[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02238880A - Regeneration of bioreactor - Google Patents

Regeneration of bioreactor

Info

Publication number
JPH02238880A
JPH02238880A JP5869789A JP5869789A JPH02238880A JP H02238880 A JPH02238880 A JP H02238880A JP 5869789 A JP5869789 A JP 5869789A JP 5869789 A JP5869789 A JP 5869789A JP H02238880 A JPH02238880 A JP H02238880A
Authority
JP
Japan
Prior art keywords
bioreactor
biocatalyst
immobilized
carrier
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5869789A
Other languages
Japanese (ja)
Inventor
Yasuko Yoshida
安子 吉田
Mitsuo Kawase
三雄 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5869789A priority Critical patent/JPH02238880A/en
Publication of JPH02238880A publication Critical patent/JPH02238880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To efficiently regenerate a bioreactor without calcining a carrier by bringing a bioreactor integrated with an immobilized biocatalyst having reduced activity into contact with an aqueous solution of hypochlorous acid (solt), removing the deactivated catalyst and immobilizing a new catalyst to the carrier. CONSTITUTION:A biocatalyst comprising an enzyme such as pullulanase is dissolved in a buffer solution, brought into contact with a catalytic carrier (e.g. ceramics carrier), allowed to stand at room temperature for 1 hour to prepare an immobilized biocatalyst, which is packed into a column to constitute a bioreactor. A mixed solution of maltose and cyclodextrin is fed to the bioreactor to continuously produce maltosylcyclodextrin, etc. When the catalytic activity is reduced, an aqueous solution of hypochlorous acid (salt) is brought into contact with the catalytic carrier, the deactivated immobilized biocatalyst is removed, a new biocatalyst is brought into contact with the catalytic carrier and immobilized to regenerate the bioreactor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酵素、微生物菌体、植物、動物細胞、細胞内
オルガネラ等の生体触媒を触媒担体に担持させたバイオ
リアクターの再生方法に関するものである. (従来の技術) 生化学反応を触媒する生体触媒を触媒担体に担持させた
バイオリアクターは、高価な生体触媒の流失を防止でき
ること、生体触媒の高密度化が図れること、反応時間及
びリアクターのコンパクト化が図れること、連続的な生
産が可能となること等の多くのメリットがあるため、種
々の生化学工業の分野で広く使用されている.ところが
このようなバイオリアクターは、時間の経過とともに触
媒担体に固定された生体触媒の活性が次第に低下するこ
とを避けることができない宿命を持つ.このような場合
には、失活した生体触媒を触媒担体から遊離させて洗い
流したうえで、新しい生体触媒を固定化し直すことが望
まれる. しかし、触媒担体としてイオン交換樹脂が使用されてい
る場合にのみ、リアクターの内部に高塩濃度液を注入し
て失活した生体触媒を洗い流す方法を取ることができる
が、セラミックスのような無機担体が使用されている場
合には触媒担体をリアクターの内部に充填したままでバ
イオリアクターを再生する方法は知られていなかった.
これは無機担体と生体触媒とは共有結合のような強固な
結合方式により結合しているため、両者を容易に開離さ
せることができないからである.このため、セラミック
スのような無機担体が使用されているバイオリアクター
を再生するには、無機担体をリアクター外に取出し、焼
成するという方法を取らざるを得なかったが、担体をリ
アクター外に取出すことは雑菌汚染の点から好ましくな
いことであった. (発明が解決しようとする課題) 本発明は上記のような従来の問題点を解決して、無機担
体が使用されているバイオリアクターの活性が低下した
際に、担体をリアクターの外部に取出すことなく再生を
行わせることができるバイオリアクターの再生方法を提
供するために完成されたものである. (課題を解決するための手段) 上記の課題を解決するためになされた本発明は、固定化
生体触媒を組み込んだバイオリアクターの固定化生体触
媒の活性が低下した際に、次亜塩素酸又は次亜塩素酸塩
の水溶液を触媒担体に接触させて失活した固定化生体触
媒を除去し、その後新しい固定化生体触媒を触媒担体に
固定するこ々を特徴とするものである. 本発明において使用される次亜塩素酸又は次亜塩素酸ナ
トリウムのような次亜塩素酸塩は、発生機の酸素による
殺菌効果を持つものとして知られているが、次亜塩素酸
はそれ自身が生活細胞の細胞膜を破壊する効果を持ち、
失活した固定化生体触媒を触媒担体から除去することが
できる。次亜塩素酸又は次亜塩素酸塩を本発明の目的で
使用するためには、その有効塩素濃度がI PP?I以
上であり、かつPl1が9以下の条件下で使用すること
が望ましい.これは有効塩素濃度がl PPM未満であ
ると固定化生体触媒を触媒担体から効果的に除去するこ
とができず、またPl1が大きくなると次亜塩素酸イオ
ンの解離度が低下し、P}lが9を越えるとその効果が
著しく低下するためである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for regenerating a bioreactor in which a catalyst carrier supports a biocatalyst such as an enzyme, a microbial cell, a plant, an animal cell, or an intracellular organelle. It is. (Prior art) A bioreactor in which a biocatalyst that catalyzes a biochemical reaction is supported on a catalyst carrier can prevent the expensive biocatalyst from being washed away, can increase the density of the biocatalyst, and can reduce the reaction time and make the reactor compact. It is widely used in various fields of biochemical industry because it has many advantages, such as being able to achieve rapid production and continuous production. However, such bioreactors have the unavoidable fate that the activity of the biocatalyst immobilized on the catalyst carrier gradually decreases over time. In such cases, it is desirable to release the deactivated biocatalyst from the catalyst carrier, wash it away, and then reimmobilize a new biocatalyst. However, only when an ion exchange resin is used as a catalyst carrier can a method of injecting a high salt concentration liquid into the reactor to wash away the deactivated biocatalyst be taken, but an inorganic carrier such as ceramics If a bioreactor is used, there is no known method to regenerate the bioreactor with the catalyst carrier still packed inside the reactor.
This is because the inorganic support and the biocatalyst are bound together by a strong bond such as a covalent bond, so they cannot be easily separated. For this reason, in order to regenerate a bioreactor that uses inorganic carriers such as ceramics, the inorganic carrier had to be taken out of the reactor and fired. This was undesirable in terms of bacterial contamination. (Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and provides a method for removing the carrier from the outside of the reactor when the activity of the bioreactor in which the inorganic carrier is used decreases. This was completed in order to provide a method for regenerating a bioreactor that can be regenerated without any problems. (Means for Solving the Problems) The present invention has been made to solve the above problems, and when the activity of the immobilized biocatalyst in a bioreactor incorporating the immobilized biocatalyst decreases, hypochlorous acid or The feature is that the deactivated immobilized biocatalyst is removed by bringing an aqueous solution of hypochlorite into contact with the catalyst carrier, and then a new immobilized biocatalyst is immobilized on the catalyst carrier. Hypochlorous acid or hypochlorite salts such as sodium hypochlorite used in the present invention are known to have a sterilizing effect due to the oxygen in the generator, but hypochlorous acid itself has the effect of destroying the cell membranes of living cells,
The deactivated immobilized biocatalyst can be removed from the catalyst support. In order to use hypochlorous acid or hypochlorite for the purpose of the present invention, its effective chlorine concentration must be IPP? It is desirable to use it under the conditions that I or more and Pl1 is 9 or less. This is because if the effective chlorine concentration is less than l PPM, the immobilized biocatalyst cannot be effectively removed from the catalyst carrier, and if Pl1 increases, the degree of dissociation of hypochlorite ions decreases, and P}l This is because when the value exceeds 9, the effect is significantly reduced.

次の実施例に示すように、本発明では単にバイオリアク
ターの内部に次亜塩素酸又は次亜塩素酸塩の水溶液を注
入することにより失活した固定化生体触媒を触媒担体か
ら除去することができ、その後バイオリアクターの内部
を水洗し、新しい固定化生体触媒を常法により触媒担体
に固定すればよい.なお、セラミックのような無機担体
のうちでは、セピオライトは比表面積が大きく酵素固定
化量が大きいのでより好ましいものである.(実施例) 実施例l 5mlプノレラナーゼ/50髄h酢酸バッファ一(PH
 5.0)蛋白濃度20mg/g+1をセピオライトを
原料とし、900℃で焼成した固定化用セラミックス担
体く比表面積77M/g)25gに添加し、室温にて1
時間静置し、固定化プルラナーゼを調製した.この固定
化プルラナーゼを50mM酢酸バッファーで充分に洗浄
した後、第1図に示すように直径20am、長さ150
■のジャケット付力ラムに充填した.次にカラムジャケ
ットに80゜Cの恒温水を循環し、カラムが恒温になっ
た後、マルトースとサ゜イクロデキストリンの混合溶解
液(マルトースとサイクロデキストリンの重量比4;l
、固形分濃度70%水溶液)を20鵬1/H『の流速で
送液した。
As shown in the following example, in the present invention, the deactivated immobilized biocatalyst can be removed from the catalyst support simply by injecting an aqueous solution of hypochlorous acid or hypochlorite into the bioreactor. After that, the inside of the bioreactor can be washed with water, and the new immobilized biocatalyst can be immobilized on the catalyst carrier using a conventional method. Among inorganic carriers such as ceramics, sepiolite is more preferable because it has a large specific surface area and a large amount of enzyme immobilization. (Example) Example 1 5 ml Punorellanase/50 marrow acetate buffer (PH
5.0) A protein concentration of 20 mg/g + 1 was added to 25 g of a ceramic carrier for immobilization (specific surface area 77 M/g) made of sepiolite as a raw material and fired at 900°C, and the
The mixture was allowed to stand for a period of time to prepare immobilized pullulanase. After thoroughly washing this immobilized pullulanase with 50mM acetate buffer, it was prepared with a diameter of 20 am and a length of 150 mm as shown in Figure 1.
■It was filled into the jacket force ram. Next, water at a constant temperature of 80°C is circulated through the column jacket, and after the column reaches a constant temperature, a mixed solution of maltose and cyclodextrin (weight ratio of maltose and cyclodextrin: 4; l
, an aqueous solution with a solid content concentration of 70%) was fed at a flow rate of 20 1/H.

次にこの反応力ラム出口でのマルトシルサイク口デキス
トリンの生成量をHPLCで測定したところ、分岐化率
は58%であった.その後分岐化率の測定を継続したと
ころ、30日目にして分岐化率は20%に低下した. そこで反応力ラムを蒸留水で洗浄した後、5gずつ5本
のカラムに充填し直した。次にこれらの各カラムに1、
lO、100 , 1・000, 5000PPMの有
効塩素濃度の次亜塩素酸ナトリウム(PH 7.0)を
41/{1rで送液し、出口の洗液を11ずつフラクシ
ョンコレクターで回収し、その蛋白量を測定した。
Next, the amount of maltosylcyclodextrin produced at the outlet of this reaction ram was measured by HPLC, and the branching rate was 58%. After that, we continued to measure the branching rate, and the branching rate decreased to 20% on the 30th day. Therefore, after washing the reaction column with distilled water, it was repacked into five columns of 5 g each. Then 1 for each of these columns,
Sodium hypochlorite (PH 7.0) with an effective chlorine concentration of 100, 1,000, and 5000 PPM was pumped at a rate of 41/{1r, and the washing liquid at the outlet was collected in fraction collectors, and the protein The amount was measured.

その結果を第2図に示す, IOPPM以上の次亜塩素
酸ナトリウムで溶出された蛋白の総量は、最初に固定化
された蛋白量の90%に達した.また担体上に残存した
蛋白の有無を調査するため、ケルダール分解法によりセ
ラミックス担体上のケルダール窒素量を測定したところ
NOであ・った。また同様にIPP−の次亜塩素酸ナト
リウムで洗浄したカラムについても蛋白量を測定したと
ころ、最初に固定化された蛋白量の30%が検出された
. IOPPM以上の次亜塩素酸ナトリウムで洗浄した
4本のカラムについては、更に水洗を充分に施した後、
1回目と同様の操作でプルラナーゼの固定化を試みた。
The results are shown in Figure 2. The total amount of protein eluted with sodium hypochlorite at IOPPM or higher reached 90% of the initially immobilized protein amount. In addition, in order to investigate the presence or absence of protein remaining on the carrier, the amount of Kjeldahl nitrogen on the ceramic carrier was measured using the Kjeldahl decomposition method, and it was found to be NO. In addition, when the protein amount was similarly measured on a column washed with IPP- sodium hypochlorite, 30% of the initially immobilized protein amount was detected. For the four columns that were washed with sodium hypochlorite of IOPPM or higher, after thoroughly washing them with water,
Immobilization of pullulanase was attempted using the same procedure as the first time.

その結果得られた分岐化率は58.2%であり、最初の
状態にカラムが再生されたことが確認された.実施例2 セピオライトを主原料とし、900’Cで焼成された酵
素固定化用セラミックス担体(比表面積77M/g)2
6gに51インへルターゼ溶液/50mM酢酸バッファ
一(PH 4.0) 20傾g/mlを添加し室温にて
1時間静置し、固定化インベルターゼを調整した.この
インベルターゼを50一一酢酸バッファーで充分に洗浄
した後、固定化酵素200mgを37゜C,2%シヨ糖
/50mM酢酸バッファ−50■H中に加え、グルコー
スの生成量を和光製薬 グルコースBテストで測定した
.このとき、1分間当たり1μモルのグルコースを生成
する酵素量+1Uとして計算したところ、固定化インベ
ルターゼ1g当たりの活性は600 Uであった. この固定化インベルターゼを直径10go、長さ100
閣のカラムに5sgずつ充填し、それぞれPllll、
9、7、5、3に調製した有効塩素濃度0.1%の次亜
塩素酸ナトリウム水溶液を4−I/Hrの流速でカラム
内に送液した.次にそれぞれのカラム出口から溶出液を
lalずつ分取し、蛋白濃度を測定したところ、第3図
のような溶出プロフィールを得た.この結果から、次亜
塩素酸ナトリウム水溶液のPHが9を越える・と固定化
インへルターゼを溶出量が低下することが分かる. (発明の効果) 本発明は以上に説明したように、次亜塩素酸又は次亜塩
素酸塩の水溶液を触媒担体に接触させることにより、セ
ラミックスのような無機担体を使用したバイオリアクタ
ーを再生することができるものであり、触媒担体をリア
クターの内部に置いたままで再生することができるので
雑菌による汚染の心配もないうえ、完全な再生が可能で
ある。
The resulting branching rate was 58.2%, confirming that the column had been regenerated to its original state. Example 2 Ceramic carrier for enzyme immobilization (specific surface area 77 M/g) 2 made of sepiolite as the main raw material and fired at 900'C
20g/ml of 51 invertase solution/50mM acetate buffer (PH 4.0) was added to 6g and left to stand at room temperature for 1 hour to prepare immobilized invertase. After thoroughly washing this invertase with 50-monoacetic acid buffer, 200mg of the immobilized enzyme was added to 2% sucrose/50mM acetate buffer-50H at 37°C, and the amount of glucose produced was measured using Wako Pharmaceutical's Glucose B test. It was measured with At this time, the activity per 1 g of immobilized invertase was 600 U when calculated as the amount of enzyme that produces 1 μmol of glucose per minute + 1 U. This immobilized invertase has a diameter of 10go and a length of 100mm.
Fill each column with 5 sg, Pllll,
Aqueous sodium hypochlorite solutions with an effective chlorine concentration of 0.1% prepared in Examples 9, 7, 5, and 3 were fed into the column at a flow rate of 4 I/Hr. Next, lal portions of the eluate were collected from each column outlet and the protein concentration was measured, resulting in an elution profile as shown in Figure 3. This result shows that when the pH of the sodium hypochlorite aqueous solution exceeds 9, the amount of immobilized inherutase eluted decreases. (Effects of the Invention) As explained above, the present invention regenerates a bioreactor using an inorganic carrier such as ceramics by bringing an aqueous solution of hypochlorous acid or hypochlorite into contact with a catalyst carrier. Since the catalyst carrier can be regenerated while remaining inside the reactor, there is no need to worry about contamination by bacteria, and complete regeneration is possible.

よって本発明は従来の問題点を解決したパイオリアクタ
ーの再生方法として、産業の発展に寄与するところは極
めて大である.
Therefore, the present invention will greatly contribute to the development of industry as a method for regenerating pyroreactors that solves the problems of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例における固定化プルラナーゼの連
続合成装置を示す正面図、第2図は第1の実施例におけ
る有効塩素濃度による酵素溶離パターンの違いを示すグ
ラフ、第3図は第2の実施例における溶離液PHの違い
による酵素溶離パターンの違いを示すグラフである. 第1図
FIG. 1 is a front view showing the continuous synthesis apparatus for immobilized pullulanase in the first example, FIG. 2 is a graph showing the difference in enzyme elution pattern depending on the available chlorine concentration in the first example, and FIG. 2 is a graph showing differences in enzyme elution patterns due to differences in eluent pH in Example 2. Figure 1

Claims (1)

【特許請求の範囲】 1、固定化生体触媒を組み込んだバイオリアクターの固
定化生体触媒の活性が低下した際に、次亜塩素酸又は次
亜塩素酸塩の水溶液を触媒担体に接触させて失活した固
定化生体触媒を除去し、その後新しい固定化生体触媒を
触媒担体に固定することを特徴とするバイオリアクター
の再生方法。 2、有効塩素濃度が1PPM以上の次亜塩素酸又は次亜
塩素酸塩の水溶液を、PH9以下の条件下で触媒担体に
接触させる請求項1記載のバイオリアクターの再生方法
[Scope of Claims] 1. When the activity of the immobilized biocatalyst in the bioreactor incorporating the immobilized biocatalyst decreases, an aqueous solution of hypochlorous acid or hypochlorite is brought into contact with the catalyst carrier to be depleted. A method for regenerating a bioreactor, comprising removing an active immobilized biocatalyst and then immobilizing a new immobilized biocatalyst on a catalyst carrier. 2. The method for regenerating a bioreactor according to claim 1, wherein an aqueous solution of hypochlorous acid or hypochlorite having an effective chlorine concentration of 1 PPM or more is brought into contact with the catalyst carrier under a pH of 9 or less.
JP5869789A 1989-03-10 1989-03-10 Regeneration of bioreactor Pending JPH02238880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5869789A JPH02238880A (en) 1989-03-10 1989-03-10 Regeneration of bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5869789A JPH02238880A (en) 1989-03-10 1989-03-10 Regeneration of bioreactor

Publications (1)

Publication Number Publication Date
JPH02238880A true JPH02238880A (en) 1990-09-21

Family

ID=13091723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5869789A Pending JPH02238880A (en) 1989-03-10 1989-03-10 Regeneration of bioreactor

Country Status (1)

Country Link
JP (1) JPH02238880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397755A (en) * 1993-06-29 1995-03-14 W. R. Grace & Co.-Conn. Low density glassy materials for bioremediation supports

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173086A (en) * 1983-03-24 1984-09-29 Res Assoc Petroleum Alternat Dev<Rapad> Alcoholic fermentation process using immobilized yeast
JPS63177790A (en) * 1987-01-14 1988-07-21 Nitto Electric Ind Co Ltd Regeneration of enzyme immobilizing membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173086A (en) * 1983-03-24 1984-09-29 Res Assoc Petroleum Alternat Dev<Rapad> Alcoholic fermentation process using immobilized yeast
JPS63177790A (en) * 1987-01-14 1988-07-21 Nitto Electric Ind Co Ltd Regeneration of enzyme immobilizing membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397755A (en) * 1993-06-29 1995-03-14 W. R. Grace & Co.-Conn. Low density glassy materials for bioremediation supports

Similar Documents

Publication Publication Date Title
Cheetham et al. Physical studies on cell immobilization using calcium alginate gels
EP0152898B1 (en) Process for encapsulation and encapsulated active material system(
JPH02291265A (en) Water-insoluble glucose isomerase crystal and preparation thereof
Bayramoğlu et al. Immobilization of urease via adsorption onto l-histidine–Ni (II) complexed poly (HEMA-MAH) microspheres: preparation and characterization
US5939294A (en) Immobilization of microogranisms on weakly basic anion exchange substance for producing isomaltulose
US7556945B1 (en) Method for converting sucrose to β-D-glucose
Mansfeld et al. Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules
JPH02238880A (en) Regeneration of bioreactor
JPS6244914B2 (en)
JPH0611328B2 (en) Method for treating liquid using porous hollow fiber to which physiologically active substance is immobilized
EP0112812A2 (en) Biocatalytic reactor
CN111647634A (en) Method for asymmetric synthesis of (S) -1-Boc-3-aminopiperidine by continuous flow of packed bed
JPS59205981A (en) Microorganism immobilizing method and immobilized microorganism-containing agar fiber
EP0580761A4 (en) Method and apparatus for immobilized enzyme reactions
KR20000011105A (en) Process and carrier for the production of isomaltulose by immobilized micro-organisms
JP2524984B2 (en) Immobilized enzyme
SU1317024A1 (en) Method for producing immobilized hydrolases of o-glycosyl compounds
Burnett Immobilized Enzymes
Maxim et al. Ionic binding of biologically active proteins on cross‐linked acrylic macromolecular supports
SU526623A1 (en) The method of obtaining products of enzymatic reactions
JPS61185196A (en) Production of cyclodextrine
JPH0373277B2 (en)
JP2778975B2 (en) Process for producing maltosyl-cyclodextrin
JPS61104792A (en) Fermentation process using immobilized microbial cell
Vlakh et al. The preparation and study of the properties of macroporous monolith-based continuous flow bioreactors