[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0222503A - Laser interference measuring instrument - Google Patents

Laser interference measuring instrument

Info

Publication number
JPH0222503A
JPH0222503A JP17227788A JP17227788A JPH0222503A JP H0222503 A JPH0222503 A JP H0222503A JP 17227788 A JP17227788 A JP 17227788A JP 17227788 A JP17227788 A JP 17227788A JP H0222503 A JPH0222503 A JP H0222503A
Authority
JP
Japan
Prior art keywords
light
beam splitter
component
phase
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17227788A
Other languages
Japanese (ja)
Other versions
JP2572111B2 (en
Inventor
Toru Shimizu
徹 清水
Toshiro Kurosawa
俊郎 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP63172277A priority Critical patent/JP2572111B2/en
Publication of JPH0222503A publication Critical patent/JPH0222503A/en
Application granted granted Critical
Publication of JP2572111B2 publication Critical patent/JP2572111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To measure a long distance without generating unstable phase relation among four signals which are each pi/2 out of phase by providing 1st-3rd polarization beam splitters and four optical fibers. CONSTITUTION:The light from a laser light source 12 is separated by a polarizing film 18 into a P and an S component, which are made incident on a measuring mirror 20 and a reference mirror 22, whose reflected light components are recoupled by the 1st polarization beam splitter(BS) 16 and the coupled beam is split by a BS 24. Then the 2nd polarization BS 26 splits one light beam into a P and an S component by a polarizing film and has the optical axis of the projection of opposite-phase interference light at 45 deg. and the 3rd polarization BS 32 splits the other divided light component into a P and S component by a polarizing film and has the optical axis of the projection of opposite-phase interference light at 45 deg.. Then a 1/4-wavelength plate 28 which shifts the phase of light incident on the BS 32 90 deg. behind the light incident on the BS 26 is provided on the optical path between the BS 24 and BS 32 and light beams emitted from the BS 26 and BS 32 are made incident on terminals of optical fibers 46, 48, 50, and 52, thereby guiding their interference signal out of a case.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ干渉測定装置に係り、特に光ファイバを
用いて小型化に構成したレーザ干渉測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser interference measurement device, and more particularly to a laser interference measurement device constructed in a compact size using an optical fiber.

〔従来の技術〕[Conventional technology]

第3図では従来のレーザ干渉測定装置の構造が示されて
いる。図においてレーザ光源10から出た光はビームエ
キスパンダ12により平行光束とされ、直角プリズム1
4によって90°方向変換される。直角プリズム14か
ら出射した光はビームスプリッタ16に入り、測定鏡1
8と参照鏡20とに向けて分割される。測定鏡18、参
照鏡20からの反射光は再びビームスプリッタ16に入
り、再結合されて出射し、拡大レンズ22を通って4個
のフォトダイオード24上に干渉縞を投影する。フォト
ダイオード24は干渉縞の明暗を電気信号に変え、移動
量の測定の場合には移動量に対応する干渉縞の明暗の変
化をカウントして測定鏡18の移動量を知るようになっ
ている。
FIG. 3 shows the structure of a conventional laser interference measurement device. In the figure, light emitted from a laser light source 10 is made into a parallel beam by a beam expander 12, and a right-angle prism 1
4, the direction is changed by 90°. The light emitted from the right-angle prism 14 enters the beam splitter 16 and passes through the measurement mirror 1.
8 and the reference mirror 20. The reflected light from the measurement mirror 18 and the reference mirror 20 enters the beam splitter 16 again, is recombined and output, passes through a magnifying lens 22, and projects interference fringes onto four photodiodes 24. The photodiode 24 converts the brightness of the interference fringes into an electrical signal, and when measuring the amount of movement, the amount of movement of the measuring mirror 18 is determined by counting the change in the brightness of the interference fringes corresponding to the amount of movement. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来のレーザ干渉測定装置では、4個のフォトダイ
オード24上に1スポツトの干渉縞を投影し、4個のフ
ォトダイオード240位相がπ/2異なるように参照鏡
20を傾け、縞間隔を調整していた。しかしながら、こ
のような調整方法では、測定鏡18の振れや、各鏡の表
面性状等により縞間隔の狂いや干渉縞の明暗のばらつき
等が生じるため、長い距離の測定においては4個の位相
がπ/2異なる信号の位相関係が不安定になる欠点があ
った。
In the conventional laser interference measurement device, one spot of interference fringes is projected onto four photodiodes 24, and the reference mirror 20 is tilted so that the phases of the four photodiodes 240 differ by π/2 to adjust the fringe spacing. Was. However, with this adjustment method, deviations in the fringe spacing and variations in the brightness of the interference fringes occur due to the vibration of the measuring mirror 18 and the surface properties of each mirror. This has the disadvantage that the phase relationship between signals that differ by π/2 becomes unstable.

更に、前記従来のレーザ干渉測定装置では、ビームスプ
リッタ16から出射した干渉光をフォトダイオード24
で直接受光するため、他の部品を小型化しても装置の大
きさがフォトダイオード24の外径に制約され、小型化
できない欠点があった。
Furthermore, in the conventional laser interference measurement device, the interference light emitted from the beam splitter 16 is transmitted to the photodiode 24.
Since light is directly received by the photodiode 24, the size of the device is limited by the outer diameter of the photodiode 24 even if other parts are miniaturized, and this has the drawback that miniaturization is not possible.

本発明はこのような事情に鑑みてなされたもので、長い
距離の測定においても4つのπ/2ずつ位相の異なる信
号の位相関係が不安定にならず、コンパクトなレーザ干
渉測定装置を提案することを目的としている。
The present invention has been made in view of these circumstances, and proposes a compact laser interference measurement device that does not cause instability in the phase relationship of four signals whose phases differ by π/2 even when measuring long distances. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記目的を達成する為に、測定鏡、参照鏡に
コーナーキューブプリズムを用いる事とし、またレーデ
光源からの光を偏光膜によりP成分とS成分とに分割し
て測定鏡と参照鏡とに入射させると共に測定鏡と参照鏡
からの反射光を再結合する第1の偏光ビームスプリッタ
を設け、第1の偏光ビームスプリッタから出た光を2方
向に分割するビームスプリッタを設け、ビームスプリッ
タで分割した光の一方の光を偏光膜によりP成分とS成
分とに分割し逆位相の干渉光を出射する光軸が45°傾
いた第2の偏光ビームスプリッタを設け、ビームスプリ
ッタで分割した他方の光を偏光膜によりP成分とS成分
とに分割し逆位相の干渉光を出射する光軸が45°傾い
た第3の偏光ビームスブーリッタを設け、ビームスプリ
ッタと第3の偏光ビームスプリッタとの間の光路に第2
の偏光ビームスプリッタに入射する光の位相に対して第
3の偏光ビームスプリッタに入射する光の位相を90“
ずらすA波長板を設け、区波長板の光軸は第1の偏光ビ
ームスブリフタのP偏光、又はS偏光のいずれかの偏光
方向と同一であり、第2、第3の偏光ビームスプリッタ
から出射した光を4本の光ファイバの各端面に入射させ
、この光ファイバによりレーザ干渉測定装置のケース外
に干渉信号を取出すことを特徴としている。
In order to achieve the above object, the present invention uses a corner cube prism for the measuring mirror and the reference mirror, and also divides the light from the Rede light source into a P component and an S component using a polarizing film. A first polarizing beam splitter is provided for making the light incident on the mirror and recombining the reflected light from the measurement mirror and the reference mirror, and a beam splitter is provided for splitting the light emitted from the first polarizing beam splitter into two directions. A second polarizing beam splitter with an optical axis tilted by 45 degrees is provided, which splits one of the lights split by the splitter into a P component and an S component using a polarizing film and outputs interference light of opposite phase. A third polarized beam splitter whose optical axis is tilted by 45 degrees is provided, which splits the other light into a P component and an S component using a polarizing film and emits interference light of opposite phase. a second in the optical path between the splitter and
The phase of the light incident on the third polarizing beam splitter is 90" with respect to the phase of the light incident on the third polarizing beam splitter.
A shifted A wavelength plate is provided, and the optical axis of the divided wavelength plate is the same as the polarization direction of either the P polarization or the S polarization of the first polarization beam splitter, and the light is emitted from the second and third polarization beam splitters. The laser interference measuring device is characterized in that the light is made incident on each end face of four optical fibers, and the interference signal is extracted from the case of the laser interference measurement device through these optical fibers.

〔作用〕[Effect]

本発明では位相がπ/2づつずれた4つの干渉光を長い
距離の測定においても安定して取り出すことが出来るの
で・、長い距離の測定にも誤差がなくなり、また4本の
光ファイバの各末端にこの干渉光を当て、各光ファイバ
の他端を干渉装置のケース外に引出して干渉光を電気的
に処理する。従ってケース内のスペース上の制約は光フ
ァイバの外径で左右され、フォトダイオードの外径に制
約される従来のレーザ干渉測定装置より大幅に小型化出
来る。
In the present invention, four interference lights whose phases are shifted by π/2 can be extracted stably even in long distance measurements, so there is no error in long distance measurements, and each of the four optical fibers This interference light is applied to the end of each optical fiber, and the other end of each optical fiber is pulled out of the case of the interference device to electrically process the interference light. Therefore, the space inside the case is limited by the outer diameter of the optical fiber, and the size can be significantly reduced compared to the conventional laser interference measurement device, which is limited by the outer diameter of the photodiode.

〔実施例〕〔Example〕

以下添付図面に従って、本発明に係るレーザ干渉測定装
置の好ましい実施例を詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a laser interference measurement device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図においてlOはレーザ干渉測定装置のケース、1
2はレーザ光源、14はコリメートレンズ、16は偏光
膜18を有する偏光ビームスブリフタ、20はコーナヰ
二−ブから成る移動鏡、22はコーナキニープから成る
参照鏡である。
In Fig. 1, lO is the case of the laser interference measurement device, 1
2 is a laser light source, 14 is a collimating lens, 16 is a polarizing beam subrifter having a polarizing film 18, 20 is a movable mirror consisting of a corner knife, and 22 is a reference mirror consisting of a corner knife.

また、22は光束を絞る逆望遠鏡構造の光学系、24は
ビームスプリッタ、26はビームスプリッタ24で分割
された光の一方をP成分とS成分とに分割する第2の偏
光ビームスブリフタ、また、28はス波長板、30は直
角プリズム、32はビ−ムスプリッタ24で分割された
光の他方をP成分とS成分とに分割する第3の偏光ビー
ムスプリッタである。更に、34.36は直角プリズム
、また、38乃至44は集光レンズ、46乃至52は光
ファイバである。
Further, 22 is an optical system having an inverted telescope structure that focuses the light beam, 24 is a beam splitter, and 26 is a second polarizing beam splitter that splits one of the lights split by the beam splitter 24 into a P component and an S component; , 28 is a wavelength plate, 30 is a right-angle prism, and 32 is a third polarizing beam splitter that splits the other of the light split by the beam splitter 24 into a P component and an S component. Furthermore, 34 and 36 are right angle prisms, 38 to 44 are condenser lenses, and 46 to 52 are optical fibers.

光フアイバ46乃至52は、ケースlO外の図示しない
処理回路に送られ、電気的に処理される。
The optical fibers 46 to 52 are sent to a processing circuit (not shown) outside the case 10 and electrically processed.

前記の如く構成された本発明に係るレーザ干渉測定装置
の作用は次のとおりである。先ず、レーデ光源12から
出射したレーザ光はコリメートレンズ14によって平行
光束とされ、偏光ビームスプリッタ16に入射する。偏
光ビームスプリッタ16に入射した光のうち、測定光(
P成分)は偏・光膜18を通過し、移動鏡20に入り、
180゜方向を変えられた後、再び偏光ビームスプリッ
タ16に入射する。また、レーザ光のうち参照光(S成
分)は偏光膜18で反射され、参照鏡22で180°方
向を変えられて出射し、再び偏光ビームスプリッタ16
に入射して移動鏡20からのP成分と再結合される。 
偏光ビームスプリッタ16から出射した光束は逆望遠鏡
構造の光学系を有するレンズ光学系22により絞られ、
ビームスプリッタ24に入射する。ビームスプリッタ2
4に入射した光は分割され一方の光は第2の偏光ビーム
スプリッタ26に入射する。第2の偏光ビームスプリッ
タ26に入射した光のP成分は偏光膜を通過し、レンズ
38で絞られ、光ファイバ46の端面に入射する。また
、第2の偏光′ビームスプリッタ26によって偏光膜で
反射されたS成分は直角プリズム34に入射し、直角プ
リズム34によって90°方向を変えられたS成分の光
はレンズ40で絞られ光ファイバ48の端面に入射する
The operation of the laser interference measurement device according to the present invention configured as described above is as follows. First, the laser beam emitted from the Rade light source 12 is made into a parallel beam by the collimating lens 14 and enters the polarizing beam splitter 16 . Of the light incident on the polarizing beam splitter 16, the measurement light (
P component) passes through the polarizing/lighting film 18 and enters the movable mirror 20,
After the direction is changed by 180°, the beam enters the polarizing beam splitter 16 again. In addition, the reference light (S component) of the laser light is reflected by the polarizing film 18, changed direction by 180 degrees by the reference mirror 22, and exits again from the polarizing beam splitter 16.
and is recombined with the P component from the moving mirror 20.
The light beam emitted from the polarizing beam splitter 16 is focused by a lens optical system 22 having an optical system with an inverted telescope structure.
The beam enters the beam splitter 24. Beam splitter 2
The light incident on the polarizing beam splitter 26 is split, and one of the lights is incident on the second polarizing beam splitter 26. The P component of the light incident on the second polarizing beam splitter 26 passes through the polarizing film, is focused by the lens 38, and enters the end face of the optical fiber 46. Further, the S component reflected by the polarizing film by the second polarizing beam splitter 26 enters the right angle prism 34, and the S component light whose direction has been changed by 90 degrees by the right angle prism 34 is condensed by the lens 40 and sent to the optical fiber. The light is incident on the end face of 48.

ここで、光ファイバ46.48に入る干渉光は、偏光膜
を透過した光と反射した光であるので互いに逆位相とな
っている。
Here, the interference lights entering the optical fibers 46 and 48 are the light that has passed through the polarizing film and the light that has been reflected, and therefore have opposite phases to each other.

更に、ビームスプリッタ24で分割された他方の光はス
波長板28を通り、直角プリズム30で方向を90°変
えられ、第3の偏光ビームスプリッタ32に入射する。
Further, the other light split by the beam splitter 24 passes through the wavelength plate 28, has its direction changed by 90 degrees by the right angle prism 30, and enters the third polarizing beam splitter 32.

第3の偏光ビームスプリッタ32に入射する光は、ス波
長板28を通過しているので、第2の偏光ビームスプリ
ッタ26に入射する光に対して位相が90°ずれている
。第3のビームスプリッタ32に入射したレーザ光のう
ち透過した側の干渉光(P成分)は偏光膜を通過し、更
に、レンズ42で絞られ光ファイバ50の端面に入射す
る。また、第3の偏光ビームスプリッタ32の偏光膜で
反射された干渉光(S成分)は直角プリズム36により
90°方向を変えられたのちレンズ44で絞られ光ファ
イバ52の端面に入射する。光ファイバ50.52に入
射する干渉光は、偏光膜を通過した光と反射した光であ
るので、互いに逆位相となっている。
Since the light incident on the third polarizing beam splitter 32 has passed through the wavelength plate 28, its phase is shifted by 90° with respect to the light incident on the second polarizing beam splitter 26. The interference light (P component) on the transmitted side of the laser light incident on the third beam splitter 32 passes through the polarizing film, is further narrowed down by the lens 42, and enters the end face of the optical fiber 50. Further, the interference light (S component) reflected by the polarizing film of the third polarizing beam splitter 32 has its direction changed by 90° by the right angle prism 36, is focused by the lens 44, and enters the end face of the optical fiber 52. The interference light incident on the optical fibers 50 and 52 is the light that has passed through the polarizing film and the light that has been reflected, so they have opposite phases to each other.

前記実施例によれば、第2、第3の偏光ビームスプリッ
タ26.32においては透過光と反射光では光軸は直交
しているため、干渉強度が逆位相となる。また、第2、
第3の偏光ビームスプリッタ26.32と直角プリズム
34.36との配置は第3図のようにS成分、P成分に
対し45°傾いた光軸に設定されている。更に、ビーム
スプリッタ24の反射側光路には蚤波長板30が配置さ
れていて、透過側光路に対して参照光又は測定光の位相
がπ/2ずれるようになっている。これにより位相がπ
/2づつずれた4個の干渉光を作り出し光フアイバ46
乃至52の端面に入射させると共に光フアイバ46乃至
52によってケース外の図示しない電子回路に取り出せ
るようになっている。
According to the embodiment described above, in the second and third polarizing beam splitters 26 and 32, the optical axes of the transmitted light and the reflected light are orthogonal, so that the interference intensities have opposite phases. Also, the second
The third polarizing beam splitter 26.32 and the right-angle prism 34.36 are arranged on optical axes inclined at 45 degrees with respect to the S and P components, as shown in FIG. Further, a flea wave plate 30 is disposed on the reflection side optical path of the beam splitter 24, so that the phase of the reference light or measurement light is shifted by π/2 with respect to the transmission side optical path. This makes the phase π
The optical fiber 46 produces four interference lights shifted by /2.
The light is incident on the end faces of the optical fibers 46 to 52, and can be taken out to an electronic circuit (not shown) outside the case via optical fibers 46 to 52.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係るレーザ干渉測定装置
によれば、位相のπ/2づつずれた4個の干渉光を光学
部品により作ることにより、移動鏡を長い距離移動して
も縞間隔の狂い又は干渉縞の明暗のばらつき等が生じて
も4個の干渉光の位相関係が変わらない。
As explained above, according to the laser interference measurement device according to the present invention, by using optical components to generate four interference lights whose phases are shifted by π/2, the fringe interval can be maintained even when the movable mirror is moved over a long distance. Even if there is a deviation in the brightness of the interference fringes or a variation in the brightness of the interference fringes, the phase relationship between the four interference lights does not change.

また、干渉光は光ファイバで受け、レーザ干渉測定装置
と別設の処理回路に光ファイバを介して送られるので、
レーザ干渉測定装置はコンパクトに構成することができ
る。
In addition, the interference light is received by an optical fiber and sent to the laser interference measurement device and a separate processing circuit via the optical fiber.
The laser interference measurement device can be configured compactly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーデ干渉測定装置の構造を示す
説明図、第2図は本発明に係るレーザ干渉測定装置の要
部を示す斜視図、第3図は従来のレーザ干渉測定装置を
示す説明図である。 12・・・レーデ光源、 16・・・偏光ビームスプリ
ッタ、 20・・・移動鏡、 22・・・参照鏡、 2
4・・・ビームスプリッタ、 26・・・第2の偏光ビ
ームスプリッタ、 28・・・ス波長板、 32・・・
第3の偏光ビームスプリッタ、  46.52・・・光
ファイバ。
FIG. 1 is an explanatory diagram showing the structure of the Rade interference measurement device according to the present invention, FIG. 2 is a perspective view showing the main parts of the laser interference measurement device according to the invention, and FIG. 3 is a diagram showing the conventional laser interference measurement device. FIG. 12... Rade light source, 16... Polarizing beam splitter, 20... Moving mirror, 22... Reference mirror, 2
4... Beam splitter, 26... Second polarizing beam splitter, 28... Wave plate, 32...
Third polarizing beam splitter, 46.52... optical fiber.

Claims (1)

【特許請求の範囲】 レーザ光源からの光を偏光膜によりP成分とS成分とに
分割して測定鏡と参照鏡とに入射させると共に測定鏡と
参照鏡からの反射光を再結合する第1の偏光ビームスプ
リッタを設け、 第1の偏光ビームスプリッタから出た光を2方向に分割
するビームスプリッタを設け、 ビームスプリッタで分割した光の一方の光を偏光膜によ
りP成分とS成分とに分割し逆位相の干渉光を出射する
第2の偏光ビームスプリッタを設け、 ビームスプリッタで分割した他方の光を偏光膜によりP
成分とS成分とに分割し逆位相の干渉光を出射する第3
の偏光ビームスプリッタを設け、ビームスプリッタと第
3の偏光ビームスプリッタとの間の光路に第2の偏光ビ
ームスプリッタに入射する光の位相に対して第3の偏光
ビームスプリッタに入射する光の位相を90°ずらす1
/4波長板を設け、 第2、第3の偏光ビームスプリッタから出射した光を4
本の光ファイバの各端面に入射させ、この光ファイバに
よりレーザ干渉測定装置のケース外に干渉信号を取出す
ことを特徴とするレーザ干渉測定装置。
[Scope of Claims] A first device that splits the light from the laser light source into a P component and an S component by a polarizing film and makes them incident on a measuring mirror and a reference mirror, and recombines the reflected light from the measuring mirror and the reference mirror. A polarizing beam splitter is provided to split the light emitted from the first polarizing beam splitter into two directions, and one of the lights split by the beam splitter is split into a P component and an S component by a polarizing film. A second polarizing beam splitter is installed to emit interference light with an opposite phase, and the other light split by the beam splitter is polarized by a polarizing film.
The third component splits into the S component and the S component and emits interference light of opposite phase.
A polarizing beam splitter is provided, and the phase of the light incident on the third polarizing beam splitter is adjusted in the optical path between the beam splitter and the third polarizing beam splitter with respect to the phase of the light incident on the second polarizing beam splitter. 90° shift 1
A /4 wavelength plate is provided, and the light emitted from the second and third polarizing beam splitters is
A laser interference measurement device characterized in that an interference signal is made incident on each end face of an optical fiber, and an interference signal is extracted from the case of the laser interference measurement device through the optical fiber.
JP63172277A 1988-07-11 1988-07-11 Laser interferometer Expired - Lifetime JP2572111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172277A JP2572111B2 (en) 1988-07-11 1988-07-11 Laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172277A JP2572111B2 (en) 1988-07-11 1988-07-11 Laser interferometer

Publications (2)

Publication Number Publication Date
JPH0222503A true JPH0222503A (en) 1990-01-25
JP2572111B2 JP2572111B2 (en) 1997-01-16

Family

ID=15938933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172277A Expired - Lifetime JP2572111B2 (en) 1988-07-11 1988-07-11 Laser interferometer

Country Status (1)

Country Link
JP (1) JP2572111B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677768A (en) * 1996-07-03 1997-10-14 Hewlett-Packard Company Method and interferometric apparatus for measuring changes in displacement of an object in a rotating reference frame
US5808740A (en) * 1995-08-31 1998-09-15 Sokkia Company Limited Multiaxis distance measurement device for NC machine tools
US5828456A (en) * 1995-11-15 1998-10-27 Sokkia Company Limited Multiaxis laser interferometry distance measuring device
US5841535A (en) * 1995-08-31 1998-11-24 Sokkia Company Limited Multiaxis distance measuring device requiring alignment along only one axis
JP2010151572A (en) * 2008-12-25 2010-07-08 Ojima Shisaku Kenkyusho:Kk Polarization splitting section of polarization-split interferometer, the polarization-split interferometer, and polarization-split interferometer type length measuring device
JP2010164328A (en) * 2009-01-13 2010-07-29 Mitsutoyo Corp Laser interferometer
US8643844B2 (en) 2005-08-16 2014-02-04 Tokyo Seimitsu Co., Ltd Laser distance measuring apparatus with beam switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127696A (en) * 1979-03-23 1980-10-02 Tokyo Shibaura Electric Co Photoosensing system
JPS5935102A (en) * 1982-08-21 1984-02-25 Hitachi Cable Ltd Polarization plane retaining-optical fiber type sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127696A (en) * 1979-03-23 1980-10-02 Tokyo Shibaura Electric Co Photoosensing system
JPS5935102A (en) * 1982-08-21 1984-02-25 Hitachi Cable Ltd Polarization plane retaining-optical fiber type sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808740A (en) * 1995-08-31 1998-09-15 Sokkia Company Limited Multiaxis distance measurement device for NC machine tools
US5841535A (en) * 1995-08-31 1998-11-24 Sokkia Company Limited Multiaxis distance measuring device requiring alignment along only one axis
US5828456A (en) * 1995-11-15 1998-10-27 Sokkia Company Limited Multiaxis laser interferometry distance measuring device
US5677768A (en) * 1996-07-03 1997-10-14 Hewlett-Packard Company Method and interferometric apparatus for measuring changes in displacement of an object in a rotating reference frame
US8643844B2 (en) 2005-08-16 2014-02-04 Tokyo Seimitsu Co., Ltd Laser distance measuring apparatus with beam switch
JP2010151572A (en) * 2008-12-25 2010-07-08 Ojima Shisaku Kenkyusho:Kk Polarization splitting section of polarization-split interferometer, the polarization-split interferometer, and polarization-split interferometer type length measuring device
JP2010164328A (en) * 2009-01-13 2010-07-29 Mitsutoyo Corp Laser interferometer
DE102010000817A1 (en) 2009-01-13 2010-08-05 Mitutoyo Corp., Kawasaki-shi laser interferometer
US7876449B2 (en) 2009-01-13 2011-01-25 Mitutoyo Corporation Laser interferometer
DE102010000817B4 (en) 2009-01-13 2023-03-23 Mitutoyo Corp. laser interferometer

Also Published As

Publication number Publication date
JP2572111B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US3881823A (en) Apparatus for measuring the variation of an optical path length with the aid of an interferometer
WO2018045735A1 (en) Apparatus used for laser-measurement signal correction
US7355719B2 (en) Interferometer for measuring perpendicular translations
JPS62233708A (en) Angle measuring plane-mirror interferometer system
JPH01284715A (en) Encoder
US20070103694A1 (en) Interferometry system
JPH0222503A (en) Laser interference measuring instrument
JPH07190714A (en) Interferometer
JPH11183116A (en) Method and device for light wave interference measurement
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JPH11108614A (en) Light-wave interference measuring instrument
JPS6355035B2 (en)
JPH0755571A (en) Plarization dispersion measuring instrument
JPS62229004A (en) Heterodyne type optical fiber displacement meter
JPH05203408A (en) Phase difference detector
JPH07167606A (en) Interference measuring device
CN111664786B (en) Optical isolation device and method suitable for dual-frequency laser interferometry
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPS62229005A (en) Heterodyne type optical fiber displacement meter
JP2985487B2 (en) Light wave interferometer
JPH09250902A (en) Light wave interference measurement device
CN118836910A (en) Double-wave optical fiber Mach-Zehnder interference on-line measurement system
RU1809368C (en) Device for stabilizing energetic axis of radiation beams
JPH11101608A (en) Laser-interfered length measuring machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12