JPH02238880A - Regeneration of bioreactor - Google Patents
Regeneration of bioreactorInfo
- Publication number
- JPH02238880A JPH02238880A JP5869789A JP5869789A JPH02238880A JP H02238880 A JPH02238880 A JP H02238880A JP 5869789 A JP5869789 A JP 5869789A JP 5869789 A JP5869789 A JP 5869789A JP H02238880 A JPH02238880 A JP H02238880A
- Authority
- JP
- Japan
- Prior art keywords
- bioreactor
- biocatalyst
- immobilized
- carrier
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008929 regeneration Effects 0.000 title description 2
- 238000011069 regeneration method Methods 0.000 title description 2
- 108090000790 Enzymes Proteins 0.000 claims abstract description 33
- 102000004190 Enzymes Human genes 0.000 claims abstract description 33
- 239000011942 biocatalyst Substances 0.000 claims abstract description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000007864 aqueous solution Substances 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 9
- 230000003100 immobilizing effect Effects 0.000 claims abstract 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 abstract description 8
- 108090000637 alpha-Amylases Proteins 0.000 abstract description 5
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 abstract description 3
- 229920000858 Cyclodextrin Polymers 0.000 abstract description 3
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 abstract description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 abstract description 3
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007853 buffer solution Substances 0.000 abstract description 2
- 239000011259 mixed solution Substances 0.000 abstract description 2
- 150000003839 salts Chemical class 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 abstract 4
- 101100166829 Mus musculus Cenpk gene Proteins 0.000 abstract 1
- 238000001354 calcination Methods 0.000 abstract 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 6
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 5
- 235000011073 invertase Nutrition 0.000 description 5
- 239000001573 invertase Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004113 Sepiolite Substances 0.000 description 3
- 239000008351 acetate buffer Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229910052624 sepiolite Inorganic materials 0.000 description 3
- 235000019355 sepiolite Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010058683 Immobilized Proteins Proteins 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- -1 hypochlorite ions Chemical class 0.000 description 1
- 210000005061 intracellular organelle Anatomy 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- JREYOWJEWZVAOR-UHFFFAOYSA-N triazanium;[3-methylbut-3-enoxy(oxido)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].CC(=C)CCOP([O-])(=O)OP([O-])([O-])=O JREYOWJEWZVAOR-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、酵素、微生物菌体、植物、動物細胞、細胞内
オルガネラ等の生体触媒を触媒担体に担持させたバイオ
リアクターの再生方法に関するものである.
(従来の技術)
生化学反応を触媒する生体触媒を触媒担体に担持させた
バイオリアクターは、高価な生体触媒の流失を防止でき
ること、生体触媒の高密度化が図れること、反応時間及
びリアクターのコンパクト化が図れること、連続的な生
産が可能となること等の多くのメリットがあるため、種
々の生化学工業の分野で広く使用されている.ところが
このようなバイオリアクターは、時間の経過とともに触
媒担体に固定された生体触媒の活性が次第に低下するこ
とを避けることができない宿命を持つ.このような場合
には、失活した生体触媒を触媒担体から遊離させて洗い
流したうえで、新しい生体触媒を固定化し直すことが望
まれる.
しかし、触媒担体としてイオン交換樹脂が使用されてい
る場合にのみ、リアクターの内部に高塩濃度液を注入し
て失活した生体触媒を洗い流す方法を取ることができる
が、セラミックスのような無機担体が使用されている場
合には触媒担体をリアクターの内部に充填したままでバ
イオリアクターを再生する方法は知られていなかった.
これは無機担体と生体触媒とは共有結合のような強固な
結合方式により結合しているため、両者を容易に開離さ
せることができないからである.このため、セラミック
スのような無機担体が使用されているバイオリアクター
を再生するには、無機担体をリアクター外に取出し、焼
成するという方法を取らざるを得なかったが、担体をリ
アクター外に取出すことは雑菌汚染の点から好ましくな
いことであった.
(発明が解決しようとする課題)
本発明は上記のような従来の問題点を解決して、無機担
体が使用されているバイオリアクターの活性が低下した
際に、担体をリアクターの外部に取出すことなく再生を
行わせることができるバイオリアクターの再生方法を提
供するために完成されたものである.
(課題を解決するための手段)
上記の課題を解決するためになされた本発明は、固定化
生体触媒を組み込んだバイオリアクターの固定化生体触
媒の活性が低下した際に、次亜塩素酸又は次亜塩素酸塩
の水溶液を触媒担体に接触させて失活した固定化生体触
媒を除去し、その後新しい固定化生体触媒を触媒担体に
固定するこ々を特徴とするものである.
本発明において使用される次亜塩素酸又は次亜塩素酸ナ
トリウムのような次亜塩素酸塩は、発生機の酸素による
殺菌効果を持つものとして知られているが、次亜塩素酸
はそれ自身が生活細胞の細胞膜を破壊する効果を持ち、
失活した固定化生体触媒を触媒担体から除去することが
できる。次亜塩素酸又は次亜塩素酸塩を本発明の目的で
使用するためには、その有効塩素濃度がI PP?I以
上であり、かつPl1が9以下の条件下で使用すること
が望ましい.これは有効塩素濃度がl PPM未満であ
ると固定化生体触媒を触媒担体から効果的に除去するこ
とができず、またPl1が大きくなると次亜塩素酸イオ
ンの解離度が低下し、P}lが9を越えるとその効果が
著しく低下するためである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for regenerating a bioreactor in which a catalyst carrier supports a biocatalyst such as an enzyme, a microbial cell, a plant, an animal cell, or an intracellular organelle. It is. (Prior art) A bioreactor in which a biocatalyst that catalyzes a biochemical reaction is supported on a catalyst carrier can prevent the expensive biocatalyst from being washed away, can increase the density of the biocatalyst, and can reduce the reaction time and make the reactor compact. It is widely used in various fields of biochemical industry because it has many advantages, such as being able to achieve rapid production and continuous production. However, such bioreactors have the unavoidable fate that the activity of the biocatalyst immobilized on the catalyst carrier gradually decreases over time. In such cases, it is desirable to release the deactivated biocatalyst from the catalyst carrier, wash it away, and then reimmobilize a new biocatalyst. However, only when an ion exchange resin is used as a catalyst carrier can a method of injecting a high salt concentration liquid into the reactor to wash away the deactivated biocatalyst be taken, but an inorganic carrier such as ceramics If a bioreactor is used, there is no known method to regenerate the bioreactor with the catalyst carrier still packed inside the reactor.
This is because the inorganic support and the biocatalyst are bound together by a strong bond such as a covalent bond, so they cannot be easily separated. For this reason, in order to regenerate a bioreactor that uses inorganic carriers such as ceramics, the inorganic carrier had to be taken out of the reactor and fired. This was undesirable in terms of bacterial contamination. (Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and provides a method for removing the carrier from the outside of the reactor when the activity of the bioreactor in which the inorganic carrier is used decreases. This was completed in order to provide a method for regenerating a bioreactor that can be regenerated without any problems. (Means for Solving the Problems) The present invention has been made to solve the above problems, and when the activity of the immobilized biocatalyst in a bioreactor incorporating the immobilized biocatalyst decreases, hypochlorous acid or The feature is that the deactivated immobilized biocatalyst is removed by bringing an aqueous solution of hypochlorite into contact with the catalyst carrier, and then a new immobilized biocatalyst is immobilized on the catalyst carrier. Hypochlorous acid or hypochlorite salts such as sodium hypochlorite used in the present invention are known to have a sterilizing effect due to the oxygen in the generator, but hypochlorous acid itself has the effect of destroying the cell membranes of living cells,
The deactivated immobilized biocatalyst can be removed from the catalyst support. In order to use hypochlorous acid or hypochlorite for the purpose of the present invention, its effective chlorine concentration must be IPP? It is desirable to use it under the conditions that I or more and Pl1 is 9 or less. This is because if the effective chlorine concentration is less than l PPM, the immobilized biocatalyst cannot be effectively removed from the catalyst carrier, and if Pl1 increases, the degree of dissociation of hypochlorite ions decreases, and P}l This is because when the value exceeds 9, the effect is significantly reduced.
次の実施例に示すように、本発明では単にバイオリアク
ターの内部に次亜塩素酸又は次亜塩素酸塩の水溶液を注
入することにより失活した固定化生体触媒を触媒担体か
ら除去することができ、その後バイオリアクターの内部
を水洗し、新しい固定化生体触媒を常法により触媒担体
に固定すればよい.なお、セラミックのような無機担体
のうちでは、セピオライトは比表面積が大きく酵素固定
化量が大きいのでより好ましいものである.(実施例)
実施例l
5mlプノレラナーゼ/50髄h酢酸バッファ一(PH
5.0)蛋白濃度20mg/g+1をセピオライトを
原料とし、900℃で焼成した固定化用セラミックス担
体く比表面積77M/g)25gに添加し、室温にて1
時間静置し、固定化プルラナーゼを調製した.この固定
化プルラナーゼを50mM酢酸バッファーで充分に洗浄
した後、第1図に示すように直径20am、長さ150
■のジャケット付力ラムに充填した.次にカラムジャケ
ットに80゜Cの恒温水を循環し、カラムが恒温になっ
た後、マルトースとサ゜イクロデキストリンの混合溶解
液(マルトースとサイクロデキストリンの重量比4;l
、固形分濃度70%水溶液)を20鵬1/H『の流速で
送液した。As shown in the following example, in the present invention, the deactivated immobilized biocatalyst can be removed from the catalyst support simply by injecting an aqueous solution of hypochlorous acid or hypochlorite into the bioreactor. After that, the inside of the bioreactor can be washed with water, and the new immobilized biocatalyst can be immobilized on the catalyst carrier using a conventional method. Among inorganic carriers such as ceramics, sepiolite is more preferable because it has a large specific surface area and a large amount of enzyme immobilization. (Example) Example 1 5 ml Punorellanase/50 marrow acetate buffer (PH
5.0) A protein concentration of 20 mg/g + 1 was added to 25 g of a ceramic carrier for immobilization (specific surface area 77 M/g) made of sepiolite as a raw material and fired at 900°C, and the
The mixture was allowed to stand for a period of time to prepare immobilized pullulanase. After thoroughly washing this immobilized pullulanase with 50mM acetate buffer, it was prepared with a diameter of 20 am and a length of 150 mm as shown in Figure 1.
■It was filled into the jacket force ram. Next, water at a constant temperature of 80°C is circulated through the column jacket, and after the column reaches a constant temperature, a mixed solution of maltose and cyclodextrin (weight ratio of maltose and cyclodextrin: 4; l
, an aqueous solution with a solid content concentration of 70%) was fed at a flow rate of 20 1/H.
次にこの反応力ラム出口でのマルトシルサイク口デキス
トリンの生成量をHPLCで測定したところ、分岐化率
は58%であった.その後分岐化率の測定を継続したと
ころ、30日目にして分岐化率は20%に低下した.
そこで反応力ラムを蒸留水で洗浄した後、5gずつ5本
のカラムに充填し直した。次にこれらの各カラムに1、
lO、100 , 1・000, 5000PPMの有
効塩素濃度の次亜塩素酸ナトリウム(PH 7.0)を
41/{1rで送液し、出口の洗液を11ずつフラクシ
ョンコレクターで回収し、その蛋白量を測定した。Next, the amount of maltosylcyclodextrin produced at the outlet of this reaction ram was measured by HPLC, and the branching rate was 58%. After that, we continued to measure the branching rate, and the branching rate decreased to 20% on the 30th day. Therefore, after washing the reaction column with distilled water, it was repacked into five columns of 5 g each. Then 1 for each of these columns,
Sodium hypochlorite (PH 7.0) with an effective chlorine concentration of 100, 1,000, and 5000 PPM was pumped at a rate of 41/{1r, and the washing liquid at the outlet was collected in fraction collectors, and the protein The amount was measured.
その結果を第2図に示す, IOPPM以上の次亜塩素
酸ナトリウムで溶出された蛋白の総量は、最初に固定化
された蛋白量の90%に達した.また担体上に残存した
蛋白の有無を調査するため、ケルダール分解法によりセ
ラミックス担体上のケルダール窒素量を測定したところ
NOであ・った。また同様にIPP−の次亜塩素酸ナト
リウムで洗浄したカラムについても蛋白量を測定したと
ころ、最初に固定化された蛋白量の30%が検出された
. IOPPM以上の次亜塩素酸ナトリウムで洗浄した
4本のカラムについては、更に水洗を充分に施した後、
1回目と同様の操作でプルラナーゼの固定化を試みた。The results are shown in Figure 2. The total amount of protein eluted with sodium hypochlorite at IOPPM or higher reached 90% of the initially immobilized protein amount. In addition, in order to investigate the presence or absence of protein remaining on the carrier, the amount of Kjeldahl nitrogen on the ceramic carrier was measured using the Kjeldahl decomposition method, and it was found to be NO. In addition, when the protein amount was similarly measured on a column washed with IPP- sodium hypochlorite, 30% of the initially immobilized protein amount was detected. For the four columns that were washed with sodium hypochlorite of IOPPM or higher, after thoroughly washing them with water,
Immobilization of pullulanase was attempted using the same procedure as the first time.
その結果得られた分岐化率は58.2%であり、最初の
状態にカラムが再生されたことが確認された.実施例2
セピオライトを主原料とし、900’Cで焼成された酵
素固定化用セラミックス担体(比表面積77M/g)2
6gに51インへルターゼ溶液/50mM酢酸バッファ
一(PH 4.0) 20傾g/mlを添加し室温にて
1時間静置し、固定化インベルターゼを調整した.この
インベルターゼを50一一酢酸バッファーで充分に洗浄
した後、固定化酵素200mgを37゜C,2%シヨ糖
/50mM酢酸バッファ−50■H中に加え、グルコー
スの生成量を和光製薬 グルコースBテストで測定した
.このとき、1分間当たり1μモルのグルコースを生成
する酵素量+1Uとして計算したところ、固定化インベ
ルターゼ1g当たりの活性は600 Uであった.
この固定化インベルターゼを直径10go、長さ100
閣のカラムに5sgずつ充填し、それぞれPllll、
9、7、5、3に調製した有効塩素濃度0.1%の次亜
塩素酸ナトリウム水溶液を4−I/Hrの流速でカラム
内に送液した.次にそれぞれのカラム出口から溶出液を
lalずつ分取し、蛋白濃度を測定したところ、第3図
のような溶出プロフィールを得た.この結果から、次亜
塩素酸ナトリウム水溶液のPHが9を越える・と固定化
インへルターゼを溶出量が低下することが分かる.
(発明の効果)
本発明は以上に説明したように、次亜塩素酸又は次亜塩
素酸塩の水溶液を触媒担体に接触させることにより、セ
ラミックスのような無機担体を使用したバイオリアクタ
ーを再生することができるものであり、触媒担体をリア
クターの内部に置いたままで再生することができるので
雑菌による汚染の心配もないうえ、完全な再生が可能で
ある。The resulting branching rate was 58.2%, confirming that the column had been regenerated to its original state. Example 2 Ceramic carrier for enzyme immobilization (specific surface area 77 M/g) 2 made of sepiolite as the main raw material and fired at 900'C
20g/ml of 51 invertase solution/50mM acetate buffer (PH 4.0) was added to 6g and left to stand at room temperature for 1 hour to prepare immobilized invertase. After thoroughly washing this invertase with 50-monoacetic acid buffer, 200mg of the immobilized enzyme was added to 2% sucrose/50mM acetate buffer-50H at 37°C, and the amount of glucose produced was measured using Wako Pharmaceutical's Glucose B test. It was measured with At this time, the activity per 1 g of immobilized invertase was 600 U when calculated as the amount of enzyme that produces 1 μmol of glucose per minute + 1 U. This immobilized invertase has a diameter of 10go and a length of 100mm.
Fill each column with 5 sg, Pllll,
Aqueous sodium hypochlorite solutions with an effective chlorine concentration of 0.1% prepared in Examples 9, 7, 5, and 3 were fed into the column at a flow rate of 4 I/Hr. Next, lal portions of the eluate were collected from each column outlet and the protein concentration was measured, resulting in an elution profile as shown in Figure 3. This result shows that when the pH of the sodium hypochlorite aqueous solution exceeds 9, the amount of immobilized inherutase eluted decreases. (Effects of the Invention) As explained above, the present invention regenerates a bioreactor using an inorganic carrier such as ceramics by bringing an aqueous solution of hypochlorous acid or hypochlorite into contact with a catalyst carrier. Since the catalyst carrier can be regenerated while remaining inside the reactor, there is no need to worry about contamination by bacteria, and complete regeneration is possible.
よって本発明は従来の問題点を解決したパイオリアクタ
ーの再生方法として、産業の発展に寄与するところは極
めて大である.Therefore, the present invention will greatly contribute to the development of industry as a method for regenerating pyroreactors that solves the problems of the conventional method.
第1図は第1の実施例における固定化プルラナーゼの連
続合成装置を示す正面図、第2図は第1の実施例におけ
る有効塩素濃度による酵素溶離パターンの違いを示すグ
ラフ、第3図は第2の実施例における溶離液PHの違い
による酵素溶離パターンの違いを示すグラフである.
第1図FIG. 1 is a front view showing the continuous synthesis apparatus for immobilized pullulanase in the first example, FIG. 2 is a graph showing the difference in enzyme elution pattern depending on the available chlorine concentration in the first example, and FIG. 2 is a graph showing differences in enzyme elution patterns due to differences in eluent pH in Example 2. Figure 1
Claims (1)
定化生体触媒の活性が低下した際に、次亜塩素酸又は次
亜塩素酸塩の水溶液を触媒担体に接触させて失活した固
定化生体触媒を除去し、その後新しい固定化生体触媒を
触媒担体に固定することを特徴とするバイオリアクター
の再生方法。 2、有効塩素濃度が1PPM以上の次亜塩素酸又は次亜
塩素酸塩の水溶液を、PH9以下の条件下で触媒担体に
接触させる請求項1記載のバイオリアクターの再生方法
。[Scope of Claims] 1. When the activity of the immobilized biocatalyst in the bioreactor incorporating the immobilized biocatalyst decreases, an aqueous solution of hypochlorous acid or hypochlorite is brought into contact with the catalyst carrier to be depleted. A method for regenerating a bioreactor, comprising removing an active immobilized biocatalyst and then immobilizing a new immobilized biocatalyst on a catalyst carrier. 2. The method for regenerating a bioreactor according to claim 1, wherein an aqueous solution of hypochlorous acid or hypochlorite having an effective chlorine concentration of 1 PPM or more is brought into contact with the catalyst carrier under a pH of 9 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5869789A JPH02238880A (en) | 1989-03-10 | 1989-03-10 | Regeneration of bioreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5869789A JPH02238880A (en) | 1989-03-10 | 1989-03-10 | Regeneration of bioreactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02238880A true JPH02238880A (en) | 1990-09-21 |
Family
ID=13091723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5869789A Pending JPH02238880A (en) | 1989-03-10 | 1989-03-10 | Regeneration of bioreactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02238880A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397755A (en) * | 1993-06-29 | 1995-03-14 | W. R. Grace & Co.-Conn. | Low density glassy materials for bioremediation supports |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173086A (en) * | 1983-03-24 | 1984-09-29 | Res Assoc Petroleum Alternat Dev<Rapad> | Alcoholic fermentation process using immobilized yeast |
JPS63177790A (en) * | 1987-01-14 | 1988-07-21 | Nitto Electric Ind Co Ltd | Regeneration of enzyme immobilizing membrane |
-
1989
- 1989-03-10 JP JP5869789A patent/JPH02238880A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59173086A (en) * | 1983-03-24 | 1984-09-29 | Res Assoc Petroleum Alternat Dev<Rapad> | Alcoholic fermentation process using immobilized yeast |
JPS63177790A (en) * | 1987-01-14 | 1988-07-21 | Nitto Electric Ind Co Ltd | Regeneration of enzyme immobilizing membrane |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397755A (en) * | 1993-06-29 | 1995-03-14 | W. R. Grace & Co.-Conn. | Low density glassy materials for bioremediation supports |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheetham et al. | Physical studies on cell immobilization using calcium alginate gels | |
EP0152898B1 (en) | Process for encapsulation and encapsulated active material system( | |
JPH02291265A (en) | Water-insoluble glucose isomerase crystal and preparation thereof | |
Bayramoğlu et al. | Immobilization of urease via adsorption onto l-histidine–Ni (II) complexed poly (HEMA-MAH) microspheres: preparation and characterization | |
US5939294A (en) | Immobilization of microogranisms on weakly basic anion exchange substance for producing isomaltulose | |
US7556945B1 (en) | Method for converting sucrose to β-D-glucose | |
Mansfeld et al. | Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules | |
JPH02238880A (en) | Regeneration of bioreactor | |
JPS6244914B2 (en) | ||
JPH0611328B2 (en) | Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized | |
EP0112812A2 (en) | Biocatalytic reactor | |
CN111647634A (en) | Method for asymmetric synthesis of (S) -1-Boc-3-aminopiperidine by continuous flow of packed bed | |
JPS59205981A (en) | Microorganism immobilizing method and immobilized microorganism-containing agar fiber | |
EP0580761A4 (en) | Method and apparatus for immobilized enzyme reactions | |
KR20000011105A (en) | Process and carrier for the production of isomaltulose by immobilized micro-organisms | |
JP2524984B2 (en) | Immobilized enzyme | |
SU1317024A1 (en) | Method for producing immobilized hydrolases of o-glycosyl compounds | |
Burnett | Immobilized Enzymes | |
Maxim et al. | Ionic binding of biologically active proteins on cross‐linked acrylic macromolecular supports | |
SU526623A1 (en) | The method of obtaining products of enzymatic reactions | |
JPS61185196A (en) | Production of cyclodextrine | |
JPH0373277B2 (en) | ||
JP2778975B2 (en) | Process for producing maltosyl-cyclodextrin | |
JPS61104792A (en) | Fermentation process using immobilized microbial cell | |
Vlakh et al. | The preparation and study of the properties of macroporous monolith-based continuous flow bioreactors |