JPH02229498A - Conductive resin composition and molding thereof - Google Patents
Conductive resin composition and molding thereofInfo
- Publication number
- JPH02229498A JPH02229498A JP4964589A JP4964589A JPH02229498A JP H02229498 A JPH02229498 A JP H02229498A JP 4964589 A JP4964589 A JP 4964589A JP 4964589 A JP4964589 A JP 4964589A JP H02229498 A JPH02229498 A JP H02229498A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- point metal
- resin
- composite fiber
- low melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 18
- 238000000465 moulding Methods 0.000 title abstract description 6
- 239000000835 fiber Substances 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 49
- 238000002844 melting Methods 0.000 claims abstract description 40
- 239000002131 composite material Substances 0.000 claims abstract description 37
- 239000008188 pellet Substances 0.000 claims abstract description 33
- 230000008018 melting Effects 0.000 claims abstract description 29
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 28
- 239000011231 conductive filler Substances 0.000 claims abstract description 17
- 230000004907 flux Effects 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000010949 copper Substances 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910001256 stainless steel alloy Inorganic materials 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims 1
- 239000004416 thermosoftening plastic Substances 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 11
- 238000001746 injection moulding Methods 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 238000004898 kneading Methods 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920005990 polystyrene resin Polymers 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- BTJWQMQHCORTED-MBKKHDIZSA-N (4r)-4-[(7z,8r,9s,10s,13r,14s,17r)-3-hydroxy-7-hydroxyimino-10,13-dimethyl-1,2,3,4,5,6,8,9,11,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid Chemical compound C1CC(O)CC2C\C(=N\O)[C@H]3[C@@H]4CC[C@H]([C@@H](CCC(O)=O)C)[C@@]4(C)CC[C@@H]3[C@]21C BTJWQMQHCORTED-MBKKHDIZSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、優れた導電性を有し、様々な環境におかれて
も導電性の劣化のない、f8顆性の高い導電性樹脂組成
物およびその成形品に関する.(従来の技術)
従来から、熱可塑性樹脂に導電性繊維を配合して導電性
樹脂組成物とし、その組成物を導電性樹脂成形品として
、電子機器や計測機器等に利用されてきた. これらに
は、主に炭素系の導電性繊維が配合されてきたが、その
用途は静電気防止が主で、近年問題となっている電磁波
シールドに対しては導電性が低くあまり有効でなかった
. そこで電磁波シールド用には金属系の導電性繊維を
使用して導電性を向上させることが行われてきた.しか
し、金属系の導電性繊維(以下単に金属繊維という)を
配合すると比重が大きくなり、また、樹脂がもつ本来の
特性を大きく損なうという問題があり、その配合量を最
小にすることが要求されている. ところがこれらの金
属繊維の配合量を減少させると、導電性が低下し更に使
用環境についても大きな制約を受ける. すなわち、使
用する樹脂と金属繊維との熱膨脹の差により、高温にな
ると導電性が劣化するという間趙が生じる.また成形時
のスクリューによる混線で金属繊維が切断されたり、曲
りたりする問題があった. そのため、現状では金属8
l!維の配合量を多くして導電性の低下・劣化を防止し
、かつ使用環境を限定することによって実用化されてい
る. そのように、従来の金属繊維の導電性樹脂組成物
及びその成形品は用途に制約を受け、かつ特性が不安定
で信頼性も低いという問題点があった.
一方、熱可塑性樹脂に低融点金属を配合する方法もある
が、低融点金属は樹脂との密着性が悪く、また、材料の
色替え等の際の空打等で、樹脂と低融点金属とが分離し
、金属のみが飛散する等の成形加工上きわめて危険であ
るという問題があった.(発明が解決しようとする課題
)
本発明は、上記の問題点を解消するためになされたもの
で導電性繊維の剛性・強度を高め、混線時の繊維の切断
や曲がりがなく、かつ導電性繊維と低融点金属とが強固
に結合して、高温においても導電性の劣化がなく経時安
定性に優れ、成形加工上も安定で、樹脂の機械的強度を
低下させない信頼性の高い導電性樹脂組成物およびその
成形品を提供しようとするものである.
[発明の楕成]
(課題を解決するための手段)
本発明者らは、上記の目的を達成しようと鋭意研究を重
ねた結果、導電性繊維の強度を高め、低融点金属との濡
れ性を向上させるため、ステンレス合金繊維の表面を銅
で被覆した複合繊維を用いることによって、上記目的が
達成されることを見いだし本発明を完成したものである
. すなわち、本発明は、
(A)ステンレス合金繊維の表面を銅で被覆した複合繊
維及び(B)低融点金属からなる導電性充填材の表面に
、(C)フラックスを含む(D)熱可塑性樹脂を被覆形
成一体化し、切断してペレット状にしたマスターペレッ
トと、(E)熱可塑性樹脂ペレットとを配合したことを
特徴とする導電性樹脂組成物であり、またこの導電性樹
脂組成物を低融点金属の融点以上の温度で成形すること
を特徴とする導電性樹脂成形品である.
本発明に用いる(A>複合繊維としては、ステンレス合
金繊維の表面を銅で被覆した長繊維状のも切を使用する
. これは使用する樹脂の成形温度範囲内で低融点金属
との好ましい濡れ性を示す.複合繊維の直径は5〜10
0μ1程度のものが望ましく、後述する低融点金属と集
合させて導電性充填材とし、その表面にフラックスを含
む熱可塑性樹脂を被覆形成一体化し、次いで長さ5〜6
mnのペレット状に切断してマスターペレットとする
.複合繊維の配合割合は、全体の組成物に対して0.5
〜30,t量%配合することが望ましい. 配合割合が
0.5重量%未満では導電性が低く、また、30重量%
を超えると導電性樹脂組成物の流動性、その他の物性が
低下し好ましくないからである.本発明に用いる(B)
低融点金属としては、使用する熱可塑性樹脂の成形加工
温度によって選定し、熱可塑性樹脂より若干高い融点を
持つことが望ましい. より望ましくは、射出成形橘の
加熱シリンダーの最も温度の低い部位で溶融する低融点
金属を選定することができる. 低融点金属としては、
Sn若しくはSn−Pb系の一般半田、Sn−Pb−A
g系の高温半田、Sn−Pb−Bi系の低温半田等が挙
げられ、これらは単独もしくは2種以上の混合系として
使用することもできる. 低融点金属の形状は、繊維状
、粒状、線状のいずれでもよく特に形状に限定されるも
のではない.低融点金属の配合割合は複合繊維を結合披
覆させるに十分なもので、複合繊維に対して5〜30重
量%配合することが望ましい. 配合割合が5重量%未
満では複合繊維を結合一被覆することが不十分で導電性
が低く、また30重量%を超えると低融点金属が遊離し
、樹脂の物性を低下させ好ましくないからである. 低
融点金属は、長繊維状の複合繊維中にそれを収束させた
り、各々の複合繊維を溶融した低融点金属で被覆したり
、また複合繊維全体を被覆させてもよい. 要するに複
合繊維と低融点金属とが一体になるようにすることが重
要である. こうしてできたものを導電性充填材として
使用する.
本発明に用いる(C)フラックスとしては、殻に使用さ
れている有機酸系のステアリン酸、乳酸、オレイン酸、
グルタミン酸や樹脂系のロジン、活性口ジン等が挙げら
れる. ハロゲン系のフラックスは、複合繊維あるいは
金型を腐食させやすく好ましくない. また、一般には
フラツクスとして使用されていない化合物でも良好な濡
れ性を示し、樹脂や金型に害を及ぼさないもの、例えば
次の化学式を有する
H
HCA (三光化学社製、商品名)等は良好な濡れ性を
示すので、本発明のフラックスとして使用することがで
きる. フラックスの配合割合は、低融点金属に対して
0,1〜5重量%の範囲とすることが望ましい. 配合
量が0.1重量%未満では複合繊維の濡れ性の改良に効
果なく、また531量%を超えると成形品の物性の低下
や、金型の腐食、汚れ等の原因となり好ましくない.
本発明に用いる(D)熱可塑性樹脂としては、ポリビニ
ル樹脂、ボリプロビレン樹脂、ポリエチレン樹脂、ボリ
スチレン樹脂、アクリロニトリル・ブタジエン・スチレ
ン樹脂、変性ボリフェニレンオキサイド樹脂、ポリブタ
ジエンテレフタレート樹脂、ポリカーボネート樹脂等が
挙げられ、これらは単独もしくは2種以上の混合系とし
て使用する. これらの熱可塑性樹脂は、複合繊維およ
び低融点金属を集合させた導電性充塙材の表面を被覆し
た後、切断してマスターペレットとする.この場合、熱
可塑性樹脂にフラックスを含ませておくことが大切であ
る.
本発明に用いる(E)熱可塑性樹脂ペレット(ナチュラ
ルペレットともいう)としては、熱可塑性樹脂をペレッ
ト状にしたものであればよく、ボリプロビレン樹脂、ポ
リエチレン樹脂、ポリスチレン樹脂、アクリロニトリル
・プタジエン・スチレン共重合樹脂、変性ボリフエニレ
ンオキサイド樹脂、ポリブチレンテレフタレート樹脂、
ポリカーボネート樹脂等が挙げられ、これらは単独もし
くは2種以上の混合系として使用してもよい.前述した
(D)熱可塑性樹脂と同種又は同一でも良く、異なって
もよい. またマスターペレットの熱可塑性樹脂と混合
することによって界面に形成される第三の合成樹脂が補
強効果をもつもの、すなわちブレンドボリマーとなるよ
うなものでもよい. 例えばマスターペレットの熱可塑
性樹脂として変性PPO樹脂、ポリカーボネート樹脂等
を使用するときは、ナチュラルペレットとしてスチレン
系の熱可塑性樹脂を使用すると好結果が得られる. こ
うすることにより界面に形成される第三の合成樹脂が補
強効果を持つものである.こうした組み合せを用いるこ
とにより、より特性の゜優れた成形品を得ることができ
る.
本発明の導電性樹脂組成物およびその成形品は、通常次
のようにして製造する. 長繊維状の複合繊維と低融点
金属とを集合させて導電性充填材とし、フラックスを含
んだ熱可塑性樹脂とともに押出機のダイスを通して押し
出し、導電性充填材の表面に熱可塑性樹脂を肢覆形成し
、次いで適当な大きさに切断してペレット状のマスター
ペレットとする. このマスターペレットは通常断面が
円形であるが、偏平でもその曲の形状でもよく、特に形
状に限定されるものではない. マスターペレットの製
造はその工程を連続的に行うことが経済的に有利である
が、バッチ方式で製造してもよい. こうして得たマス
ターペレットにナチュラルペレットを配合して導電性樹
脂組成物を製造する. ナチュラルペレットの形状は前
記のマスターペレットの形状と同様特にその形状を制限
するものではない. 配合するナチュラルペレットは、
導電性樹脂組成物やその成形品に要求される特性に応じ
て熱可塑性樹脂の種類およびその量を適切に選択する.
こうして得た導電性樹脂組成物を低融点金属の融点以
上の温度で射出成形して、電磁波シールドを必要とする
電子機器、計測機器、通信機器等のハウジングや部品の
成形品として使用することができる. 成形品を得る場
合に射出成形する方法を説明したが、これらに限定され
ることなく押出成形、移送成形、圧縮成形等で成形して
もよい.
(作用)
本発明によれば複合繊維と低融点金属とをフラックスを
含む熱可塑性樹脂で被覆形成してベレ・yト状に切断し
たマスターペレット、熱可塑性樹脂ペレットとしたこと
によって優れた効果が得られるものである.
すなわち、導電性樹脂組成物が射出成形機の加熱シリン
ダー内で混練される際に、マスターペレットに含まれる
複合繊維が分散・混練され、熱可塑性樹脂に含まれてい
るフラッグスに複合繊維が十分接触し、濡れ性が付与さ
れるため、低融点金属がその複合繊鱈相互の接触してい
る部分をまんべんなく覆う. また、この混練の際複合
繊維は剛性、強度があるため切断されたり、曲りたりす
ることがない. こうして分散・混練したものを金型内
に注入して冷却・固化すると、複合繊維相互の接合点を
低融点金属が融着して網目状態となって冷却固化する.
このように複合繊維と複合繊維との接合点が離れるこ
となく低融点金属によって強固に融着結合されているた
め、高温環境下に置いても導電性が劣化することはない
. このことは導電性樹脂成形品の樹脂分を溶剤で溶解
除去させてみると、複合繊維と複合繊維とが強固に融着
した網目状態をはっきりと確認することができる.
《実施例》
次に本発明を実施例によって具体的に説明する.実施例
直径50μlの長繊維状の複合繊維(ステンレスの合金
の表面に25μl厚さの銅を被覆したもの)を500本
収束し、これに直径500μlの低融点金属(Sn60
%,Pb40%)の繊維を集合させた導電性充填材の表
面に、フラッグスとしてボリスチレン樹脂100重量部
に対してロジン2重量部とHCA(三光化学社製、商品
名》3重量部を含むダイヤレックスHT−91(三菱モ
ンサイト社製ボリスチレン樹脂、商品名)を、押出機の
ダイスを通して被覆形成した. これを冷却した後、ペ
レタイザーで繊維方向6III1の長さに切断してマス
ターペレットとした. 次に、このマスターペレットに
、ボリスチレン樹脂800重量部配合して、導電性樹脂
組成物を製造した. この場合の複合繊維の充填率は2
0重量%であった. この導電性樹脂組成物を用いて射
出成形して成形品を製造した.得られた成形品について
体積抵抗率、電磁波シールド効果等の試験を行ったので
その結果を第1表に示したが、本発明はシールド効果に
優れており、特に80℃で3000時間処理後において
もシールド効果の劣化はほとんど見られず、本発明の極
めて顕著な効果が確認された.
比較例
直径100μmの長繊維状の銅繊維を200本収束し、
これに直径100μ一の低融点金属【≦n 60%,P
b40%》の繊維を集合させて導電性充填材とし、ボリ
スチレン樹脂100重量部に対してロジン2重Ji部と
HCA (前出)3重量部を添加したものを押出機で混
練しながらダイスを通して押出し、導電性充填材の表面
に被覆形成した後、ペレット状に切断して導電性樹脂組
成物とし、さらにその成形品を製造した. これらにつ
いて実施例と同様な試験を行い結果を得たので、第1表
に示した.第
表
第
表(″)−jさ)
(単位)
(単位)
[発明の効果]
以上の説明および第1表から明らかなように、本発明の
導電性樹脂組成物およびその成形品は、ステンレス合金
繊維の表面に銅を被覆した複合繊維と低融点金属とを集
合させて導電性充填材とし、まなこの導電性充填材を被
覆形成する熱可塑性樹脂側にフラックスを含まぜるとと
もに、ナチュラルペレットと配合したことによって、複
合繊維の優れた剛性、強度によって繊維の切断や曲りが
なく、かつ繊維の濡れ性が良好となるともに、低融点金
属とが強固に融着するため、高温においても導電性の劣
化がなく経時安定性に優れ、成形加工も安全で、機械的
強度を低下させることのない信頼性の高い成形品が得ら
れる.Detailed Description of the Invention [Objective of the Invention] (Field of Industrial Application) The present invention provides an F8 condyle that has excellent electrical conductivity and does not deteriorate in electrical conductivity even in various environments. Concerning highly conductive resin compositions and molded products thereof. (Prior Art) Conventionally, conductive resin compositions have been made by blending conductive fibers with thermoplastic resins, and the compositions have been used as conductive resin molded products in electronic devices, measuring instruments, etc. These materials have mainly been blended with carbon-based conductive fibers, but their main purpose is to prevent static electricity, and their conductivity is low and they are not very effective against electromagnetic shielding, which has become a problem in recent years. Therefore, attempts have been made to improve conductivity by using metal-based conductive fibers for electromagnetic shielding. However, when metal-based conductive fibers (hereinafter simply referred to as metal fibers) are added, the specific gravity increases and the original properties of the resin are significantly impaired, so it is necessary to minimize the amount of the metal-based conductive fibers. ing. However, when the amount of these metal fibers is reduced, the conductivity decreases and there are also significant restrictions on the usage environment. In other words, due to the difference in thermal expansion between the resin used and the metal fiber, there is a problem that the conductivity deteriorates at high temperatures. There was also the problem that the metal fibers could be cut or bent due to cross-wires caused by the screw during molding. Therefore, at present, metal 8
l! It has been put into practical use by increasing the amount of fiber blended to prevent decreases and deterioration of conductivity, and by limiting the environment in which it can be used. As described above, conventional conductive resin compositions of metal fibers and molded products thereof are limited in their applications, and have problems such as unstable properties and low reliability. On the other hand, there is a method of blending a low-melting point metal into a thermoplastic resin, but the low-melting point metal has poor adhesion to the resin, and the resin and low-melting point metal do not adhere well when changing the color of the material, etc. There was a problem that the metal separated and the metal was scattered, which was extremely dangerous during the forming process. (Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems. It increases the rigidity and strength of conductive fibers, prevents the fibers from being cut or bent when cross-wired, and provides conductive fibers. A highly reliable conductive resin in which the fibers and low-melting point metal are strongly bonded, and the conductivity does not deteriorate even at high temperatures and has excellent stability over time. It is also stable during molding and processing, and does not reduce the mechanical strength of the resin. The purpose is to provide compositions and molded products thereof. [Details of the Invention] (Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventors have improved the strength of conductive fibers and improved their wettability with low melting point metals. The present invention was completed based on the discovery that the above object could be achieved by using composite fibers made of stainless steel alloy fibers whose surfaces were coated with copper. That is, the present invention includes (A) a composite fiber in which the surface of a stainless steel alloy fiber is coated with copper; (B) a conductive filler made of a low melting point metal; and (C) a thermoplastic resin containing flux on the surface of the conductive filler. This is a conductive resin composition characterized by blending master pellets obtained by integrally forming a coating and cutting into pellets, and (E) thermoplastic resin pellets. This is a conductive resin molded product that is characterized by being molded at a temperature above the melting point of the melting point metal. As the composite fiber used in the present invention (A>), long fiber-like fibers made by coating the surface of stainless steel alloy fibers with copper are used. The diameter of the composite fiber is 5 to 10.
A conductive filler is desirably about 0μ1, and is aggregated with a low melting point metal to be described later to form a conductive filler, and a thermoplastic resin containing flux is coated and integrated on the surface, and then a length of 5 to 6
Cut into mn pellets to make master pellets. The compounding ratio of composite fiber is 0.5 to the whole composition.
It is desirable to blend the amount of 30% to 30%. If the blending ratio is less than 0.5% by weight, the conductivity will be low;
This is because if it exceeds this, the fluidity and other physical properties of the conductive resin composition will deteriorate, which is undesirable. (B) used in the present invention
The low melting point metal should be selected depending on the molding temperature of the thermoplastic resin used, and preferably has a melting point slightly higher than the thermoplastic resin. More preferably, a metal with a low melting point that melts at the lowest temperature part of the heating cylinder of the injection-molded Tachibana can be selected. As a low melting point metal,
Sn or Sn-Pb-based general solder, Sn-Pb-A
Examples include g-based high-temperature solder and Sn-Pb-Bi-based low-temperature solder, and these can be used alone or as a mixture of two or more types. The shape of the low melting point metal is not particularly limited and may be fibrous, granular, or linear. The blending ratio of the low melting point metal is sufficient to bind and cover the composite fibers, and it is desirable to blend the metal in an amount of 5 to 30% by weight based on the composite fibers. If the blending ratio is less than 5% by weight, the binding and coating of the composite fibers will be insufficient and the conductivity will be low, and if it exceeds 30% by weight, the low melting point metal will be liberated and the physical properties of the resin will deteriorate, which is undesirable. .. The low melting point metal may be condensed into long conjugate fibers, each conjugate fiber may be coated with a molten low melting point metal, or the entire conjugate fiber may be coated. In short, it is important to make sure that the composite fiber and low melting point metal are integrated. The material made in this way is used as a conductive filler. The flux (C) used in the present invention includes organic acids used in the shell such as stearic acid, lactic acid, oleic acid,
Examples include glutamic acid, resin-based rosin, and activated rosin. Halogen-based fluxes are undesirable because they tend to corrode composite fibers or molds. In addition, even compounds that are not generally used as fluxes exhibit good wettability and do not harm the resin or mold, such as HHCA (manufactured by Sanko Kagaku Co., Ltd., trade name), which has the following chemical formula. Since it exhibits good wettability, it can be used as a flux in the present invention. The mixing ratio of flux is preferably in the range of 0.1 to 5% by weight based on the low melting point metal. If the amount is less than 0.1% by weight, it will not be effective in improving the wettability of the composite fiber, and if it exceeds 531% by weight, it will cause deterioration of the physical properties of the molded product, corrosion and staining of the mold, etc., which is undesirable. Examples of the thermoplastic resin (D) used in the present invention include polyvinyl resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, modified polyphenylene oxide resin, polybutadiene terephthalate resin, polycarbonate resin, etc. can be used alone or as a mixture of two or more types. These thermoplastic resins are used to coat the surface of a conductive filler made of composite fibers and low-melting metals, and then cut into master pellets. In this case, it is important to include flux in the thermoplastic resin. (E) Thermoplastic resin pellets (also referred to as natural pellets) used in the present invention may be any thermoplastic resin pelletized, such as polypropylene resin, polyethylene resin, polystyrene resin, acrylonitrile-ptadiene-styrene copolymer. resin, modified polyphenylene oxide resin, polybutylene terephthalate resin,
Examples include polycarbonate resins, and these may be used alone or as a mixture of two or more. It may be the same kind or the same as the thermoplastic resin (D) mentioned above, or it may be different. Alternatively, the third synthetic resin formed at the interface by mixing with the thermoplastic resin of the master pellet may have a reinforcing effect, that is, it may be a blend polymer. For example, when using modified PPO resin, polycarbonate resin, etc. as the thermoplastic resin of the master pellet, good results can be obtained by using a styrene-based thermoplastic resin as the natural pellet. By doing this, the third synthetic resin formed at the interface has a reinforcing effect. By using such a combination, it is possible to obtain molded products with even better properties. The conductive resin composition of the present invention and molded articles thereof are usually manufactured as follows. A conductive filler is made by assembling long composite fibers and a low-melting metal, and extruded through a die of an extruder together with a thermoplastic resin containing flux to form a covering of the thermoplastic resin on the surface of the conductive filler. Then, cut into appropriate sizes to make master pellets. This master pellet usually has a circular cross section, but it may be flat or curved, and is not particularly limited to the shape. Although it is economically advantageous to carry out the process continuously in the production of master pellets, it is also possible to produce them in a batch manner. A conductive resin composition is produced by blending natural pellets with the master pellets obtained in this way. As with the shape of the master pellet described above, the shape of the natural pellet is not particularly limited. The natural pellets to be mixed are
The type and amount of thermoplastic resin is appropriately selected depending on the characteristics required for the conductive resin composition and its molded product.
The conductive resin composition thus obtained can be injection molded at a temperature higher than the melting point of the low-melting point metal and used as molded products for housings and parts of electronic equipment, measuring instruments, communication equipment, etc. that require electromagnetic shielding. can. Although the method of injection molding for obtaining a molded article has been explained, the method is not limited to these, and molding may be performed by extrusion molding, transfer molding, compression molding, etc. (Function) According to the present invention, excellent effects can be achieved by forming composite fibers and low-melting point metals into master pellets and thermoplastic resin pellets by coating them with a thermoplastic resin containing flux and cutting the composite fibers and low-melting-point metal into a beveled shape. This is what you get. In other words, when the conductive resin composition is kneaded in the heating cylinder of the injection molding machine, the composite fibers contained in the master pellets are dispersed and kneaded, and the composite fibers make sufficient contact with the flags contained in the thermoplastic resin. However, since it has wettability, the low melting point metal evenly covers the parts of the composite fibers that are in contact with each other. Also, during this kneading process, the composite fibers are rigid and strong, so they will not be cut or bent. When the thus dispersed and kneaded mixture is injected into a mold and cooled and solidified, the low melting point metal fuses to the bonding points of the composite fibers, forming a network that solidifies upon cooling.
In this way, the bonding points between the composite fibers do not separate and are firmly fused and bonded by the low-melting point metal, so the conductivity does not deteriorate even if placed in a high-temperature environment. This can be confirmed by dissolving and removing the resin content of a conductive resin molded product using a solvent, and it is possible to clearly see the network state in which composite fibers are firmly fused together. 《Example》 Next, the present invention will be specifically explained by referring to an example. Example 500 long composite fibers (stainless steel alloy surface coated with 25 μl thick copper) with a diameter of 50 μl were converged, and a low melting point metal (Sn60
Diamonds containing 2 parts by weight of rosin and 3 parts by weight of HCA (manufactured by Sanko Kagaku Co., Ltd., trade name) per 100 parts by weight of polystyrene resin are applied as flags to the surface of a conductive filler made of aggregated fibers of 40% Pb. Rex HT-91 (boristyrene resin manufactured by Mitsubishi Monsite, trade name) was passed through a die of an extruder to form a coating. After cooling, this was cut into lengths of 6III1 in the fiber direction using a pelletizer to form master pellets. Next, 800 parts by weight of polystyrene resin was blended into this master pellet to produce a conductive resin composition. In this case, the filling rate of the composite fibers was 2.
It was 0% by weight. A molded article was manufactured by injection molding using this conductive resin composition. The obtained molded product was tested for volume resistivity, electromagnetic shielding effect, etc., and the results are shown in Table 1. The present invention has an excellent shielding effect, especially after being treated at 80°C for 3000 hours. However, almost no deterioration of the shielding effect was observed, confirming the extremely significant effect of the present invention. Comparative Example 200 long copper fibers with a diameter of 100 μm were converged,
This is a low melting point metal with a diameter of 100μ [≦n 60%, P
Fibers of 40%) were aggregated to form a conductive filler, and 2 parts of rosin and 3 parts of HCA (as mentioned above) were added to 100 parts by weight of polystyrene resin, and the mixture was kneaded in an extruder and passed through a die. After extrusion and forming a coating on the surface of the conductive filler, the conductive resin composition was cut into pellets, and a molded article thereof was produced. Tests similar to those in Examples were conducted on these and the results are shown in Table 1. Table 1 Table (″)-j) (Unit) (Unit) [Effect of the invention] As is clear from the above explanation and Table 1, the conductive resin composition of the present invention and its molded product can be applied to stainless steel. Composite fibers coated with copper and low melting point metal are aggregated on the surface of alloy fibers to form a conductive filler, and flux is included in the thermoplastic resin side that covers Manako's conductive filler, and natural pellets and By blending the composite fibers, the excellent rigidity and strength of the composite fibers prevents the fibers from cutting or bending, and the fibers have good wettability.They also firmly fuse with low-melting metals, making them conductive even at high temperatures. It has excellent stability over time with no deterioration, is safe to mold, and can produce highly reliable molded products with no decrease in mechanical strength.
Claims (1)
繊維及び(B)低融点金属からなる導電性充填材の表面
に、(C)フラックスを含む(D)熱可塑性樹脂を被覆
形成一体化し、切断してペレット状にしたマスターペレ
ットと、(E)熱可塑性樹脂ペレットとを配合したこと
を特徴とする導電性樹脂組成物。 2(A)ステンレス合金繊維の表面を銅で被覆した複合
繊維及び(B)低融点金属からなる導電性充填材の表面
に、(C)フラックスを含む(D)熱可塑性樹脂を被覆
形成一体化し、ペレット状に切断したマスターペレット
と、(E)熱可塑性樹脂ペレットとを配合した導電性樹
脂組成物を、低融点金属の融点以上の温度で成形するこ
とを特徴とする導電性樹脂成形品。[Scope of Claims] 1 (A) a composite fiber in which the surface of a stainless steel alloy fiber is coated with copper; (B) a conductive filler made of a low-melting point metal; (C) a flux containing (D) a thermoplastic An electrically conductive resin composition comprising a master pellet formed by coating and integrating a resin and cutting into pellets, and (E) a thermoplastic resin pellet. 2. (A) A composite fiber whose surface is coated with copper on the surface of a stainless steel alloy fiber, and (B) a conductive filler made of a low melting point metal, on which (C) a thermoplastic resin containing a flux (D) is integrally coated and integrated. A conductive resin molded article, characterized in that a conductive resin composition containing master pellets cut into pellets and (E) thermoplastic resin pellets is molded at a temperature equal to or higher than the melting point of a low melting point metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4964589A JPH02229498A (en) | 1989-03-01 | 1989-03-01 | Conductive resin composition and molding thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4964589A JPH02229498A (en) | 1989-03-01 | 1989-03-01 | Conductive resin composition and molding thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02229498A true JPH02229498A (en) | 1990-09-12 |
Family
ID=12836945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4964589A Pending JPH02229498A (en) | 1989-03-01 | 1989-03-01 | Conductive resin composition and molding thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02229498A (en) |
-
1989
- 1989-03-01 JP JP4964589A patent/JPH02229498A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0283844B1 (en) | Conductive resin composition and molded product using the same | |
CN1914694B (en) | Metal/plastic hybrid and shaped body produced therefrom | |
JPS6320270B2 (en) | ||
JPH0647254B2 (en) | Conductive resin composition | |
JPH02229498A (en) | Conductive resin composition and molding thereof | |
JP2523098B2 (en) | Conductive resin composition and molded article thereof | |
JPH0647255B2 (en) | Conductive resin composition | |
JPH06315932A (en) | Conductive resin molded piece | |
JPH0212986B2 (en) | ||
JPH0212987B2 (en) | ||
JP2523097B2 (en) | Conductive resin composition and molded article thereof | |
JPH0248588B2 (en) | DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN | |
JPH0237120B2 (en) | DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN | |
JP2658000B2 (en) | Conductive resin composition and molded article thereof | |
JPH06128493A (en) | Production of electrically conductive resin composition | |
JPH0212988B2 (en) | ||
JPH07122023B2 (en) | Conductive resin composition | |
JPH0813904B2 (en) | Conductive resin composition | |
JPH039956A (en) | Highly conductive resin composition | |
JPH06339921A (en) | Conductive resin molded product | |
JP2852942B2 (en) | Conductive resin composition and molded article thereof | |
JPH02148799A (en) | Conductive resin composition and molded form thereof | |
JPH03257999A (en) | Conductive resin composition and its mold | |
JP2002117721A (en) | Conductive plastic | |
JP2001200163A (en) | Electroconductive resin composition and its molded product |