JPH02238367A - Acceleration sensor having flexural beam clamped on one side - Google Patents
Acceleration sensor having flexural beam clamped on one sideInfo
- Publication number
- JPH02238367A JPH02238367A JP1320401A JP32040189A JPH02238367A JP H02238367 A JPH02238367 A JP H02238367A JP 1320401 A JP1320401 A JP 1320401A JP 32040189 A JP32040189 A JP 32040189A JP H02238367 A JPH02238367 A JP H02238367A
- Authority
- JP
- Japan
- Prior art keywords
- acceleration sensor
- permanent magnet
- housing
- sensor according
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 54
- 230000005291 magnetic effect Effects 0.000 claims abstract description 20
- 239000005300 metallic glass Substances 0.000 claims abstract description 16
- 238000013016 damping Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920002545 silicone oil Polymers 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims 2
- 238000005452 bending Methods 0.000 abstract description 36
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 6
- 230000005355 Hall effect Effects 0.000 abstract description 2
- 230000010355 oscillation Effects 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 abstract description 2
- 230000005389 magnetism Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P1/00—Details of instruments
- G01P1/003—Details of instruments used for damping
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/105—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S73/00—Measuring and testing
- Y10S73/03—Hall effect
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Switches Operated By Changes In Physical Conditions (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ハウジング内に配置され、自由端に慣性質量
及び信号発生器あるいは信号形成部材として作用する少
なくとも1の永久磁石が設けられ、一側でクランプされ
る撓みビームを備え、この撓みビームがセンサハウジン
グに対して測定すべき加速度の平面内で可撓性を有し、
更に撓みを決定する測定システムを備え、この測定シス
テムは永久磁石と、ハウジングに結合された1又は複数
の磁界感応位置センサ(いわゆる素センサ(eleme
ntary sensors) )とを有し、このセン
サにより永久磁石の位置あるいは変化を測定可能である
加速度センサに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a permanent magnet which is arranged in a housing and is provided at its free end with an inertial mass and at least one permanent magnet which acts as a signal generator or signal forming member. a flexure beam clamped at the side, the flexure beam being flexible in the plane of the acceleration to be measured relative to the sensor housing;
It further comprises a measurement system for determining the deflection, the measurement system comprising a permanent magnet and one or more magnetic field sensitive position sensors (so-called elementary sensors) coupled to the housing.
The present invention relates to an acceleration sensor that has a ntary sensor) and is capable of measuring the position or change of a permanent magnet.
[従来の技術及びその課題]
ドイツ特許明細書( DIE)第28 29 425C
2 +.: ハ上記形式の加速度センサが記載されてい
る。密閉ハウジング内では、ハウジング内に一側をクラ
ンプされた板ばねに感振質量が懸垂されている。この感
振質量はクランプされた板ばねの自由端に配置されてお
り、撓んだときに、この自由端のレベルでハウジングに
固定された永久磁石の磁界を切る可動鉄部を備える。こ
の質量が撓むと、2つの磁界感応型電気抵抗により電気
信号が形成される。[Prior art and its problems] German patent specification (DIE) No. 28 29 425C
2 +. : C The above type of acceleration sensor is described. Within the sealed housing, a vibration sensitive mass is suspended from a leaf spring that is clamped on one side within the housing. This vibration-sensitive mass is arranged at the free end of the clamped leaf spring and comprises a movable iron part which, when deflected, cuts the magnetic field of a permanent magnet fixed to the housing at the level of this free end. When this mass is deflected, an electrical signal is created by the two magnetic field sensitive electrical resistors.
この電気抵抗は特に磁気抵抗で形成され、感振質量の零
位置に対称的、かつ、永久磁石あるいは永久磁石の極板
と感振質量との間の間隙内の磁界の磁束及び感振質量の
移動方向に垂直に配置される。This electrical resistance is formed in particular by a magnetoresistance, which is symmetrical to the zero position of the sensitive mass and which is equal to the flux of the magnetic field in the gap between the permanent magnet or the pole plate of the permanent magnet and the sensitive mass. Placed perpendicular to the direction of movement.
更に、可動鉄部材の代りに永久磁石を感振質量として使
用することが可能であり、この場合には可動鉄部材はハ
ウジングに固定される。Furthermore, it is possible to use a permanent magnet as the vibration-sensitive mass instead of the movable iron member, in which case the movable iron member is fixed to the housing.
小さな加速度の場合にこのような装置で使用可能な測定
信号を得るためには、大きな製造努力を必要とする。板
ばねを撓ませるのに必要な力は比較的大きく、この力が
必要なサイズの感振質量で感応させる。ITl定方向に
おける撓みを選択できることが非常に望まれている。し
たがって、このようなセンサは全体として同様な多数の
センサを必要としかつ製造価格で左右される例えば自動
車の制御装置用として大量生産するのに適さない。Obtaining usable measurement signals with such devices in the case of small accelerations requires large manufacturing efforts. The force required to deflect the leaf spring is relatively large, and this force is sensed by a sensitive mass of the required size. It is highly desirable to be able to select the deflection in a given direction of ITl. Such sensors are therefore not suitable for mass production, for example for use in motor vehicle control systems, which require a large number of sensors that are generally similar and are dependent on manufacturing costs.
ドイツ特許明細書( DI?)第31 33 050C
2には同様な曲げビームセンサが記栽されている。密閉
ハウジング内には、エポキシ樹脂、ビニルクロライドあ
るいはベリリウム銅製の一側でクランプされた弾性腕の
形態の曲げビームがこのハウジングにねじ止めされて配
置されている。この弾性腕の自由端は荷重で負荷されて
いる。下側部分すなわちハウジングに固定された点の近
部では、弾性腕はコイルで囲まれている。コイル内に配
置される弾性腕の部分は低残磁性のアモルファス金属の
平坦部材を有する。弾性腕は加速度あるいは振動により
撓み、この撓みにより低残磁性部材に引張りあるいは圧
縮応力が形成され、この応力に対応した電気信号がコイ
ルに形成される。この信号は加速度あるいは減速度の値
に電子的に変換される。このようなセンサも、特に高い
測定制度及び&llI定感度が要求される場合には価格
が非常に高い。German Patent Specification (DI?) No. 31 33 050C
2 shows a similar bending beam sensor. A bending beam in the form of an elastic arm clamped on one side made of epoxy resin, vinyl chloride or beryllium copper is arranged in the closed housing and screwed to this housing. The free end of this elastic arm is loaded with a load. In the lower part, i.e. near the point fixed to the housing, the elastic arm is surrounded by a coil. The portion of the resilient arm disposed within the coil comprises a flat member of amorphous metal with low remanence. The elastic arm is deflected by acceleration or vibration, and this deflection creates a tensile or compressive stress in the low remanence member, and an electrical signal corresponding to this stress is generated in the coil. This signal is electronically converted into an acceleration or deceleration value. Such sensors are also very expensive, especially if high measurement accuracy and constant sensitivity are required.
更に、公開されたドイツ特許出願( DE)第301e
OOIAIに記載の自動車減速度測定装置は一側でク
ランプされた板ばねを有し、その自由端には慣性質量が
配置され、この慣性質量に棒磁石が配置されている。棒
磁石の位置の変化はホール素子により決定される。曲げ
ビームが撓んだときにホール素子の電圧を検出するため
に第2永久磁石がハウジングに固定されており、この電
圧は撓みともに直線的に増加する。Furthermore, the published German patent application (DE) No. 301e
The vehicle deceleration measuring device described in OOIAI has a leaf spring clamped on one side, at its free end an inertial mass is arranged, and a bar magnet is arranged on this inertial mass. The change in position of the bar magnet is determined by a Hall element. A second permanent magnet is fixed to the housing to detect the voltage across the Hall element when the bending beam is deflected, and this voltage increases linearly with deflection.
本発明は、特に簡単な構造で製造コストが低く、静的及
び動的強度(繰り返し疲れ強さ及び疲れ強さ)が高く、
過負荷に耐え、測定精度及び測定方向における測定感度
が高い加速度センサを提供することを目的とする。横方
向における剛性は高く、したがって横方向の歪みに対す
る感度すなわち71pj定而に対して横方向の感度は低
くあるべきである。The present invention has a particularly simple structure, low manufacturing cost, high static and dynamic strength (repetitive fatigue strength and fatigue strength),
It is an object of the present invention to provide an acceleration sensor that can withstand overload and has high measurement accuracy and measurement sensitivity in the measurement direction. The stiffness in the lateral direction should be high and therefore the sensitivity in the lateral direction to distortions, i.e. the 71pj constant, should be low.
[課題を解決するための手段、作用及び効果]上記目的
を達成する本発明の加速度センサは、ハウジング内に配
置され、自由端に慣性質量及び信号発生器あるいは信号
形成部材として作用する少なくとも1の永久磁石が設け
られ、一側でクランプされる撓みビームを備え、この撓
みビームがセンサハウジングに対して測定すべき加速度
の平面内で可撓性を有し、更に撓みを決定するilll
+定システムを備え、この測定システムは永久磁石と、
ハウジングに結合された1又は複数の磁界感応位置セン
サとを有し、このセンサにより永久磁石の位置あるいは
変化を決定可能である加速度センザであって、前記撓み
ビームは厚さに対して幅広の薄いテープ形状を有するア
モルファス金属で形成されることを特徴とする。[Means for Solving the Problems, Actions and Effects] The acceleration sensor of the present invention that achieves the above object is arranged in a housing, and has an inertial mass and at least one signal generator or signal forming member at its free end. a flexure beam provided with a permanent magnet and clamped on one side, the flexure beam being flexible in the plane of the acceleration to be measured relative to the sensor housing and further determining the deflection;
This measuring system is equipped with a permanent magnet and
an acceleration sensor having one or more magnetic field sensitive position sensors coupled to a housing by which the position or change of a permanent magnet can be determined; It is characterized by being made of a tape-shaped amorphous metal.
本発明によると、1層或いは多層構造の撓みビームによ
り高度の要求に合致しかつ低コストで製造できる加速度
センサが得られ、この撓みビームは1方向で極めて高い
感度及び精度を有して加速度に対して直線状に反応し、
横方向に対しては非常に高い曲げ抵抗を有する。作動面
における曲げ抵抗に対する横方向軸線における曲げ抵抗
の比を1:4000とすることは簡単に達成できる。こ
の特性はアモルファス金属の薄いテープによって得られ
るもので、この金属の磁気特性は本発明の実施例のほと
んどの場合に影響を与えない。極めて薄いアモルファス
金属の感度により、慣性質量及び撓みビームの自由端の
信号形成部材として小さな永久磁石を配置することで十
分である。撓みビームが撓んだときに、この永久磁石は
加速度に対応した信号を、センサハウジング内あるいは
この上の好適な箇所に配置された位置センサに形成する
。According to the invention, an acceleration sensor that meets high requirements and can be produced at low cost is obtained by means of a single-layer or multi-layer flexural beam, which flexure beam is capable of measuring acceleration in one direction with extremely high sensitivity and precision. reacts linearly to
It has very high bending resistance in the lateral direction. A ratio of bending resistance in the transverse axis to bending resistance in the working plane of 1:4000 is easily achieved. This property is achieved by a thin tape of amorphous metal, and the magnetic properties of this metal do not affect most embodiments of the invention. Due to the sensitivity of extremely thin amorphous metals, it is sufficient to place small permanent magnets as inertial masses and signal-forming members at the free ends of the deflection beams. When the deflecting beam is deflected, this permanent magnet forms a signal corresponding to the acceleration to a position sensor located at a suitable location within or on the sensor housing.
本発明の有益な実施例によれば、テープ状撓みビームの
厚さは10乃至80μmの範囲で20乃至30μmの範
囲が好ましく、その幅は1乃至10mmの範囲で2乃至
4mmの範囲が好ましい。According to an advantageous embodiment of the invention, the thickness of the tape-shaped flexible beam is in the range 10 to 80 μm, preferably in the range 20 to 30 μm, and its width is in the range 1 to 10 mm, preferably in the range 2 to 4 mm.
この点に関して、撓みビームの厚さ一幅比は1:50乃
至1 : 1000の範囲で1:50乃至1:200の
範囲であるのが好ましい。In this regard, the thickness-to-width ratio of the flexible beam is preferably in the range 1:50 to 1:1000, preferably in the range 1:50 to 1:200.
本発明の他の好適な実施例によると、撓みビームは2又
はそれ以上の平行に配置されたアモルファス金属製テー
プを有する多層{t造を備え、ハウジング内のクランプ
側に一体的に強固に保持され、このテープの自由端の表
面上には永久磁石が配置され、この磁力によりテープが
互いに押圧されて一体的に保持される。各多層撓みビー
ムの表面上に1の永久磁石を配置するか、あるいは、一
方に永久磁石を配置し、他方に強磁性鉄部材を配置して
もよい。According to another preferred embodiment of the invention, the flexure beam comprises a multi-layer structure with two or more parallel amorphous metal tapes, integrally held rigidly on the clamp side within the housing. A permanent magnet is placed on the surface of the free end of the tape, and the magnetic force forces the tape together and holds it together. One permanent magnet may be placed on the surface of each multilayer flexure beam, or alternatively, a permanent magnet may be placed on one side and a ferromagnetic iron member on the other side.
永久磁石及び強磁性部材は撓みビーム上に接着するのが
好ましい。Preferably, the permanent magnets and ferromagnetic members are glued onto the flexure beam.
アモルファス金属の一側すなわち一面は他方よりも荒く
形成され、多層撓みビームの各テープが相対移動すると
きに可能な限り高い緩衝作用を得るためにこれらの側を
重ねるのが好ましい。Preferably, one side or surface of the amorphous metal is rougher than the other, and these sides overlap to obtain the highest possible damping effect when the tapes of the multilayer flexural beam move relative to each other.
本発明の他の実施例では、撓みビームはアモルファス金
属の2つのテープを備え、これらのテープはクランプさ
れて一体的に強固に保持され、この撓みビームの自由端
の間には、これらのテープの一方に永久磁石が接若され
、他方のテープはこの永久磁石の磁力により付着される
。撓みビームが撓むと、永久磁石に対して磁気で付着さ
れるテープの移動により振動が緩衝される。In another embodiment of the invention, the flexure beam comprises two tapes of amorphous metal that are clamped and held rigidly together, and between the free ends of the flexure beam, these tapes are A permanent magnet is attached to one of the tapes, and the other tape is attached by the magnetic force of this permanent magnet. As the flexure beam flexes, vibrations are damped by the movement of the tape, which is magnetically attached to the permanent magnets.
多層撓みビームの各テープの面間、あるいは、撓みビー
ムと一方のテープに接菅された永久磁石との間の摩擦に
よる緩衝に加え、本発明では空気による緩衝を行うこと
ができる。これは、撓みビ一ムとハウジング壁との間に
非常に狭い間隙が形成されるように撓みビームが密閉ハ
ウジング内に配置され、この間隙が撓みビームの撓み時
に空気交換を阻害し、これにより撓みビームの振動を空
気で緩衝するためである。In addition to frictional damping between the faces of each tape of a multilayer flexural beam, or between a flexural beam and a permanent magnet attached to one of the tapes, the present invention allows for air damping. This is because the flexure beam is arranged in a closed housing such that a very narrow gap is formed between the flexure beam and the housing wall, and this gap inhibits air exchange when the flexure beam is deflected, thereby This is to buffer the vibrations of the bending beam with air.
更に、このような空気緩衝のみを、多層撓みビームに用
いるようにしてもよい。Furthermore, such air damping alone may be used in multilayer flexural beams.
一方、センサハウジングにシリコン油等の通常の緩衝流
体を充填し、撓みビームの振動を緩衝することも可能で
ある。On the other hand, it is also possible to fill the sensor housing with a conventional buffer fluid, such as silicone oil, to dampen the vibrations of the flexure beam.
本発明の加速度センサの撓みビームの永久磁石は、プレ
ート状あるいはブロック状等の構造を有し、撓むビーム
の自由端に配置される。ホール素子、磁気抵抗、磁気抵
抗センサあるいは他の磁界感応センサが磁界感応位置セ
ンサとしてセンサハウジング内に、撓みビームに平行で
、撓みビームの下あるいは上側に配置される。他の実施
例では、位置センサはセンサハウジングの前方あるいは
その側方で撓みビームの前部自由01゜りのレベルに固
定される。更に、位置センサは外壁あるいはセンサハウ
ジングの外側に、撓みビームにしたがって振動する永久
磁石の磁束の領域に設けることができる。The permanent magnet of the deflecting beam of the acceleration sensor of the present invention has a plate-like or block-like structure and is arranged at the free end of the deflecting beam. A Hall element, magnetoresistive, magnetoresistive sensor or other magnetic field sensitive sensor is arranged as a magnetic field sensitive position sensor in the sensor housing, parallel to the deflecting beam, below or above the deflecting beam. In other embodiments, the position sensor is fixed at the front of the sensor housing or to the side thereof at the level of the front free 01° of the deflection beam. Furthermore, the position sensor can be provided on the outer wall or outside the sensor housing in the region of the magnetic flux of the permanent magnet which oscillates according to the deflection beam.
本発明の他の特徴、利点及び用途は添付図面を参照する
下記実施例に関する説明から明らかとなる。Other features, advantages and applications of the invention will become apparent from the following description of exemplary embodiments, with reference to the accompanying drawings.
[実施例]
第1図に示すように、本発明の加速度センサはハウジン
グ1と、撓みビーム2と測定システム3,4とを備え、
この測定システムは信号発生器あるいは信号形成部材3
すなわち永久磁石と、いわゆる索センサ4と称する位置
センサとを備える。電気信号を評価するための関連する
電子装置については明瞭にするために図示してない。[Example] As shown in FIG. 1, the acceleration sensor of the present invention includes a housing 1, a deflection beam 2, and measurement systems 3, 4.
This measuring system consists of a signal generator or a signal forming element 3.
That is, it includes a permanent magnet and a position sensor called a so-called cable sensor 4. The associated electronics for evaluating the electrical signals are not shown for reasons of clarity.
センサハウジング1は、一側を一体的にクランプされた
撓みビーム2を保持する樹脂製のボディ部5と、密閉ケ
ーシング6とを備え、このケーシングはシリコン油内に
撓みビーム2を浸漬させ、振動を緩衝するために全中空
スペース7にシリコン油を充填することができる。The sensor housing 1 comprises a resin body part 5 holding a flexure beam 2 integrally clamped on one side, and a sealed casing 6, which immerses the flexure beam 2 in silicone oil and absorbs vibrations. The entire hollow space 7 can be filled with silicone oil to cushion the .
撓みビーム2はアモルファス金属の薄いテープから形成
され、このテープは一の方向で非常に小さな加速にも反
応する。図示の加速度センサの場合は、この方向は突起
の平面に沿っている。一方、横方向すなわち突起の平面
に垂直な方向には極めて高い曲げ抵抗を備える。テープ
の厚さdは約30μmであり、幅b(突起の平面に垂直
な方向)は3mmであり、剛性方向の軸の回りの曲げ抵
抗に対する撓み方向の輔(横方向軸線)の回りの曲げ抵
抗の比を例えば1:4000とすることができる。更に
、剛性方向の輔(垂直軸)の方向に振動する場合、いわ
ゆる曲げビームの傾斜の恐れ(不安定問題)を数学的に
推定することで、動揺による横方向の励起に対する十分
な距離を設けることができる。The flexure beam 2 is formed from a thin tape of amorphous metal, which responds to very small accelerations in one direction. In the case of the illustrated acceleration sensor, this direction is along the plane of the protrusion. On the other hand, it has extremely high bending resistance in the lateral direction, that is, in the direction perpendicular to the plane of the protrusion. The thickness d of the tape is approximately 30 μm, the width b (perpendicular to the plane of the protrusion) is 3 mm, and the resistance to bending around the stiffness axis is approximately 30 μm. For example, the ratio of the resistances can be 1:4000. Furthermore, when oscillating in the direction of the stiffness (vertical axis), the risk of tilting of the so-called bending beam (instability problem) is mathematically estimated to provide sufficient distance for lateral excitation due to oscillation. be able to.
曲げビーム2は一側を樹脂ボディ5に埋設され、他端は
自由に振動することができる。永久磁石3は慣性質量と
して、かつ、この自由端上の信号発生器として例えば接
着剤により固定される。ビーム2がアモルファス金属で
形成される場合は、この金属は磁性を有し、永久磁石3
はその磁気引張り力で曲げビーム2に付着することがで
きる。The bending beam 2 is embedded in the resin body 5 on one side and can vibrate freely on the other end. The permanent magnet 3 is fixed as an inertial mass and as a signal generator on its free end, for example with adhesive. If the beam 2 is formed of an amorphous metal, this metal is magnetic and the permanent magnet 3
can be attached to the bending beam 2 with its magnetic attraction.
曲げビーム2の撓み特に曲げビームの自由端に配置され
た永久磁石3の撓みは、ホール効果を示すセンサ素子あ
るいは磁気抵抗性抵抗器を有する位置センサ4によって
測定され、対応する電気信号に変換される。The deflection of the bending beam 2, in particular of the permanent magnet 3 arranged at the free end of the bending beam, is measured by a position sensor 4 with a Hall effect sensor element or a magnetoresistive resistor and converted into a corresponding electrical signal. Ru.
第2図は永久磁石3を自由端に配置した曲げビーム2′
が2つの位置センサ4,4′間で振動する本発明の実施
例を示す。したがって、双方の位置センサ4.4′では
、曲げビーム2′が撓んだ時に信号が反対方向に変化す
る。これにより信号の評価、あるいは、干渉信号と使用
可能な信号とに区別することが容易どなり、加速度セン
サの作動信頼性(冗長性)が増加する。他の点について
は第1図の加速度センサと基本的な差異はない。Figure 2 shows a bending beam 2' with a permanent magnet 3 arranged at its free end.
shows an embodiment of the invention in which oscillates between two position sensors 4, 4'. Therefore, in both position sensors 4.4' the signals change in opposite directions when the bending beam 2' is deflected. This makes it easier to evaluate the signal or distinguish between interfering signals and usable signals, increasing the operational reliability (redundancy) of the acceleration sensor. In other respects, there is no fundamental difference from the acceleration sensor shown in FIG.
第3図に示すように、本発明の実施例では曲げビーム8
の自由端の前側に位置センサ9が設けられている。加速
度により、曲げビーム8の自由端に配置された永久磁石
10の位置が変化すると、前側に配置された位置センサ
9に評価信号が形成される。As shown in FIG. 3, in an embodiment of the invention a bending beam 8
A position sensor 9 is provided on the front side of the free end of. If the position of the permanent magnet 10 arranged at the free end of the bending beam 8 changes due to acceleration, an evaluation signal is generated at the position sensor 9 arranged on the front side.
前側に配置した位置センサ9に加え、更に位置センサ1
1,12を設けることが可能であり、これらの位置セン
サ11,12は形成される信号をより明確にするため、
振動方向上下の一方あるいは双方に設けられる。これら
のセンサ11.12は第3図に鎖線で示されており、用
途によっては不要な場合がある。In addition to the position sensor 9 placed on the front side, there is also a position sensor 1
1, 12 can be provided, these position sensors 11, 12, in order to make the signals formed more clear,
It is provided on one or both of the upper and lower sides of the vibration direction. These sensors 11,12 are shown in dashed lines in FIG. 3 and may be unnecessary depending on the application.
更に、多くの場合、永久磁石3,10の位置が変化した
ときに、磁界の変化がセンサハウジングの外側で測定で
きる場合には、位置センサをセンサハウジング1の外側
あるいはそのケーシング6の外側に配置することが有益
である。Furthermore, in many cases the position sensor is arranged outside the sensor housing 1 or outside its casing 6, if the change in the magnetic field can be measured outside the sensor housing when the position of the permanent magnets 3, 10 changes. It is beneficial to do so.
第4.1図に示すように、本発明の実施例では、互いに
平行に配置されたアモルファス金属製の2又は多数のテ
ープ13.14を備える多層曲げビームが設けられる。As shown in FIG. 4.1, in an embodiment of the invention a multilayer bending beam is provided with two or more tapes 13, 14 made of amorphous metal arranged parallel to each other.
第4,2図はこの曲げビーム13及び14の自由端が分
離された状態を拡大して示す。4 and 2 show an enlarged view of the free ends of the bending beams 13 and 14 separated.
この配置により、振動の「摩擦による緩衝」( 1’r
lctlon damping)が可能となる。平行に
配置されたテープ13.14はクランプ側15を樹脂ボ
ディ5に一体的に埋設されかつ強固に保持される。曲げ
ビーム13及び14の自由端では2つのテープ13.1
4は磁力により互いに押圧されて一体的に保持される。This arrangement reduces vibration "frictional damping"(1'r
lctlon damping). The parallel tapes 13, 14 are integrally embedded on the clamping side 15 in the resin body 5 and held firmly. At the free ends of the bending beams 13 and 14 two tapes 13.1
4 are pressed together and held together by magnetic force.
このため、永久磁石16が一方の表面に接着される。こ
の永久磁石は、対向部材すなわち、曲げビーム13及び
14の自由端の表面に対向して接告された強磁性ボディ
部17を磁力で引き付ける。したがって曲げビーム13
及び14が撓むと、上下に配置された2つの層あるいは
テープ13.14が互いに移動し、これにより所要の摩
擦による緩衝作用が生じる。For this reason, a permanent magnet 16 is glued to one surface. This permanent magnet magnetically attracts the opposing member, namely the ferromagnetic body part 17 which is abutted against the surfaces of the free ends of the bending beams 13 and 14. Therefore the bending beam 13
and 14, the two layers or tapes 13, 14 arranged one above the other move relative to each other, thereby creating the required frictional damping effect.
2つの各テープ13.14は荒さの異なる面を有し、荒
い方の面を互いに対向させて緩衝作用をより効果的に行
わせることができ、この荒い方の面は他方の面が光沢を
呈するのに対し、マット状の外観を呈することがある。Each of the two tapes 13, 14 has surfaces with different roughness, and the rough surfaces can be placed opposite each other to achieve a more effective damping effect, and this rough surface has a glossy surface on the other side. However, it may have a matte appearance.
好適なコストである限り、互いに上下に配置されるテー
プ13.14の面は荒く形成することが望ましい。As long as costs are reasonable, it is desirable that the surfaces of the tapes 13, 14 placed one above the other be roughened.
本実施例では、素センサ18は曲げビームの一側に配置
される。なお、第3図に示す実施例のように用いること
も可能である。In this embodiment, the elementary sensor 18 is placed on one side of the bending beam. Note that it is also possible to use the embodiment shown in FIG.
第5図は強磁性ボディ部材17の代りに反作用部材とし
て第2の永久磁石19を設けた点でのみ第4図の実施例
と相違する。これらの2つの永久磁石16.19は互い
に引き合うように配置される。FIG. 5 differs from the embodiment of FIG. 4 only in that, instead of the ferromagnetic body member 17, a second permanent magnet 19 is provided as a reaction member. These two permanent magnets 16, 19 are arranged so as to attract each other.
第6図の実施例では、曲げビームは樹脂ボディ部5に一
体的に埋設された2つのアモルファス金属製テープ20
.21を備える。この場合、永久磁石22は2つのテー
プ20.21間の曲げビーム20及び21の自由端に配
置される。永久磁石22は2つのテープの一方に強固に
接岩され、他方のテープには磁力で付着される。この場
合、振動緩衝作用は摩擦力で行われ、この摩擦力は永久
磁石22と、曲げビーム20及び21が撓んだときに永
久磁石22上を移動する磁力で付着されるテープとの間
に生じる。In the embodiment of FIG. 6, the bending beam is made of two amorphous metal tapes 20 integrally embedded in the resin body portion
.. 21. In this case, the permanent magnet 22 is placed at the free end of the bending beams 20 and 21 between the two tapes 20.21. A permanent magnet 22 is firmly attached to one of the two tapes and magnetically attached to the other tape. In this case, the vibration damping effect is achieved by a frictional force between the permanent magnets 22 and a magnetically attached tape that moves over the permanent magnets 22 when the bending beams 20 and 21 are deflected. arise.
摩擦による緩衝を生じるためには、更に変形しあるいは
形状を変えることも可能である。It is also possible to further deform or change the shape in order to create frictional damping.
第7.1図及び第7.2図は加速度センサの2つの変形
例を示し、振動を「空気によるtti衝」(alr d
aa+ping )単独であるいは付加することにより
減衰する。第7.1図の断面図に示すように、このセン
サは上記第1図のものと同様である。しかし第7.2図
に示すように、この場合には曲げビーム23が配置され
るハウジング24は、特に内側の幅Bを曲げビーム23
の幅bに合わせ、静止状態及び加速度により曲げビーム
23が撓んだときに壁すなわち側壁25.26及び前壁
27との間に非常に狭い空隙Lを形成する。一方、空隙
Lは非常に小さく、この密閉ハウジング24内で曲げビ
ームが撓むと、この空隙を介する空気流が絞られ、これ
により振動が緩衝される。この空隙を調整することによ
り、緩衝作用を所用の値に調製することができる。Figures 7.1 and 7.2 show two variants of the acceleration sensor, in which the vibrations are reduced to "air tti" (alr d).
aa+ping) Attenuates by itself or by adding. As shown in the cross-sectional view of Figure 7.1, this sensor is similar to that of Figure 1 above. However, as shown in FIG. 7.2, in this case the housing 24 in which the bending beam 23 is arranged has a particularly inner width B that extends beyond the bending beam 23.
When the bending beam 23 is deflected at rest and due to acceleration, a very narrow gap L is formed between the walls 25, 26 and the front wall 27. On the other hand, the gap L is very small, and when the bending beam is deflected within this closed housing 24, the air flow through this gap is constricted, thereby damping vibrations. By adjusting this gap, the damping effect can be adjusted to the desired value.
必要な場合には、上記摩擦による緩衝と空気による緩衝
とを組合わせ、加速度センサの所要の緩衝特性を簡単に
得ることができる。If necessary, the above-mentioned frictional damping and air damping can be combined to easily obtain the desired damping characteristics of the acceleration sensor.
第1図は本発明の実施例による加速度センサを簡略化し
た断面図、第2図は位置センサを対向して配置した他の
実施例による加速度センサの簡略化した断面図、第3図
は位置センサを前方に配置した加速度センサのM1図と
同様な断面図、第4.1図は多層曲げビームを有する加
速度センサの第1図と同様な図、第4.2図は永久磁石
と対向部材とを有する第4.1図の曲げビームの自由端
を示す拡大図、第5図は2つの永久磁石を自由端に有す
る第4図と同様なセンサの断面図、第6図は2つの層間
に永久磁石を配置した2層曲げビームの断面図、第7,
1図は空気による緩衝を行うセンサの振動面に平行な断
面図、第7.2図は第761図のA−A線に沿う振動面
に垂直な面の断面図である。
1・・・ハウジング、2.2’ ,8.13及び14,
20及び21.23・・・曲げビーム< 3.10,1
6,19.22・・・永久磁石、4.4’ 9・・・
位置センサ、5・・・樹脂ボディ部、6・・・密閉ケー
シング、7・・・中空スペース、13,14,20.2
1・・・テープ、18・・・素センサ。
出願人代理人 弁理士 鈴江武彦
FIG.7.1
八ー
l4
FIG. 7. 2FIG. 1 is a simplified sectional view of an acceleration sensor according to an embodiment of the present invention, FIG. 2 is a simplified sectional view of an acceleration sensor according to another embodiment in which position sensors are arranged facing each other, and FIG. 3 is a simplified sectional view of an acceleration sensor according to an embodiment of the present invention. Figure 4.1 is a cross-sectional view similar to Figure M1 of an acceleration sensor with a sensor placed in the front, Figure 4.1 is a view similar to Figure 1 of an acceleration sensor with a multilayer bending beam, Figure 4.2 is a permanent magnet and opposing member. FIG. 5 is a cross-sectional view of a sensor similar to FIG. 4 with two permanent magnets at the free end; FIG. Cross-sectional view of a two-layer bending beam with permanent magnets arranged in the seventh,
FIG. 1 is a sectional view parallel to the vibration plane of a sensor that performs air buffering, and FIG. 7.2 is a sectional view taken along line A-A in FIG. 761 and perpendicular to the vibration plane. 1...Housing, 2.2', 8.13 and 14,
20 and 21.23...Bending beam < 3.10,1
6,19.22...Permanent magnet, 4.4' 9...
Position sensor, 5... Resin body part, 6... Sealed casing, 7... Hollow space, 13, 14, 20.2
1... Tape, 18... Elementary sensor. Applicant's agent Patent attorney Takehiko SuzueFIG. 7.1 8-l4 FIG. 7. 2
Claims (17)
信号発生器あるいは信号形成部材として作用する少なく
とも1の永久磁石が設けられ、一側でクランプされる撓
みビームを備え、この撓みビームがセンサハウジングに
対して測定すべき加速度の平面内で可撓性を有し、更に
撓みを決定する測定システムを備え、この測定システム
は永久磁石と、ハウジングに結合された1又は複数の磁
界感応位置センサとを有し、このセンサにより永久磁石
の位置あるいは変化を測定可能である加速度センサであ
って、前記撓みビーム(2、2′、8、13及び14、
20及び21、23)は厚さ(d)に対して幅広の薄い
テープ形状を有するアモルファス金属(金属ガラス)で
形成されることを特徴とする加速度センサ。(1) a flexure beam disposed within the housing, provided with an inertial mass at its free end and at least one permanent magnet acting as a signal generator or signal-forming member, and clamped on one side; A measuring system is flexible in the plane of the acceleration to be measured relative to the housing and further comprises a measuring system for determining deflection, the measuring system comprising a permanent magnet and one or more magnetic field sensitive position sensors coupled to the housing. an acceleration sensor comprising: a position or a change in a permanent magnet;
20, 21, and 23) are acceleration sensors formed of amorphous metal (metallic glass) having a thin tape shape that is wider than the thickness (d).
3及び14、20及び21、23)の厚さ(d)は10
乃至80μmの範囲で、好ましくは20乃至30μmの
範囲にあり、その幅(b)は1乃至10mmの範囲で、
好ましくは2乃至4mmの範囲である請求項1記載の加
速度センサ。(2) Said tape-shaped flexure beam (2, 2', 8, 1
The thickness (d) of 3 and 14, 20 and 21, 23) is 10
The width (b) is in the range of 1 to 10 mm, preferably in the range of 20 to 30 μm, and
Acceleration sensor according to claim 1, preferably in the range of 2 to 4 mm.
1:50乃至1:1000の範囲、好ましくは1:50
乃至1:200の範囲にある請求項1又は2記載の加速
度センサ。(3) The ratio of the thickness (d) to the width (b) of the deflecting beam is in the range of 1:50 to 1:1000, preferably 1:50.
3. The acceleration sensor according to claim 1, wherein the acceleration is in the range of 1:200 to 1:200.
は、ハウジング(1)内のクランプ側(15)で強固に
一体的に保持される平行かつアモルファス金属製の2以
上のテープ(13、14、20、21)を有する多層構
造を有し、永久磁石(16、19)は撓みビームの自由
端におけるこのテープの表面上に配置され、前記各テー
プは磁力により一体的に互いに押圧されて保持される請
求項1乃至3いずれか1記載の加速度センサ。(4) Said deflection beams (13 and 14, 20 and 21)
has a multi-layer structure with two or more parallel and amorphous metal tapes (13, 14, 20, 21) held firmly together on the clamping side (15) within the housing (1) and permanently Acceleration sensor according to any one of claims 1 to 3, characterized in that the magnets (16, 19) are arranged on the surface of this tape at the free end of the deflecting beam, each said tape being held together by magnetic forces pressed together. .
16)が配置され、これと反対側の他側に強磁性体(1
7)が配置される請求項4記載の加速度センサ。(5) A permanent magnet (
16) is arranged, and a ferromagnetic material (1
7) The acceleration sensor according to claim 4, wherein:
側に永久磁石(16、19)が配置されている請求項4
記載の加速度センサ。(6) Permanent magnets (16, 19) are arranged on the free outer surface of the multilayer deflecting beam, respectively on opposite sides.
Acceleration sensor listed.
一方あるいは双方が接着されている請求項4乃至6いず
れか1記載の加速度センサ。(7) The acceleration sensor according to any one of claims 4 to 6, wherein one or both of the permanent magnets (16, 17) and the ferromagnetic material (17) are bonded.
光沢のないマット状の面あるいは荒い面が互いに重ね合
わせて配置される請求項4乃至7いずれか1記載の加速
度センサ。(8) The acceleration sensor according to any one of claims 4 to 7, wherein the tapes (13, 14, 20, 21) have matte surfaces or rough surfaces that are relatively matte and are placed on top of each other.
成されている請求項4乃至7いずれか1記載の加速度セ
ンサ。(9) The acceleration sensor according to any one of claims 4 to 7, wherein the surfaces of the tapes arranged above each other are formed into rough surfaces.
つのテープで形成される撓みビーム(20、21)は一
体的に強固にクランプ(15)に保持され、撓みビーム
の自由端でこれらの間に永久磁石が保持される請求項1
乃至3いずれか1記載の加速度センサ。(10) Two amorphous metals arranged parallel to each other
1 . The flexible beams ( 20 , 21 ) formed of two tapes are held together rigidly in the clamp ( 15 ), and a permanent magnet is held between them at the free end of the flexible beam. 1 .
The acceleration sensor according to any one of 3 to 3.
気的に付着される請求項10記載の加速度センサ。(11) The acceleration sensor according to claim 10, wherein the permanent magnet is glued to one side of the tape and magnetically attached to the other side.
ジング壁(25、26、27)との境界間に極めて狭い
エアーギャップ(L)が確実に形成されるように密閉ハ
ウジング(24)内に配置され、このエアーギャップは
撓みビーム(23)が撓んだときに空気流を絞り、した
がって撓みビーム(23)の振動を減衰させる請求項1
乃至11いずれか1記載の加速度センサ。(12) The flexure beam (23) is placed within the hermetically sealed housing (24) to ensure that a very narrow air gap (L) is formed between the interface between the flexure beam and the housing walls (25, 26, 27). 1 . The air gap throttles the air flow when the deflecting beam ( 23 ) is deflected, thus damping the vibrations of the deflecting beam ( 23 ).
The acceleration sensor according to any one of 11 to 11.
2、2′、8)の振動を減衰するため、例えばシリコン
オイルである減衰流体が充填されている請求項1乃至1
1いずれか1記載の加速度センサ。(13) Inside the sensor housing (1) there is a deflection beam (
2, 2', 8), wherein the damping fluid, for example silicone oil, is filled in order to dampen the vibrations of 2, 2', 8).
1. The acceleration sensor according to any one of 1.
状あるいはブロック状形状を有し、撓みビーム(2、2
′、8、13及び14、20及び21、23)の自由端
に配置される請求項1乃至13いずれか1記載の加速度
センサ。(14) The permanent magnets (3, 10, 16, 19, 22) have a plate-like or block-like shape, and the flexure beams (2, 2
14. The acceleration sensor according to any one of claims 1 to 13, wherein the acceleration sensor is disposed at the free end of each of the parts 1, 20, 21, 23).
2、18)として、ホール素子、磁気抵抗センサあるい
は他の磁界感応センサが設けられ、センサハウジング内
で撓みビームの下側あるいは上側に撓みビーム(2、2
′、8、13及び14、20及び21、23)に平行に
配置される請求項1乃至14いずれか1記載の加速度セ
ンサ。(15) Magnetic field sensitive position sensor (4, 4', 9, 11, 1
A Hall element, magnetoresistive sensor or other magnetic field sensitive sensor is provided as a flexure beam (2, 18) below or above the flexure beam in the sensor housing.
15. The acceleration sensor according to any one of claims 1 to 14, wherein the acceleration sensor is arranged parallel to the angles 1, 2, and 14).
で、撓みビーム(8)の自由端の面のレベルで前方ある
いは側方に配置される請求項1乃至15いずれか1記載
の加速度センサ。16. Acceleration sensor according to claim 1, wherein the position sensor (9) is arranged in the sensor housing (6) in front or laterally at the level of the plane of the free end of the deflecting beam (8). .
1、24)の外側で、永久磁石(3、10、16、19
、22)の磁束の領域内に配置される請求項1乃至16
いずれか1記載の加速度センサ。(17) The position sensor can be mounted on the outer wall or the sensor housing (
1, 24), permanent magnets (3, 10, 16, 19)
, 22).
The acceleration sensor according to any one of the above.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3841451.1 | 1988-12-09 | ||
DE3841451 | 1988-12-09 | ||
DE3929082A DE3929082A1 (en) | 1988-12-09 | 1989-09-01 | ACCELERATION SENSOR WITH SINGLE-SIDED CLAMP |
DE3929082.4 | 1989-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02238367A true JPH02238367A (en) | 1990-09-20 |
Family
ID=25874949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1320401A Pending JPH02238367A (en) | 1988-12-09 | 1989-12-08 | Acceleration sensor having flexural beam clamped on one side |
Country Status (5)
Country | Link |
---|---|
US (1) | US5027657A (en) |
EP (1) | EP0377804B1 (en) |
JP (1) | JPH02238367A (en) |
DE (2) | DE3929082A1 (en) |
ES (1) | ES2032646T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008076343A (en) * | 2006-09-25 | 2008-04-03 | Tdk Corp | Acceleration sensor, and magnetic disk drive device |
JP2009192379A (en) * | 2008-02-14 | 2009-08-27 | Seiko Instruments Inc | Acceleration sensor and method for manufacturing the same |
US7679865B2 (en) | 2005-07-22 | 2010-03-16 | Tdk Corporation | Spring member for acceleration sensor, acceleration sensor and magnetic disk drive apparatus |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256050A (en) * | 1991-05-16 | 1992-11-25 | David Alick Burgoyne | Transducer using hall effect sensor |
US5656846A (en) * | 1991-06-18 | 1997-08-12 | Nec Corporation | Semiconductor acceleration sensor and method of fabrication thereof |
NO921888L (en) * | 1991-07-03 | 1993-01-04 | Intevep Sa | SENSOR FOR LIQUID CIRCUIT DETECTION DETECTION |
JPH05249137A (en) * | 1992-03-10 | 1993-09-28 | Takata Kk | Acceleration sensor |
US5383473A (en) * | 1993-05-10 | 1995-01-24 | Pacesetter, Inc. | Rate-responsive implantable stimulation device having a miniature hybrid-mountable accelerometer-based sensor and method of fabrication |
DE19508014C1 (en) * | 1995-01-12 | 1996-07-11 | Siemens Ag | Mechanical acceleration switch |
JPH10512093A (en) * | 1995-01-12 | 1998-11-17 | シーメンス アクチエンゲゼルシヤフト | Mechanical acceleration switch |
SE509206C2 (en) * | 1995-08-30 | 1998-12-14 | Roland Larsson | Inertia Sensor |
DE19753778B4 (en) * | 1997-12-04 | 2004-02-26 | Robert Bosch Gmbh | sensor |
US6507187B1 (en) * | 1999-08-24 | 2003-01-14 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ultra-sensitive magnetoresistive displacement sensing device |
US6311557B1 (en) * | 1999-09-24 | 2001-11-06 | Ut-Battelle, Llc | Magnetically tunable resonance frequency beam utilizing a stress-sensitive film |
JP4491114B2 (en) * | 2000-06-23 | 2010-06-30 | 株式会社日立グローバルストレージテクノロジーズ | Fall detection sensor and information processing apparatus using the same |
DE10229020A1 (en) * | 2002-06-28 | 2004-01-22 | Robert Bosch Gmbh | force sensor |
JP2004127364A (en) * | 2002-09-30 | 2004-04-22 | Toshiba Corp | Electronic apparatus and shockproofing method |
KR100632458B1 (en) * | 2004-04-30 | 2006-10-11 | 아이치 세이코우 가부시키가이샤 | Accelerometer |
JP2007093448A (en) * | 2005-09-29 | 2007-04-12 | Aichi Steel Works Ltd | Motion sensor and portable telephone using the same |
US20070209437A1 (en) * | 2005-10-18 | 2007-09-13 | Seagate Technology Llc | Magnetic MEMS device |
JP4367403B2 (en) * | 2005-11-24 | 2009-11-18 | Tdk株式会社 | Spring member for acceleration sensor, acceleration sensor, and magnetic disk drive device |
KR20130067336A (en) * | 2011-11-28 | 2013-06-24 | 삼성전기주식회사 | Inertial sensor |
RU2517787C1 (en) * | 2012-11-09 | 2014-05-27 | Федеральное государственное бюджетное учреждение науки Институт нанотехнологий микроэлектроники Российской академии наук | Nanoelectromechanical system for measurement of motion parameters and method of its manufacturing |
CN109991442A (en) * | 2017-12-30 | 2019-07-09 | 大连良华科技有限公司 | A kind of acceleration transducer for exempting from temperature-compensating |
US12070398B2 (en) | 2018-08-28 | 2024-08-27 | University Of Utah Research Foundation | Variable transmission for assistive prosthesis device |
WO2021188947A1 (en) | 2020-03-20 | 2021-09-23 | University Of Utah Research Foundation | Self-aligning mechanisms in passive and powered exoskeletons |
IT202000018670A1 (en) * | 2020-07-30 | 2022-01-30 | St Microelectronics Srl | BROADBAND MEMS ACCELEROMETER FOR DETECTING VIBRATIONS |
CN112179478B (en) * | 2020-10-09 | 2022-09-30 | 重庆理工大学 | Cantilever type vibration sensor based on magneto-resistance effect |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2665896A (en) * | 1943-06-03 | 1954-01-12 | Frank J Kirby | Variable resistance acceleration sensitive device |
US2552722A (en) * | 1948-08-09 | 1951-05-15 | Pennsylvania Res Corp | Electromagnetic accelerometer |
GB745050A (en) * | 1951-08-13 | 1956-02-22 | Statham Lab Inc | Improvements in or relating to motion responsive devices such as accelerometers |
US3636774A (en) * | 1969-08-25 | 1972-01-25 | Conrac Corp | Dual mass accelerometer with semiconductive transducer |
DE2225945C3 (en) * | 1972-05-27 | 1975-01-23 | Dieter Dr.-Ing. 8720 Schweinfurt Lutz | Encoder for measuring acceleration components |
DE2709156A1 (en) * | 1977-03-03 | 1978-09-07 | Vdo Schindling | Acceleration indicator device generating electrical signals - has Hall generator or field plate mounted adjacent deflectable permanent magnet |
DE2829425C3 (en) * | 1978-07-05 | 1981-08-06 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Device for measuring accelerations on vibrating bodies |
DE3016001A1 (en) * | 1980-04-25 | 1981-10-29 | Robert Bosch Gmbh, 7000 Stuttgart | MEASURING DEVICE FOR DELAY OF A VEHICLE |
DE3021317A1 (en) * | 1980-06-06 | 1981-12-24 | Robert Bosch Gmbh, 7000 Stuttgart | Measurement of vehicle deceleration using displaced mass - using attached magnet moving against spring w.r.t. Hall effect component |
US4322973A (en) * | 1980-08-29 | 1982-04-06 | Aisin Seiki Company, Limited | Acceleration and deceleration sensor |
JPS57165721A (en) * | 1981-04-06 | 1982-10-12 | Toyota Central Res & Dev Lab Inc | Vibration sensor for engine |
JPS58108422A (en) * | 1981-12-23 | 1983-06-28 | Oki Electric Ind Co Ltd | Omnidirectional vibration sensor |
DE3342186A1 (en) * | 1983-11-23 | 1985-05-30 | Robert Bosch Gmbh, 7000 Stuttgart | Acceleration pickup |
US4849655A (en) * | 1985-07-04 | 1989-07-18 | Hayman-Reese Party, Limited | Accelerometer or decelerometer for vehicle brake control system |
DE3704209A1 (en) * | 1986-04-11 | 1987-10-15 | Bosch Gmbh Robert | ACCELERATION SENSOR |
JPS631975A (en) * | 1986-06-20 | 1988-01-06 | Atsugi Motor Parts Co Ltd | Acceleration sensor |
JPH0697236B2 (en) * | 1987-05-30 | 1994-11-30 | 株式会社日本自動車部品総合研究所 | Acceleration sensor |
JPH077012B2 (en) * | 1987-08-18 | 1995-01-30 | 富士通株式会社 | Acceleration sensor |
-
1989
- 1989-09-01 DE DE3929082A patent/DE3929082A1/en not_active Withdrawn
- 1989-11-08 ES ES198989120660T patent/ES2032646T3/en not_active Expired - Lifetime
- 1989-11-08 EP EP89120660A patent/EP0377804B1/en not_active Expired - Lifetime
- 1989-11-08 DE DE8989120660T patent/DE58901699D1/en not_active Expired - Lifetime
- 1989-12-01 US US07/445,235 patent/US5027657A/en not_active Expired - Fee Related
- 1989-12-08 JP JP1320401A patent/JPH02238367A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7679865B2 (en) | 2005-07-22 | 2010-03-16 | Tdk Corporation | Spring member for acceleration sensor, acceleration sensor and magnetic disk drive apparatus |
JP2008076343A (en) * | 2006-09-25 | 2008-04-03 | Tdk Corp | Acceleration sensor, and magnetic disk drive device |
JP4556933B2 (en) * | 2006-09-25 | 2010-10-06 | Tdk株式会社 | Acceleration sensor and magnetic disk drive device |
JP2009192379A (en) * | 2008-02-14 | 2009-08-27 | Seiko Instruments Inc | Acceleration sensor and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP0377804A1 (en) | 1990-07-18 |
DE58901699D1 (en) | 1992-07-23 |
ES2032646T3 (en) | 1993-02-16 |
DE3929082A1 (en) | 1990-06-13 |
US5027657A (en) | 1991-07-02 |
EP0377804B1 (en) | 1992-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02238367A (en) | Acceleration sensor having flexural beam clamped on one side | |
KR920004768B1 (en) | Accelerated velocity meter | |
JP2695291B2 (en) | Load cell | |
US4595166A (en) | Vibration isolating table device | |
JPH01291166A (en) | Sensor for vehicle | |
JP4266416B2 (en) | Test equipment | |
US4901571A (en) | Acceleration pickup | |
JPS63503087A (en) | Acceleration sensor | |
US11835406B2 (en) | Optical fiber sensing device having a symmetric optical fiber arrangement | |
JPH06300776A (en) | Revolution accelerometer | |
US5792953A (en) | Acceleration sensor having a vibrator with an attached weight | |
JPH0499963A (en) | Acceleration sensor | |
JP4460509B2 (en) | Acceleration sensor and electronic device equipped with the same | |
JP6552331B2 (en) | Probe and shape measuring device | |
JPH05240641A (en) | Inclination meter | |
JPS61148320A (en) | Tilt angle detector | |
JPH07270260A (en) | Balance or force measuring device of electromagnetic type | |
JP5912338B2 (en) | Force measuring device | |
EP4462144A1 (en) | Magnetic field gradient sensor | |
JP2023135152A (en) | force sensor | |
JPH0371060A (en) | Acceleration sensor | |
JP3125113B2 (en) | Accelerometer | |
JPH04184171A (en) | Accelerating speed sensor | |
JPH02112766A (en) | Acceleration sensor | |
US4471303A (en) | Flexural vibration transducer with magnetic field generating |