JPH02229787A - Production of oxide superconductor - Google Patents
Production of oxide superconductorInfo
- Publication number
- JPH02229787A JPH02229787A JP1006375A JP637589A JPH02229787A JP H02229787 A JPH02229787 A JP H02229787A JP 1006375 A JP1006375 A JP 1006375A JP 637589 A JP637589 A JP 637589A JP H02229787 A JPH02229787 A JP H02229787A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- single crystal
- bismuth
- oxide
- seed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000013078 crystal Substances 0.000 claims abstract description 76
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims 1
- 239000000843 powder Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- AXTYOFUMVKNMLR-UHFFFAOYSA-N dioxobismuth Chemical compound O=[Bi]=O AXTYOFUMVKNMLR-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
r産業上の利用分野』
本発明は酸化物超伝導体の作製方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor.
r従来の技術』
ビスマス、ストロンチウム、カルシウム、銅、酸素から
なる酸化物超伝導体(以下ビスマス系酸化物超伝導体と
よぶ)は、高温超伝導体として知られ、Tc〜80Kの
低Tc相(化学式はBi.SrzcaCuzOs+xS
C軸長約30オングストローム)と、Tc〜110Kの
高Tc相(Bi.SrzC a zc uso+o+w
、C軸長約36オングストローム)があることがわかっ
ている。現在この高Tc相のみを単独でとりだす研究が
なされている。rConventional Technology Oxide superconductors consisting of bismuth, strontium, calcium, copper, and oxygen (hereinafter referred to as bismuth-based oxide superconductors) are known as high-temperature superconductors and have a low Tc phase of Tc ~ 80K. (The chemical formula is Bi.SrzcaCuzOs+xS
C-axis length of about 30 angstroms) and high Tc phase of Tc ~ 110K (Bi.SrzC a zc uso+o+w
, C-axis length of approximately 36 angstroms). Currently, research is being conducted to extract only this high Tc phase alone.
『従来の問題点』
しかしながら、通常の焼結法では高Tc相は低Tc相の
せいぜい50バーセントしか得られず、しかも、その反
応は3〜7日間もかかり、反応温度も非常に微妙で再現
性が悪く、実用的でなかった.しかも、このようにして
得られる超伝導体は多結晶体で均一性にかけ、ビスマス
系酸化物超伝導体を超伝導デバイスには応用できなかっ
た。デバイスへの応用を考えると、単結晶は必要不可欠
である.しかしながら、従来、酸化物趨伝導体に結晶は
ほとんど得られなかった。``Conventional Problems'' However, with the usual sintering method, the high Tc phase can only be obtained at most 50 percent of the low Tc phase, and the reaction takes 3 to 7 days, and the reaction temperature is very delicate and reproducible. It was inconsiderate and impractical. Moreover, the superconductor obtained in this way is polycrystalline and lacks uniformity, making it impossible to apply bismuth-based oxide superconductors to superconducting devices. When considering device applications, single crystals are essential. However, until now, crystals have hardly been obtained in oxide-based conductors.
本発明は高Tc相を有しかつ大型の酸化物超伝導体単結
晶を得ることを目的としたものである.「発明の構成」
本発明は前記の目的を達成するために、酸化物超伝導体
原料融液からビスマス層状酸化物単結晶を種結晶として
用いて、引き上げ法によって酸化物超伝導体単結晶を作
製することとしたものである。The purpose of the present invention is to obtain a large oxide superconductor single crystal having a high Tc phase. "Structure of the Invention" In order to achieve the above object, the present invention uses a bismuth layered oxide single crystal as a seed crystal from an oxide superconductor raw material melt, and grows an oxide superconductor single crystal by a pulling method. This is what we decided to create.
本発明では、これらのビスマス層状酸化物のう?、その
C軸長が、高Tc相のそれに近いものの単結晶を種結晶
として用い、高Tc相の単結晶を得ようとするものであ
る.
大きな単結晶を作製する際、引上げ法の有利な点は単結
晶半導体製造法等でも実証されており、幸いなことにビ
スマス系酸化物超伝導体は溶融状態から冷却することに
よって得られるので引上げ法に適している。種結晶とし
ては(Bi.O■)(A@−IB@03■l)であらわ
されるいわゆるビスマス層状酸化物を用いた.
ビスマス層状酸化物はビスマス系酸化物超伝導体とおな
しような構造をとり、格子定数についてもa軸長、b軸
長はほぼ等しく、種結晶として都合が好い。In the present invention, these bismuth layered oxide layers are used. , using a single crystal whose C-axis length is close to that of the high-Tc phase as a seed crystal to obtain a single crystal of the high-Tc phase. The advantage of the pulling method when producing large single crystals has been demonstrated in single crystal semiconductor manufacturing methods, etc. Fortunately, bismuth-based oxide superconductors can be obtained by cooling from a molten state, so pulling suitable for law. A so-called bismuth layered oxide represented by (Bi.O■) (A@-IB@03■l) was used as a seed crystal. Bismuth layered oxide has a structure similar to that of a bismuth-based oxide superconductor, and its lattice constants have approximately the same a-axis length and b-axis length, making it convenient as a seed crystal.
C軸長が高Tc相のそれに近いビスマス層状酸化物とし
ては、B imTiso+z (C軸長32.8オング
ストローム) 、C a B i4T i aoIs,
S rB i sT i sobs、BaB inT
i40+s,PbB i4Ti40+s、(以上C軸長
約41〜42オングストローム) 、B tz (Sr
+−xLad acu3oy(x=0.05〜0.4、
y=8〜12、C軸長約36オングストローム)等があ
げられる.このような材料を種結晶として用いて、引上
げ法を試みた結果、ほぼ高Tc相のみからなる酸化物超
伝導体単結晶を得ることができた.
また本発明人は、B i.LaCa,CunO,(n=
1.2,3.以下BLCCOとよぶ)なるl連の複合酸
化物を発見し、それらの構造がビスマス系酸化物超伝導
体と同じであることを見出した。BimTiso+z (C-axis length 32.8 angstroms), C a B i4T i aoIs,
S rB i sT i sobs, BaB inT
i40+s, PbB i4Ti40+s, (C-axis length approximately 41 to 42 angstroms), B tz (Sr
+-xLad acu3oy (x=0.05~0.4,
y = 8 to 12, C-axis length approximately 36 angstroms), etc. As a result of attempting a pulling method using such a material as a seed crystal, we were able to obtain an oxide superconductor single crystal consisting almost exclusively of the high Tc phase. The inventor also has B i. LaCa, CunO, (n=
1.2,3. He discovered a series of complex oxides called BLCCO (hereinafter referred to as BLCCO) and found that their structure was the same as that of bismuth-based oxide superconductors.
これらの単結晶材料を、ビスマス系酸化物超伝導体の単
結晶成長の際の種結晶として用いることは非常に有効で
あった,BLCCOはビスマス系酸化物超伝導体と同じ
ような構造をとり、格子定数についてもa軸長,b軸長
はほぼ等しく、C軸長についても、n=1で24オング
ストローム,n=2で30オングストローム.n=3で
36オングストロームとビスマス系酸化物超伝導体にお
けるn=1.2.3と対応している。従って,ビスマス
系酸化物超伝導体のへテロエビタキシャル成長の種結晶
として都合が好い。本発明では,これ?のBLCCOの
単結晶を種結晶として用い、引上げ法による単結晶成長
を試みた結果、2cm角のビスマス系酸化物超伝導体の
単結晶を得ることができたq
本発明による酸化物超伝導体はビスマス系に限らずその
他の酸化物超伝導体でも本発明の方法により作製するこ
とは可能である.以下、実施例によってより詳細に本発
明を説明する。It was very effective to use these single crystal materials as seed crystals for single crystal growth of bismuth-based oxide superconductors.BLCCO has a structure similar to that of bismuth-based oxide superconductors. Regarding the lattice constants, the a-axis length and the b-axis length are almost equal, and the c-axis length is 24 angstroms when n=1 and 30 angstroms when n=2. When n=3, it is 36 angstroms, which corresponds to n=1.2.3 in a bismuth-based oxide superconductor. Therefore, it is convenient as a seed crystal for the heteroepitaxial growth of bismuth-based oxide superconductors. This invention? As a result of trying to grow a single crystal by the pulling method using a single crystal of BLCCO as a seed crystal, we were able to obtain a 2 cm square single crystal of bismuth-based oxide superconductor q Oxide superconductor according to the present invention It is possible to fabricate not only bismuth-based superconductors but also other oxide superconductors using the method of the present invention. Hereinafter, the present invention will be explained in more detail with reference to Examples.
r実施例1』
本実施例はB i4Tizo+z (C軸長32.8オ
ングストローム)を種結晶として、ビスマス系酸化物超
伝導体単結晶を作製した場合を示す。Example 1 This example shows the case where a bismuth-based oxide superconductor single crystal was produced using B i4Tizo+z (C-axis length: 32.8 angstroms) as a seed crystal.
Bi4TizO+t種結晶は二酸化ビスマス(Bi.o
i) 、二酸化チタン(TiO■)粉末(純度はいずれ
も99.9パーセント)を化学量論的組成比で混合した
後、それらの混合物をるつぼにいれ、空気中1200″
Cで7日間保った後、生成させた反応物を粉砕すること
により得た。得られた種結晶の大きさは3ミリ×3ミリ
×1ミリ程度であった。Bi4TizO+t seed crystal is bismuth dioxide (Bi.o
i) After mixing titanium dioxide (TiO■) powders (all purity 99.9%) in a stoichiometric composition ratio, the mixture was placed in a crucible and heated at 1200'' in air.
After keeping at C for 7 days, the resulting reaction product was pulverized. The size of the obtained seed crystal was approximately 3 mm x 3 mm x 1 mm.
ビスマス系酸化物超伝導体単結晶の原料は、三酸化ビス
マス(B i go3) 、炭酸ストロンチウム(Sr
CO,)、炭酸カルシウム(CaCOs)、酸化銅(C
uO)粉末(いずれも純度99.9パーセント)で、こ
れらの原料粉末は、Bi:Sr:Ca:Cu=4:2:
2:3 (モル比)の割合で混合された.原料はその融
点を下げるために適当な融剤を加えられられたり、蒸発
しやすい成分については、蒸発による損失を補うために
余分に加えられることもある.
これらの混合粉末は、空気中800゜Cで12時間焼成
した後、るつぼにいれられ、空気中890℃に加熱され
、溶融された.種結晶は第1図に示すように融液の液面
にそのC軸が平行になるように、液面に接触するように
置かれた.第1図において1アルミナるつぼ、2は単結
晶原料融液、3は種結晶、4は支持棒、5は石英管、6
は高周波コイル、7は熱電対をそれぞれ示す.
種結晶は1時間に5ミリの速度で引き上げられた.得ら
れたビスマス系酸化物超伝導体の単結晶の大きさは5ミ
リ×30ミリ×0.5ミリの板状であった。The raw materials for bismuth-based oxide superconductor single crystals are bismuth trioxide (B i go3), strontium carbonate (Sr
CO, ), calcium carbonate (CaCOs), copper oxide (C
uO) powder (all purity 99.9%), these raw material powders are Bi:Sr:Ca:Cu=4:2:
They were mixed at a ratio of 2:3 (molar ratio). Appropriate fluxing agents may be added to raw materials to lower their melting points, and for components that easily evaporate, excess amounts may be added to compensate for losses due to evaporation. These mixed powders were calcined in air at 800°C for 12 hours, then placed in a crucible and heated to 890°C in air to melt. The seed crystal was placed in contact with the melt surface, with its C axis parallel to the melt surface, as shown in Figure 1. In Figure 1, 1 is an alumina crucible, 2 is a single crystal raw material melt, 3 is a seed crystal, 4 is a support rod, 5 is a quartz tube, and 6
indicates a high-frequency coil, and 7 indicates a thermocouple. The seed crystal was pulled at a rate of 5 mm per hour. The resulting single crystal of the bismuth-based oxide superconductor had a plate shape of 5 mm x 30 mm x 0.5 mm.
得られた単結晶はX線回折法より高Tc相から成ってい
ることが認められた。また第2図に示されるようにこの
膜は110Kでゼロ抵抗を示し、液体窒素温度での臨界
電流密度は、約10万A/cm”であった.
r実施例2』
本実施例ではB i.Laca.cu.o,(n=2,
c軸長30オングストローム)を種結晶として、ビスマ
ス系酸化物超伝導体単結晶を作製した場合を示す.
Bi.LaCa.CuzO,種結晶は二酸化ビスマス(
B i.o.),酸化ランタン(LagO*)、炭酸カ
ルシウム(CaCO.),酸化銅(CuO)粉末(純度
はいずれも99.9パーセント)を2:1:1:2(モ
ル比)の割合で混合したものをるつぼにいれ、空気中1
000℃で1時間保った後、毎時10℃で冷却し、生成
物を機械的に粉砕して拾い出したもので大きさは3ミリ
×3ミリ×1ミリ程度であった.
ビスマス系酸化物超伝導体単結晶の原料は、二酸化ヒス
マス(B i gos) . 炭Mストロンチウム(S
rCOi),炭酸カルシウム( C a C Os)、
酸化銅(Cub)粉末(いずれも純度99.9パーセン
ト)で、これらの原料粉末は、Bi:Sr:Ca:Cu
=1:1:1:3 (モル比)の割合で混合された.こ
れらの混合粉末は、空気中800゜Cで12時間焼成し
た後、るつぼに入れ、空気中890℃に加熱し、溶融さ
せた。種結晶は第1図に示すように融液の液面にそのC
軸が平行になるように、液面に接触するように置かれた
種結晶は1!寺間に5ミリの速度で引き上げられた.得
られたビスマス系酸化物超伝導体の単結晶の大きさは、
20ミリ×20ミリ×0.5ミリの板状であった.
X線回折法から、単結晶は中Tc相から成っていること
が認められ、また第3図に示されるようにこの単結晶超
伝導材料は82Kでゼロ抵抗を示し,液体窒素温度での
臨界電流密度は,約1万A/cm”であった・
r実施例3』
化学弐B iz (Sr+−xLax) 4cusoy
(X=0.05〜0.4、yx3〜12)で表される
酸化物は、構造がビスマス系超伝導体の高Tc相と同じ
(a軸長5.4オングストローム、C軸長36オングス
トローム)であるが、キャリアー濃度が小さいため、超
伝導性を示さない.このBi!(Sr+−xLax)a
Cu2oVを単結晶成長の種結晶とし、ビスマス系超伝
導体の高Tc相を成長させた,B it (Sr+−m
Lam) 4cu2or単結晶はCuOを融剤とするフ
ラックス法によって作製された.原料としてはBi.0
3、SrCO.、La.0,、CuO (純度はすべて
99.9%)の粉末を用い、Bi:Sr:La:Cu=
2:3.5:0.5:6(モル比)で混合し、アルミナ
るつぼに充填し、空気中1 0 0 0 ’Cで5時間
反応させた後800゜Cまで10゜C/時で徐冷して得
られた。It was confirmed by X-ray diffraction that the obtained single crystal consisted of a high Tc phase. Furthermore, as shown in Fig. 2, this film showed zero resistance at 110 K, and the critical current density at liquid nitrogen temperature was about 100,000 A/cm. i.Laca.cu.o, (n=2,
The case where a bismuth-based oxide superconductor single crystal was prepared using a seed crystal with a c-axis length of 30 angstroms is shown. Bi. LaCa. CuzO, seed crystal is bismuth dioxide (
B i. o. ), lanthanum oxide (LagO*), calcium carbonate (CaCO.), and copper oxide (CuO) powder (all purity 99.9%) mixed in a ratio of 2:1:1:2 (molar ratio). put in a melting pot, 1 in the air
After being kept at 000°C for 1 hour, it was cooled at 10°C per hour, and the product was mechanically crushed and collected, and the size was about 3 mm x 3 mm x 1 mm. The raw material for the bismuth-based oxide superconductor single crystal is hismuth dioxide (B i gos). Charcoal M Strontium (S
rCOi), calcium carbonate (C a COs),
Copper oxide (Cub) powder (all purity 99.9%), these raw material powders are Bi:Sr:Ca:Cu
=1:1:1:3 (molar ratio). These mixed powders were calcined in air at 800°C for 12 hours, then placed in a crucible and heated in air to 890°C to melt. The seed crystal is placed on the surface of the melt as shown in Figure 1.
A seed crystal placed in contact with the liquid surface with its axes parallel is 1! It was pulled up to Terama at a speed of 5 mm. The size of the single crystal of the obtained bismuth-based oxide superconductor is
It was plate-shaped, measuring 20 mm x 20 mm x 0.5 mm. From the X-ray diffraction method, it was confirmed that the single crystal consists of a medium Tc phase, and as shown in Figure 3, this single crystal superconducting material exhibits zero resistance at 82 K and a critical temperature at liquid nitrogen temperature. The current density was approximately 10,000 A/cm''.
The oxide represented by ), but because the carrier concentration is small, it does not exhibit superconductivity. This Bi! (Sr+-xLax)a
B it (Sr+-m
Lam) 4cu2or single crystal was prepared by a flux method using CuO as a flux. As a raw material, Bi. 0
3, SrCO. , La. Using powder of 0, CuO (all purity 99.9%), Bi:Sr:La:Cu=
2:3.5:0.5:6 (molar ratio), filled into an alumina crucible, reacted in air at 1000'C for 5 hours, and then heated to 800°C at 10°C/hour. Obtained by slow cooling.
そして、るつぼ内部の溶融凝固物を機械的に破壊し、単
結晶を拾いあげた.このようにして得られた単結晶は大
きなもので5mmX5mmX0.5mmの板状であった
。ビスマス系酸化物超伝導体単結晶はこのB iz (
S r+−xLax) 4cu=0,単結晶を種結晶と
して引き上げ法によって作製された.S結晶作製の条件
等は、?実施例1』と同様である.得られたビスマス系
酸化物超伝導体単結晶の大きさは5mmX50mmX0
.5mmの板状であり、X線回折法から単結晶は高Tc
相から成っていることが認められた。また抵抗率測定か
らゼロ抵抗温度106Kが得られた。Then, the molten solidified material inside the crucible was mechanically destroyed and the single crystal was picked up. The single crystal thus obtained was large and had a plate shape of 5 mm x 5 mm x 0.5 mm. The bismuth-based oxide superconductor single crystal is this B iz (
Sr+-xLax) 4cu=0, produced by the pulling method using a single crystal as a seed crystal. What are the conditions for producing S crystals? This is the same as in Example 1. The size of the obtained bismuth-based oxide superconductor single crystal is 5 mm x 50 mm x 0.
.. It has a plate shape of 5 mm, and the single crystal has a high Tc according to X-ray diffraction method.
It was recognized that it consists of phases. Also, a zero resistance temperature of 106K was obtained from resistivity measurements.
r効果』
本発明によればこれらのビスマス層状酸化物のうち、そ
のC軸長が、高Tc相のそれに近いものの単結晶を種結
晶として用いたために、高Tc相の単結晶が得られると
同時に大型の単結晶を得ることができた.この単結晶を
用いて、デバイスを作製することが可能であり、本発明
は工業上極めて有益である.According to the present invention, among these bismuth layered oxides, a single crystal with a C-axis length close to that of the high-Tc phase is used as a seed crystal, so that a single crystal with a high-Tc phase can be obtained. At the same time, we were able to obtain large single crystals. It is possible to fabricate devices using this single crystal, and the present invention is extremely useful industrially.
第1図は引き上げ法による結晶成長の様子を示?た図。
第2図はBi4Ti30+■単結晶を種結晶として得ら
れたビスマス系酸化物超伝導体単結晶の抵抗一温度曲線
を示す。
第3図はBLCO単結晶を種結晶として得られイカ1
たビスマス系酸化物超電導体単結晶の抵抗一温度曲線を
示す。
アルミナるつぼ
単結晶原料融液
種結晶
支持棒
石英管
高周波コイル
熱電対Figure 1 shows the state of crystal growth by the pulling method? Figure. FIG. 2 shows a resistance-temperature curve of a bismuth-based oxide superconductor single crystal obtained using a Bi4Ti30+■ single crystal as a seed crystal. FIG. 3 shows a resistance-temperature curve of a bismuth-based oxide superconductor single crystal obtained using a BLCO single crystal as a seed crystal. Alumina crucible single crystal raw material melt seed crystal support rod quartz tube high frequency coil thermocouple
Claims (1)
酸化物超伝導体原料融液から引き上げ法により、酸化物
超伝導体単結晶を作製することを特徴とする酸化物超伝
導体の作製方法。 2、特許請求の範囲第1項において酸化物超伝導体は、
ビスマス層状酸化物であることを特徴とする酸化物超伝
導体の作製方法 3、特許請求の範囲第1項および第2項において酸化物
超伝導体は、ビスマス、ストロンチウム、カルシウム、
銅、酸素から成り、その化学式はBi_2Sr_2Ca
_n_−_1Cu_nO_y(n=1、2、3)で表さ
れ、その臨界温度が、液体窒素の沸点以上であることを
特徴とする酸化物超伝導体の作製方法。 4、特許請求の範囲第1項において、種結晶として用い
られるビスマス層状酸化物は、そのc軸長が酸化物超伝
導体のc軸長に近いものであることを特徴とする酸化物
超伝導体の作製方法。[Claims] 1. Using a bismuth layered oxide single crystal as a seed crystal,
A method for producing an oxide superconductor, comprising producing an oxide superconductor single crystal by a pulling method from an oxide superconductor raw material melt. 2. In claim 1, the oxide superconductor is:
In method 3 for producing an oxide superconductor characterized in that it is a bismuth layered oxide, the oxide superconductor in claims 1 and 2 includes bismuth, strontium, calcium,
Consisting of copper and oxygen, its chemical formula is Bi_2Sr_2Ca
A method for producing an oxide superconductor represented by _n_-_1Cu_nO_y (n=1, 2, 3), characterized in that its critical temperature is equal to or higher than the boiling point of liquid nitrogen. 4. In claim 1, the bismuth layered oxide used as the seed crystal is an oxide superconductor characterized in that its c-axis length is close to the c-axis length of the oxide superconductor. How to create the body.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1006375A JPH02229787A (en) | 1988-07-05 | 1989-01-13 | Production of oxide superconductor |
US07/372,473 US5032571A (en) | 1988-07-05 | 1989-06-28 | Method of manufacturing oxide superconducting materials |
EP89306837A EP0350294A3 (en) | 1988-07-05 | 1989-07-05 | Method of manufacturing superconducting oxide materials |
US07/912,663 US5268060A (en) | 1988-07-05 | 1992-07-14 | Method of manufacturing oxide superconducting materials |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-167059 | 1988-07-05 | ||
JP16705988 | 1988-07-05 | ||
JP63-277711 | 1988-11-02 | ||
JP1006375A JPH02229787A (en) | 1988-07-05 | 1989-01-13 | Production of oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02229787A true JPH02229787A (en) | 1990-09-12 |
Family
ID=26340496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1006375A Pending JPH02229787A (en) | 1988-07-05 | 1989-01-13 | Production of oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02229787A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172095A (en) * | 1992-12-07 | 1994-06-21 | Agency Of Ind Science & Technol | Production of bi2@(3754/24)sr, ca)3cu2o8 single crystal by solution pulling-up method |
-
1989
- 1989-01-13 JP JP1006375A patent/JPH02229787A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06172095A (en) * | 1992-12-07 | 1994-06-21 | Agency Of Ind Science & Technol | Production of bi2@(3754/24)sr, ca)3cu2o8 single crystal by solution pulling-up method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Assmus et al. | Crystal growth of HTSC materials | |
US5039653A (en) | Growth of superconductor material in a fluxed melt, and article of manufacture | |
JP2822451B2 (en) | Superconductor manufacturing method | |
Strobel et al. | Crystal growth and characterization of the superconducting phase in the Bi Sr Cu O system | |
JPH02229787A (en) | Production of oxide superconductor | |
US5242896A (en) | Superconductor crystal and process for preparing the same | |
JP3330962B2 (en) | Manufacturing method of oxide superconductor | |
JP2672533B2 (en) | Method for producing oxide superconductor crystal | |
JPH0255298A (en) | Method for growing oxide superconductor single crystal | |
Bayya et al. | Growth of anisotropic shaped superconducting particles in the Tl-Ba-Ca-Cu-O system | |
JPH0465395A (en) | Superconducting fibrous crystal and its production | |
JPH0687611A (en) | Oxide superconductor and production thereof and wire rod thereof | |
Babu et al. | Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions | |
JPH02243519A (en) | Oxide superconductor and production thereof | |
Raina et al. | Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection | |
JPH0287421A (en) | Oxide superconductor | |
JP2822328B2 (en) | Superconductor manufacturing method | |
JPH01275493A (en) | Method for growing oxide superconductor single crystal | |
Nagai et al. | Effect of annealing on properties of bismuth based high T c superconductors | |
JP2637123B2 (en) | Method for producing oxide superconductor crystal | |
JP2692614B2 (en) | Oxide superconductor with new structure | |
JP2833639B2 (en) | Preparation method of oxide crystal | |
JP2838312B2 (en) | Oxide superconducting material | |
RAO et al. | CaLaBaCu307_a single crystals | |
JPH02149426A (en) | Oxide superconducting material and its production |