[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0222656B2 - - Google Patents

Info

Publication number
JPH0222656B2
JPH0222656B2 JP58222408A JP22240883A JPH0222656B2 JP H0222656 B2 JPH0222656 B2 JP H0222656B2 JP 58222408 A JP58222408 A JP 58222408A JP 22240883 A JP22240883 A JP 22240883A JP H0222656 B2 JPH0222656 B2 JP H0222656B2
Authority
JP
Japan
Prior art keywords
rotating body
rotational position
detection means
ultrasonic
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58222408A
Other languages
Japanese (ja)
Other versions
JPS60114240A (en
Inventor
Takahiro Nakamura
Fumio Muramatsu
Masami Kawabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58222408A priority Critical patent/JPS60114240A/en
Publication of JPS60114240A publication Critical patent/JPS60114240A/en
Publication of JPH0222656B2 publication Critical patent/JPH0222656B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超音波パルスを機械的に扇形走査し
超音波断層像を得て、生体等の診断を行う機械走
査式超音波診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mechanical scanning ultrasonic diagnostic device that mechanically scans ultrasonic pulses in a fan shape to obtain ultrasonic tomographic images and diagnose living bodies. be.

従来例の構成とその問題点 機械式扇形走査型超音波診断装置は、一般に圧
電材料からなる振動子にパルス電圧を加え超音波
パルスを送波させ、被検体からの音響インピーダ
ンスの差違により生じるエコーを受波し同時にそ
の超音波パルス送受波の偏向を行うために振動子
の方向を扇形に変化させることによりBモード像
を得るものである。その一例を第1図に示す。超
音波パルスは、第1図に示すように、超音波パル
スを送受波する1個以上の振動子10を回転体1
1の円周面上に取りつけ、この軸12を中心に回
転させることにより偏向させる。lは走査エリア
である。この回転のための動力は、ロータリーエ
ンコーダに代表される回転位置・回転速度検出手
段13を有したモータ14から、たとえばプーリ
ー、ベルト、歯車などによる伝達手段15を経て
与えられる。回転位置・回転速度検出手段13
は、第2図aに示した例のように、回転体11の
基準位置21と走査開始位置0/8の位置の角度θ
を検出するもので、一般に回転体11の角度θと
同図bの回転位置・回転速度検出手段13の角度
は等しい。ここから検出した信号は、=θ=
0、すなわち振動子P0超音波パルスの送受波方
向が走査エリアlの開始点に重つたときに発生す
る同図cのパルスAと、θおよびの微小一定角
度ごとに発生するパルスBから成り、パルスAと
Bから回転体11の角度θをカウンタ等を使用す
ることで知ることができ、パルスBを用いて回転
体11を一定回転に保つサーボ回路を働かせる。
振動子P0は走査エリアの開始位置であるθ=0/8
の地点から時計方向へ回転し1/8の点を経て2/8の
点へ達する。ここまでは、4つの振動子P0〜P3
うちP0のみを超音波パルスの送受波に使用する。
振動子P0が2/8を超えた時点で振動子P0による送
受波は止め、同時に走査エリアに入つた振動子
P1にて送受波を行い、4/8に達した時点で送受波
を振動子P2に切り換える。このような動作は、
振動子P0〜P4を切り換える電子スイツチを設け、
パルスAとBから得た角度θから0/8,2/8,4/8,
6/8の位置で順次P0→P1→P2→P3と切り換わるよ
う電子スイツチSを制御すればよい。
Configuration of conventional examples and their problems Mechanical fan-shaped scanning ultrasonic diagnostic equipment generally transmits ultrasonic pulses by applying a pulse voltage to a vibrator made of piezoelectric material, and generates echoes due to differences in acoustic impedance from the subject. A B-mode image is obtained by changing the direction of the transducer in a fan shape in order to receive the ultrasonic pulse and simultaneously deflect the transmitted and received ultrasonic pulse. An example is shown in FIG. As shown in FIG.
1, and is deflected by rotating it around this shaft 12. l is the scanning area. Power for this rotation is applied from a motor 14 having a rotational position/rotation speed detection means 13 typified by a rotary encoder via a transmission means 15 such as a pulley, belt, gear, or the like. Rotational position/rotational speed detection means 13
is the angle θ between the reference position 21 of the rotating body 11 and the scanning start position 0/8, as in the example shown in FIG. 2a.
Generally, the angle θ of the rotating body 11 and the angle of the rotational position/rotational speed detection means 13 shown in FIG. The signal detected from here is =θ=
0, that is, the transducer P0 Consists of pulse A shown in the figure c, which is generated when the transmission and reception direction of the ultrasonic pulse coincides with the starting point of scanning area l, and pulse B, which is generated at every minute constant angle of θ and The angle θ of the rotating body 11 can be determined from pulses A and B by using a counter or the like, and the pulse B is used to operate a servo circuit that keeps the rotating body 11 at a constant rotation.
Transducer P 0 is the starting position of the scanning area θ = 0/8
Rotate clockwise from point , pass through point 1/8, and reach point 2/8. Up to this point, the four oscillators P 0 to P 3
Of these, only P 0 is used for transmitting and receiving ultrasonic pulses.
When the transducer P 0 exceeds 2/8, the transmission and reception by the transducer P 0 is stopped, and at the same time the transducer entering the scanning area
Waves are transmitted and received by P 1 , and when reaching 4/8, the wave transmission and reception is switched to oscillator P 2 . This kind of behavior is
An electronic switch is provided to switch the oscillators P 0 to P 4 .
From the angle θ obtained from pulses A and B, 0/8, 2/8, 4/8,
The electronic switch S may be controlled so as to sequentially switch from P 0 to P 1 to P 2 to P 3 at the 6/8 position.

しかし、この方法では、回転体11の回転精度
は回転位置・回転速度検出手段13が1回転当り
のパルスBの数によつて左右され、パルスB1回
当りに送受波される超音波パルスが増すほど、そ
の偏向角θの精度は低下する。第1図および第2
図で示した例に於いて、走査エリアl内に100本
の超音波パルスの送受波を行い、回転位置・回転
速度検出手段13からパルスAが1回転に1回、
パルスBが1回転に100回出力されるとしたとき、
走査エリアl内100回の超音波パルス送受波に対
し、回転位置・速度検出手段13からは25回のパ
ルスしか得られず、確実にモータ14および回転
体11の速度を制御できるのは4パルスに1回と
なり、扇形走査である場合、特に遠距離部分の画
像ひずみが大きく、診断上の精度が低下する。そ
こで、回転位置・回転速度検出手段13の1回転
当りのパルスBがより多く出力される角度分解の
高いものが望ましいが、現実には1回転当りに出
力されるパルス数には限界があり、高価なものと
なつてくる。
However, in this method, the rotational accuracy of the rotating body 11 is affected by the number of pulses B per rotation of the rotational position/rotational speed detection means 13, and the number of ultrasonic pulses transmitted and received per pulse B increases. The accuracy of the deflection angle θ decreases as the angle increases. Figures 1 and 2
In the example shown in the figure, 100 ultrasonic pulses are transmitted and received within the scanning area l, and the pulse A is transmitted from the rotational position/rotational speed detection means 13 once per rotation.
When pulse B is output 100 times per revolution,
For 100 ultrasonic pulses transmitted and received within the scanning area l, only 25 pulses are obtained from the rotational position/speed detection means 13, and only 4 pulses can reliably control the speed of the motor 14 and rotating body 11. In the case of fan-shaped scanning, image distortion is particularly large in long-distance portions, and diagnostic accuracy is reduced. Therefore, it is desirable that the rotational position/rotational speed detection means 13 has a high angular resolution that outputs more pulses B per rotation, but in reality, there is a limit to the number of pulses output per rotation. It becomes expensive.

発明の目的 本発明は以上のような問題を解決するためにな
されたもので、回転位置・回転速度検出手段に1
回転当りのパルスBの発生数の多いものを使用し
た場合と同等の効果が得られ、超音波パルス送受
波の偏向精度を向上させる事により、ひずみの少
ない超音波断層像を得ることを目的とするもので
ある。
Purpose of the Invention The present invention has been made to solve the above-mentioned problems.
The aim is to obtain an ultrasonic tomographic image with less distortion by improving the deflection accuracy of ultrasonic pulse transmission and reception. It is something to do.

発明の構成 本発明は上記目的を達成するためになされたも
ので、少なくとも1個の超音波振動子を保持し回
転する回転体と、前記回転体を駆動する駆動手段
と、前記駆動手段と回転体とに連結され、駆動手
段の回転を減速させて回転体に伝える減速伝達手
段と、前記回転体の回転基準角度を低精度に検出
する回転体位置検出手段と、前記駆動手段に連結
され駆動手段の回転位置を高精度に検出する回転
位置・回転角度検出手段と、前記回転体位置検出
手段と回転位置・回転速度検出手段からの信号に
基づき超音波振動子の走査範囲及び超音波振動子
の選択を行う手段とを具備することを特徴とする
機械走査式超音波診断装置を提供するものであ
る。
Structure of the Invention The present invention has been made to achieve the above object, and includes a rotating body that holds and rotates at least one ultrasonic transducer, a driving means for driving the rotating body, and a rotating body that rotates with the driving means. a deceleration transmitting means connected to the driving means and transmitting the deceleration of the rotation of the driving means to the rotating body; a rotating body position detecting means for detecting a rotation reference angle of the rotating body with low precision; and a rotating body position detecting means connected to the driving means and driving the rotating body. A rotational position/rotation angle detection means for detecting the rotational position of the means with high precision, and a scanning range of the ultrasonic transducer and the ultrasonic transducer based on signals from the rotating body position detection means and the rotational position/rotation speed detection means. The present invention provides a mechanical scanning ultrasonic diagnostic apparatus characterized by comprising means for selecting.

実施例の説明 以下、図面を用いて本発明の実施例を詳細に述
べる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例における機械走査式
超音波診断装置の概観図を示す。
FIG. 3 shows an overview of a mechanical scanning ultrasonic diagnostic apparatus according to an embodiment of the present invention.

図において、10は振動子、11は回転体、1
2は回転軸、13は回転位置・回転速度検出手
段、14はモータ、31は減速伝達手段、32は
回転体位置検出手段であり、本実施例の特徴は、
モータ14からの動力によりプーリー、ベルト、
歯車等の組合わせからなる減速伝達手段31を介
して回転体11を駆動するようにし、さらに回転
体11のある角度に1回のパルスを発生する回転
体位置検出手段32を付加したもので、回転体位
置検出手段32はLEDと光検出素子を組み合わ
せたものや、磁石と磁気検出素子を組み合わせた
ものを用いており、回転体11と同一速度、同一
回転角を有する物、又は回転体11そのものに目
標32aをつけこれを検出する検出手段32bに
より回転体11の一定回転角度を検出するように
構成した点にある。
In the figure, 10 is a vibrator, 11 is a rotating body, 1
2 is a rotating shaft, 13 is a rotational position/rotational speed detection means, 14 is a motor, 31 is a deceleration transmission means, and 32 is a rotating body position detection means.The features of this embodiment are as follows.
The power from the motor 14 causes the pulley, belt,
The rotary body 11 is driven through a deceleration transmission means 31 consisting of a combination of gears, etc., and a rotary body position detection means 32 that generates one pulse at a certain angle of the rotary body 11 is added. The rotating body position detection means 32 uses a combination of an LED and a photodetecting element, or a combination of a magnet and a magnetic detection element, and has the same speed and the same rotation angle as the rotating body 11, or a device that has the same speed and the same rotation angle as the rotating body 11. The present invention is characterized in that a target 32a is attached to the target 32a, and a detection means 32b for detecting the target is configured to detect a constant rotation angle of the rotating body 11.

第4図に上記実施例の制御回路構成図を示す。
回転体位置検出手段32からのパルスと、回転位
置・速度検出手段13からのパルスにより、振動
子P0〜P3の切り換えを行う電子スイツチ43の
制御を行うN進カウンタ41を動作させる。振動
子P0〜P3は実際は回転体11の円周上に設けら
れるのであるが、本図においては説明の都合上回
転体11と離れた位置に示してある。電子スイツ
チ43は、希望の走査エリア内にある振動子を選
択するもので、これを通じて装置制御部44から
の送波電圧を走査エリア内の振動子P0〜P3のい
ずれかに送り込み、エコー信号を受波して、装置
制御部44にて断層像を形成させ、表示部45に
表示する。また、回転位置・速度検出手段13
は、PLL等のモータ制御部42にて制御を行う
ための信号となるものであり、装置制御部44か
ら任意の速度で回転制御が行える。ここで、減速
伝達手段31の減速比を1/Nとすれば、回転体
11の角度θの変化に対するモータの角度の変
化はN倍となる。第5図は、例としてNが8であ
るとしたときの、回転体11と回転位置・速度検
出手段13との位置関係及びその駆動パルスのタ
イムチヤートを示す。
FIG. 4 shows a control circuit configuration diagram of the above embodiment.
The pulses from the rotating body position detection means 32 and the rotational position/speed detection means 13 operate the N-ary counter 41 which controls the electronic switch 43 which switches the oscillators P 0 to P 3 . Although the vibrators P 0 to P 3 are actually provided on the circumference of the rotating body 11, they are shown at positions apart from the rotating body 11 in this figure for convenience of explanation. The electronic switch 43 is used to select a transducer within the desired scanning area, and through it sends the transmitting voltage from the device control unit 44 to any of the transducers P 0 to P 3 within the scanning area to produce an echo. Upon receiving the signal, a tomographic image is formed in the device control section 44 and displayed on the display section 45 . In addition, the rotational position/speed detection means 13
is a signal for controlling the motor control section 42 such as a PLL, and rotation control can be performed from the device control section 44 at an arbitrary speed. Here, if the reduction ratio of the reduction transmission means 31 is 1/N, the change in the motor angle with respect to the change in the angle θ of the rotating body 11 will be N times. FIG. 5 shows a time chart of the positional relationship between the rotating body 11 and the rotational position/speed detecting means 13 and the driving pulse thereof when N is 8 as an example.

第5図a,bにおいて、回転体11の角度θが
走査エリアを0/8〜2/8まで変化したとすれば、回
転位置・回転速度検出手段13の角度の変化
は、2回転となる。いま、振動子P0が走査開始
位置0/8から走査を開始したとする。振動子P0
1/8まで行われたとき、は1回転を終え、同図
cのAパルスを1回発生する。2/8まで行われれ
ば、再びは1回転し、パルスAを発生する。こ
のようにθが1/8毎にが1回転し、パルスAを
発生する。従つて、モータ14のサーボ回路を働
らかせるパルスBの数も、従来例で示した減速伝
達手段31がない場合よりも8倍に増し、走査線
1本当り2回の制御が行える。これは、第6図に
示した時間関係となり、それぞれの振動子P0
P3を電子スイツチSによつてθが2/8毎に、走査
エリアlにはいつたものに切り換えることにより
高い精共の制御を行える。この電子スイツチSの
切り換えは、θが0/8〜1/8の間に、回転体位置検
出手段32からパルスCが1回検出されるように
これを設定しておき(第6図イ参照)、このパル
スCと前述したパルスA(第6図ロ参照)を第4
図に示す8進カウンタ41に、それぞれリセツト
およびクロツクとして用いることにより、回転体
11の角度θがどの位置にあるかを第4図および
第6図ハのカウンタ出力Kから知ることが可能で
あり、ここから電子スイツチ43を切り換えを行
う事が可能となる(第6図ニ参照)。一般に回転
位置を知るカウンタ41には、減速伝達手段31
の減速比が1/Nであれば、N進のカウンタを用
いる。また、回転体位置検出手段32は、回転位
置・回転速度検出手段13が、1回転する間にリ
セツト出来る程度の精度が得られればよい。ここ
では、回転位置・回転速度検出手段13に、ロー
タリーエンコーダと称するものを例としたが、角
度に応じて、たとえば正弦波状の電圧を発生する
ものを用いても本発明は適用できる。同じよう
に、振動子を1つしか有しない第7図の場合、例
として減速比を1/4とし、実線で示した0/8〜2/8
の走査エリアlを有していたとすれば、これは第
3図、第4図に示した実施例のP1〜P3を取り去
つた場合と同と見ることができる。このときのタ
イムチヤートは第7図bとなる。この実線で示し
た0/8〜2/8の走査エリアlをさらに拡げて破線で
示した0/8〜2/8までの円形の走査エリアを走査さ
せることにより、回転軸12を中心とした円形の
断属像が得られる。
In FIGS. 5a and 5b, if the angle θ of the rotating body 11 changes the scanning area from 0/8 to 2/8, the change in the angle of the rotational position/speed detection means 13 will be 2 rotations. . Now, assume that the transducer P 0 starts scanning from the scanning start position 0/8. When the oscillator P 0 has rotated to 1/8, it completes one revolution and generates the A pulse shown in c in the figure once. If it is completed to 2/8, it will complete one rotation again and generate pulse A. In this way, θ rotates once every 1/8, and pulse A is generated. Therefore, the number of pulses B for operating the servo circuit of the motor 14 is also eight times greater than in the case without the deceleration transmission means 31 shown in the conventional example, and control can be performed twice per scanning line. This becomes the time relationship shown in Figure 6, and each oscillator P 0 ~
High precision control can be achieved by switching P 3 to the scanning area I every 2/8 of θ using the electronic switch S. The electronic switch S is set so that the pulse C is detected once from the rotating body position detection means 32 when θ is between 0/8 and 1/8 (see Fig. 6A). ), this pulse C and the pulse A mentioned above (see Fig. 6B) are combined into the fourth
By using the octal counter 41 shown in the figure as a reset and a clock, respectively, it is possible to know the position of the angle θ of the rotating body 11 from the counter output K in FIGS. 4 and 6 C. , it becomes possible to switch the electronic switch 43 from here (see FIG. 6D). In general, the counter 41 that knows the rotational position includes the deceleration transmission means 31.
If the reduction ratio is 1/N, an N-ary counter is used. Further, the rotating body position detecting means 32 only needs to have such accuracy that the rotational position/rotational speed detecting means 13 can be reset during one rotation. Here, a so-called rotary encoder is used as an example of the rotational position/rotational speed detection means 13, but the present invention can also be applied to a rotary encoder that generates, for example, a sinusoidal voltage depending on the angle. Similarly, in the case of Figure 7, which has only one vibrator, the reduction ratio is set to 1/4, and the solid line indicates 0/8 to 2/8.
This can be seen as the same as when P 1 to P 3 of the embodiment shown in FIGS. 3 and 4 are removed. The time chart at this time is shown in Figure 7b. By further expanding the scanning area l from 0/8 to 2/8 shown by the solid line and scanning the circular scanning area from 0/8 to 2/8 shown by the broken line, A circular tomographic image is obtained.

発明の効果 以上要するに本発明は少なくとも1個の超音波
振動子を保持し回転する回転体と、前記回転体を
駆動する駆動手段と、前記駆動手段と回転体とに
連結され、駆動手段の回転を減速させて回転体に
伝える減速伝達手段と、前記回転体の回転基準角
度を低精度に検出する回転体位置検出手段と、前
記駆動手段に連結され駆動手段の回転位置を高精
度に検出する回転位置・回転角度検出手段と、前
記回転体位置検出手段と回転位置・回転速度検出
手段からの信号に基づき超音波振動子の走査範囲
及び超音波振動子の選択を行う手段とを具備する
ことを特徴とする機械走査式超音波診断装置を提
供するもので、モータの回転を減速させて振動子
を回転させ、また振動子の回転を検出する手段を
設ける事により、減速を行わずに回転を行つた場
合と比べ、同じ回転位置・回転速度検出手段を用
いても、高い精度で回転制御を行う事が可能とな
り、ひずみの少ない画像を得る事が可能となる。
Effects of the Invention In summary, the present invention provides a rotary body that holds and rotates at least one ultrasonic transducer, a drive means that drives the rotary body, a drive means that is connected to the rotary body, and a rotating body that rotates the drive means. a deceleration transmission means for decelerating and transmitting the deceleration to the rotating body; a rotating body position detecting means for detecting a reference rotation angle of the rotating body with low accuracy; and a rotating body position detecting means connected to the driving means and detecting the rotational position of the driving means with high accuracy. The apparatus further comprises a rotational position/rotation angle detection means, and a means for selecting the scanning range of the ultrasonic transducer and the ultrasonic transducer based on the signals from the rotating body position detection means and the rotational position/rotation speed detection means. The present invention provides a mechanical scanning ultrasonic diagnostic device characterized by Even if the same rotational position and rotational speed detection means are used, rotation control can be performed with high accuracy, and images with less distortion can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の機械走査式超音波診断装置の概
観図、第2図a,bは従来の装置の回転体と回転
位置・回転速度検出手段との位置関係を示す図、
第2図cはそのタイムチヤート、第3図は本発明
の一実施例における機械走査式超音波診断装置の
概観図、第4図は上記実施例における装置の制御
回路構成を示す図、第5図a,bは上記実施例に
おける装置の回転体と回転位置・回転速度検出手
段との位置関係を示す図、第5図cはそのタイム
チヤート、第6図イ〜ホは上記実施例における装
置の制御関係を示すタイムチヤート、第7図は本
発明の他の実施例における機械走査式超音波診断
装置を説明するもので、同図aは位置関係を示す
図、同図bはそのタイムチヤートである。 10……振動子、11……回転体、12……回
転体の回転軸、13……回転位置・回転速度検出
手段、14……モータ、15……伝達手段、31
……減速伝達手段、32……回転位置検出手段、
41……振動子選択N進カウンタ、42……モー
タ制御部、43……振動子選択電子スイツチ、4
4……装置制御部、45……表示部。
FIG. 1 is an overview diagram of a conventional mechanical scanning ultrasonic diagnostic device, and FIGS. 2 a and b are diagrams showing the positional relationship between the rotating body and the rotational position/speed detection means of the conventional device.
Fig. 2c is a time chart thereof, Fig. 3 is an overview diagram of a mechanical scanning ultrasonic diagnostic apparatus in an embodiment of the present invention, Fig. 4 is a diagram showing the control circuit configuration of the apparatus in the above embodiment, and Fig. 5 Figures a and b are diagrams showing the positional relationship between the rotating body and the rotational position/rotational speed detection means of the apparatus in the above embodiment, Figure 5c is its time chart, and Figures 6A to 6H are the apparatus in the above embodiment. FIG. 7 is a time chart showing the control relationship, and FIG. 7 is for explaining a mechanical scanning ultrasonic diagnostic apparatus according to another embodiment of the present invention. FIG. It is. 10... Vibrator, 11... Rotating body, 12... Rotating shaft of rotating body, 13... Rotational position/rotational speed detection means, 14... Motor, 15... Transmission means, 31
... Deceleration transmission means, 32 ... Rotational position detection means,
41... Vibrator selection N-ary counter, 42... Motor control unit, 43... Vibrator selection electronic switch, 4
4... device control section, 45... display section.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1個の超音波振動子を保持し回転
する回転体と、前記回転体を駆動する駆動手段
と、前記駆動手段と回転体に連結され、駆動手段
の回転を減速させて回転体に伝える減速伝達手段
と、前記回転体の回転基準角度を低精度に検出す
る回転体位置検出手段と、前記駆動手段に連結さ
れ駆動手段の回転位置を高精度に検出する回転位
置・回転速度検出手段と、前記回転体位置検出手
段と回転位置・回転速度検出手段からの信号に基
づき超音波振動子の走査範囲および超音波振動子
の選択を行う手段とを具備することを特徴とする
機械走査式超音波診断装置。
1. A rotating body that holds and rotates at least one ultrasonic transducer, a driving means that drives the rotating body, and a device that is connected to the driving means and the rotating body, and decelerates the rotation of the driving means and transmits it to the rotating body. a deceleration transmission means, a rotating body position detecting means for detecting a rotation reference angle of the rotating body with low accuracy, and a rotational position/rotational speed detecting means connected to the driving means and detecting the rotational position of the driving means with high precision. , a mechanical scanning ultrasonic device comprising means for selecting a scanning range of an ultrasonic transducer and an ultrasonic transducer based on signals from the rotating body position detecting means and the rotational position/rotational speed detecting means. Sonic diagnostic equipment.
JP58222408A 1983-11-25 1983-11-25 Mechanical scanning type ultrasonic diagnostic apparatus Granted JPS60114240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222408A JPS60114240A (en) 1983-11-25 1983-11-25 Mechanical scanning type ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222408A JPS60114240A (en) 1983-11-25 1983-11-25 Mechanical scanning type ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS60114240A JPS60114240A (en) 1985-06-20
JPH0222656B2 true JPH0222656B2 (en) 1990-05-21

Family

ID=16781907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222408A Granted JPS60114240A (en) 1983-11-25 1983-11-25 Mechanical scanning type ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS60114240A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986571B2 (en) * 1991-04-22 1999-12-06 松下電器産業株式会社 Mechanical scanning ultrasonic probe
JP2724656B2 (en) * 1992-10-26 1998-03-09 松下電器産業株式会社 Mechanical scanning ultrasonic probe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129026A (en) * 1979-03-27 1980-10-06 Olympus Optical Co Ultrasoniccwave diagnosis device incorporated into endoscope
JPS5752444A (en) * 1980-09-12 1982-03-27 Olympus Optical Co Ultrasonic diagnosis apparatus of body cauity
JPS57183841A (en) * 1981-04-29 1982-11-12 Philips Nv Ultrasonic diagnostic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129026A (en) * 1979-03-27 1980-10-06 Olympus Optical Co Ultrasoniccwave diagnosis device incorporated into endoscope
JPS5752444A (en) * 1980-09-12 1982-03-27 Olympus Optical Co Ultrasonic diagnosis apparatus of body cauity
JPS57183841A (en) * 1981-04-29 1982-11-12 Philips Nv Ultrasonic diagnostic apparatus

Also Published As

Publication number Publication date
JPS60114240A (en) 1985-06-20

Similar Documents

Publication Publication Date Title
CA1101980A (en) Ultrasonic transducer probe
US4579122A (en) Ultrasonic scanner
WO2004034911A1 (en) Ultrasonic probe
US4106492A (en) Real time two-dimensional mechanical ultrasonic sector scanner with electronic control of sector width
US4880009A (en) Ultrasonic imaging apparatus
JPH0222656B2 (en)
JPH07299066A (en) Ultrasonic probe
JPH03182237A (en) Method and device for supersonic imaging
US4232556A (en) Moving transducer systems
JPS6129734B2 (en)
JP2000152932A (en) Ultrasonic diagnostic device
JP2837464B2 (en) Ultrasonic probe drive
JPS6134811B2 (en)
JPH07128312A (en) Mechanical scanning ultrasonic probe
JPS6135865B2 (en)
JPS624984B2 (en)
JP2724656B2 (en) Mechanical scanning ultrasonic probe
JPH114825A (en) Ultrasonic probe for three-dimensional scan
JP2604007B2 (en) Ultrasound diagnostic equipment
JPH0534012B2 (en)
JPS6321501B2 (en)
CA1089077A (en) Ultrasonic transducer probe
JPH11313825A (en) Real-time three-dimensional ultrasonic device
JPH10248842A (en) Ultrasonograph device
JPS6337662B2 (en)