but nitrogen, hydrogen,
A non-oxidizing gas such as helium, argon, or a mixed gas thereof may be supplied as a saturated vapor as a carrier gas. At this time, the temperature of the alkyl aluminum tank is controlled so as to be finely variable depending on the amount of carrier gas introduced and the amount of alkyl aluminum supplied. For example, the amount of carrier gas introduced may be kept constant and the amount of alkyl aluminum supplied may be controlled by changing the temperature inside the alkyl aluminum tank.
20-170'C is preferred.
気相反応゛における粒子生成の過程は、原料各成分相互
の化学反応による核発生により始まり、次いで初期粒子
が発生する.この粒子の成長過程において、これら微小
粒子が浮遊している状態での粒子間の衝突により凝集へ
と進むと考えられ、実際の過程ではこれらの現象が同時
、併発的に入り乱れ起こっている非常に複雑な現象であ
る。このようにして気相反応で得られる合成物の凝集状
態は、合成時の各原料ガスの濃度及び二成分反応系での
各成分の比率が大きな影響因子として存在すると考えら
れ、更にその合成物の物性が最終的な窒化アルミニウム
焼結体の物性に対して相関を示すことになる.
これらの現象に鑑み反応系におけるアルキルアルミニウ
ムとアンモニアの供給量は、モル比で1:1〜1:10
0が好ましい。アルキルアルミニウムに対するアンモニ
アのモル比が1に満たないと反応帯域でのアルキルアル
ミニウムの自己分解を招き、アルミニウム金属を不純物
として含有する窒化アルミニウム前駆体が生成し好まし
くない。The process of particle generation in a gas-phase reaction begins with nucleation due to chemical reactions between raw material components, and then initial particles are generated. In the growth process of these particles, it is thought that collisions between particles while these microparticles are suspended lead to aggregation, and in the actual process, these phenomena occur simultaneously and in a chaotic manner. It is a complex phenomenon. The state of agglomeration of the compound obtained in this way in a gas phase reaction is thought to be greatly influenced by the concentration of each raw material gas during synthesis and the ratio of each component in the two-component reaction system. The physical properties of the aluminum nitride sintered body show a correlation with the physical properties of the final aluminum nitride sintered body. In view of these phenomena, the supply amount of alkyl aluminum and ammonia in the reaction system is set at a molar ratio of 1:1 to 1:10.
0 is preferred. If the molar ratio of ammonia to aluminum alkyl is less than 1, the aluminum alkyl will self-decompose in the reaction zone, and an aluminum nitride precursor containing aluminum metal as an impurity will be produced, which is undesirable.
叉、アンモニアのモル比が100を越えると生成粒子の
形状のバラツキが大きく、見掛け上ふわふわとした非常
に嵩の高い凝集した粉体となり好ましくない。更に、こ
のようなモル比の高い状態では、反応器の単位容積当た
りの生産効率が低下するばかりかアンモニアの原単位が
大きくなり経済的でない.
本発明において系内全ガスとは、反応帯域におけるアル
キルアルミニウムガスとアンモニアガス及びアルキルア
ルミニウムをガスとして供給する際のキャリャーガス、
あるいは反応器内で生成する粉体が器壁へ付着するのを
防止するためのバージガス、さらには反応器内ガスの線
速度を調整するための希釈ガス等に用いられる前述の窒
素、水素、ヘリウム、アルゴン等の非酸化性ガスを含む
反応器内に存在する全てのガスであり、これら系内全ガ
スに対しアルキルアルミニウムの濃度を体積比で0.0
1〜0、2にすることが好ましい.系内金ガスに対する
アルキルアルミニウムの体積比が0.01に満たない場
合は、生成粒子径が超微粒子となり、得られた非晶質反
応物を更に高温で結晶化する際に異状粒成長を起こし凝
集する。このような窒化アルミニウム粉体を用いて得た
焼結体の密度は低く、高い熱伝導性は得られない。叉、
0.2を越えるとアルキルアルミニウムの自己分解で金
属アルミニウムを不純物として含む粒子が生成する。い
ずれの場合においても、前記範囲を逸脱すると良好な熱
伝導性を示す焼結体を得るための窒化アルミニウム前駆
体を得ることができない。On the other hand, if the molar ratio of ammonia exceeds 100, the shape of the particles produced will vary greatly, resulting in a fluffy, bulky, agglomerated powder that is undesirable. Furthermore, such a high molar ratio not only reduces the production efficiency per unit volume of the reactor but also increases the ammonia consumption rate, making it uneconomical. In the present invention, the total gas in the system refers to the alkyl aluminum gas and ammonia gas in the reaction zone, and the carrier gas when supplying the alkyl aluminum as gas,
Alternatively, the nitrogen, hydrogen, and helium mentioned above are used as a barge gas to prevent the powder produced in the reactor from adhering to the vessel wall, and as a diluent gas to adjust the linear velocity of the gas in the reactor. , all gases present in the reactor, including non-oxidizing gases such as argon, and the concentration of alkyl aluminum is 0.0 in volume ratio to all gases in the system.
It is preferable to set it to 1-0,2. If the volume ratio of the aluminum alkyl to the gold gas in the system is less than 0.01, the particle size produced will be ultrafine, and abnormal grain growth will occur when the resulting amorphous reactant is crystallized at a higher temperature. aggregate. The density of a sintered body obtained using such aluminum nitride powder is low, and high thermal conductivity cannot be obtained. Fork,
If it exceeds 0.2, particles containing metallic aluminum as an impurity will be generated due to self-decomposition of the alkyl aluminum. In any case, if the temperature exceeds the above range, it will not be possible to obtain an aluminum nitride precursor for obtaining a sintered body exhibiting good thermal conductivity.
このようにして反応器へ供給した窒素等の非酸化性ガス
を含むアルキルアル迅ニウムとアンモニアは、600〜
1400゜Cの温度で反応せしめヒューム状の生成物と
して窒化アルミニウム前駆体を形成する.反応温度が前
記範囲を逸脱すると、目的とする生成物が得られないば
かりか生成反応効率が低下するため好まし《ない。The alkyl alkylene containing non-oxidizing gas such as nitrogen and ammonia supplied to the reactor in this way have a
The reaction takes place at a temperature of 1400°C to form an aluminum nitride precursor as a fume-like product. If the reaction temperature deviates from the above range, it is not preferable because not only the desired product cannot be obtained, but also the production reaction efficiency decreases.
このようにして得られた生成物は反応温度にもよるが、
X線回折等で観察すると完全な窒化アルミニウムの結晶
ではなく、非品質成分も含んでおり、酸素等の活性ガス
に対しては非常に不安定であり、厳密に管理された不活
性ガス雰囲気中で取り扱うことが肝要である。The product obtained in this way depends on the reaction temperature, but
When observed by X-ray diffraction, etc., it is not a perfect aluminum nitride crystal, but contains non-quality components, and is extremely unstable against active gases such as oxygen, so it cannot be used in a strictly controlled inert gas atmosphere. It is important to handle the
更に、この得られ粉体を非酸化性ガス雰囲気あるいは真
空中で1400゜C以上の温度で結晶化することにより
、不純物含量が少なく、凝集のない結晶質窒化アルミニ
ウム粉末を得ることができる.〔実施例〕
以下、本発明を実施例により更に説明する.実施例1
800″Cに制御した内径が6(hmの外部電気炉を有
する空塔反応器を用い、該反応器下部よりアンモニアガ
スを400g/Hで供給し、次いで、別途トリエチルア
ルミニウムを入れたアルキルアルミニウム槽内にキャリ
ャーガスとして窒素を100 f /}Iで導入し、ト
リエチルアルミニウム300g/Hを該反応器下部に供
給し反応させた.このときのトリエチルアルミニウムに
対するアンモニアのモル比は8.95であり、系内金ガ
スに対するトリエチルアルミニウムガスの体積比は0.
086であった.反応により得られた生成物をXNIA
回折により観察すると窒化アルミニウムのパターンを僅
かに示す非品質の粉末であった.次いで、この非晶貿窒
化アルミニウム粉末をバッチ式高温電気炉を用いて30
0゜C/Hで昇温し1600゜Cで3時間焼成して結晶
化を行った。得られた結晶質の粉末は乳白色を呈しX線
回折により結晶質窒化アルミニウムとして観察された.
元素分析の結果、AI含量は65.8%、N含量が34
.1%と窒化アルミニウムの理論値とほぼ一致した.
この結晶質窒化アルミニウムに焼結助剤としてイットリ
アを加え1800゜Cで3時間焼結させ、得られた焼結
体の熱伝導率を測定したところ187w/m・Kと良好
な結果であった.結果を第1表に示す。Furthermore, by crystallizing the obtained powder at a temperature of 1400°C or higher in a non-oxidizing gas atmosphere or in vacuum, a crystalline aluminum nitride powder with low impurity content and no agglomeration can be obtained. [Example] The present invention will be further explained below with reference to Examples. Example 1 A sky reactor having an external electric furnace with an internal diameter of 6 (hm) controlled at 800″C was used, and ammonia gas was supplied from the bottom of the reactor at 400 g/H, and then triethylaluminum was separately added. Nitrogen was introduced into the alkylaluminium tank as a carrier gas at 100 f/}I, and 300 g/H of triethylaluminum was supplied to the lower part of the reactor for reaction.The molar ratio of ammonia to triethylaluminum at this time was 8.95. The volume ratio of triethylaluminum gas to gold gas in the system is 0.
It was 086. The product obtained by the reaction is
When observed by diffraction, the powder was of poor quality and showed a slight pattern of aluminum nitride. Next, this amorphous aluminum nitride powder was heated for 30 minutes using a batch-type high-temperature electric furnace.
The temperature was raised to 0°C/H and the mixture was fired at 1600°C for 3 hours to effect crystallization. The obtained crystalline powder had a milky white color and was observed as crystalline aluminum nitride by X-ray diffraction.
As a result of elemental analysis, the AI content was 65.8% and the N content was 34%.
.. 1%, which is almost the same as the theoretical value for aluminum nitride. Yttria was added as a sintering aid to this crystalline aluminum nitride and sintered at 1800°C for 3 hours, and the thermal conductivity of the resulting sintered body was measured and was found to be 187 W/m・K, which was a good result. .. The results are shown in Table 1.
実施例2〜5、比較例1〜3
アルキルアルミニウム槽へのキャリャーガス導入量ある
いは該槽内温度を変化させることにより、トリエチルア
ルミニウム供給量を変えた他は実施例1と同様にして焼
結体を得た。結果を第1表に示す。Examples 2 to 5, Comparative Examples 1 to 3 Sintered bodies were produced in the same manner as in Example 1, except that the amount of triethylaluminum supplied was changed by changing the amount of carrier gas introduced into the alkyl aluminum tank or the temperature inside the tank. Obtained. The results are shown in Table 1.
実施例6
トリエチルアルミニウムに替えトリイソブチルアルミニ
ウム520gを用いた他は実施例1と同様にして焼結体
を得た。結果を第1表に示す。Example 6 A sintered body was obtained in the same manner as in Example 1 except that 520 g of triisobutylaluminum was used instead of triethylaluminum. The results are shown in Table 1.
本発明の方法により得られる窒化アルミニウム粉末は、
電子機器材料用セラミックスとして用いた場合の耐熱性
、高絶縁性、特に熱伝導性に優れ、産業上極めて価値が
ある.
特許出願人 三井東圧化学株式会社The aluminum nitride powder obtained by the method of the present invention is
When used as a ceramic material for electronic devices, it has excellent heat resistance, high insulation properties, and especially thermal conductivity, making it extremely valuable in industry. Patent applicant Mitsui Toatsu Chemical Co., Ltd.
Claims (1)
て窒化アルミニウム粉末を製造するにあたり、反応系に
供給するアルキルアルミニウムとアンモニアのモル比が
1:1〜1:100であり、且つ、該アルキルアルミニ
ウムの系内全ガスに対する体積比が0.01〜0.2で
あることを特徴とする窒化アルミニウム粉末の製造方法
。When producing aluminum nitride powder by reacting aluminum alkyl and ammonia in the gas phase, the molar ratio of aluminum alkyl and ammonia supplied to the reaction system is 1:1 to 1:100, and the aluminum alkyl is A method for producing aluminum nitride powder, characterized in that the volume ratio to the total gas is 0.01 to 0.2.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5507089A JPH02239109A (en) | 1989-03-09 | 1989-03-09 | Production of aluminum nitride powder |
DE69021907T DE69021907T2 (en) | 1989-01-27 | 1990-01-23 | Process for the production of crystalline, sinterable aluminum nitride powder. |
EP90101332A EP0385096B1 (en) | 1989-01-27 | 1990-01-23 | Process for producing sinterable crystalline aluminum nitride powder |
CA002008645A CA2008645C (en) | 1989-01-27 | 1990-01-26 | Process for producing sinterable crystalline aluminum nitride powder |
US07/708,807 US5110575A (en) | 1989-01-27 | 1991-05-31 | Process for producing sinterable crystalline aluminum nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5507089A JPH02239109A (en) | 1989-03-09 | 1989-03-09 | Production of aluminum nitride powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02239109A true JPH02239109A (en) | 1990-09-21 |
Family
ID=12988436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5507089A Pending JPH02239109A (en) | 1989-01-27 | 1989-03-09 | Production of aluminum nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02239109A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63176302A (en) * | 1987-01-16 | 1988-07-20 | Mitsubishi Metal Corp | Production of fine high-purity aluminum nitride powder |
-
1989
- 1989-03-09 JP JP5507089A patent/JPH02239109A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63176302A (en) * | 1987-01-16 | 1988-07-20 | Mitsubishi Metal Corp | Production of fine high-purity aluminum nitride powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4632849A (en) | Method for making a fine powder of a metal compound having ceramic coatings thereon | |
JP2000327312A (en) | Production of spherical boron nitride and its precursor substance, production facility and product | |
JPS6112844B2 (en) | ||
US4170667A (en) | Process for manufacturing pure polycrystalline silicon | |
JPS6111886B2 (en) | ||
JPH02239109A (en) | Production of aluminum nitride powder | |
Wang et al. | Preparation and characterization of AlN powders in the AlCl3–NH3–N2 system | |
US5110575A (en) | Process for producing sinterable crystalline aluminum nitride powder | |
US4770830A (en) | Process for preparation of high α-type silicon nitride powder | |
JPH0535084B2 (en) | ||
JP3325344B2 (en) | Method for producing aluminum nitride powder | |
JPS61149478A (en) | Production of boron nitride film of hexagonal or cubic crystal | |
JPH01197309A (en) | Production of granular silicon | |
JPS58150427A (en) | Preparation of fine powder of metal compound | |
JP2831411B2 (en) | Method for producing aluminum nitride powder | |
JP2812473B2 (en) | Method for producing aluminum nitride powder | |
JP2670331B2 (en) | Method for producing aluminum nitride powder | |
JPS62100403A (en) | Production of fine powder of hexagonal boron nitride having high purity | |
JP2726703B2 (en) | Method for producing aluminum nitride powder | |
JPH02141408A (en) | Production of aluminum nitride powder | |
JPS6111885B2 (en) | ||
JPH048364B2 (en) | ||
JPH03137009A (en) | Aluminum nitride powder and its production | |
JPS5921507A (en) | Manufacture of crystalline silicon nitride | |
JPS6250466A (en) | Production of article having silicon nitride film |