[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02211416A - Deflector and outside diameter measuring instrument formed by using this deflector - Google Patents

Deflector and outside diameter measuring instrument formed by using this deflector

Info

Publication number
JPH02211416A
JPH02211416A JP3106989A JP3106989A JPH02211416A JP H02211416 A JPH02211416 A JP H02211416A JP 3106989 A JP3106989 A JP 3106989A JP 3106989 A JP3106989 A JP 3106989A JP H02211416 A JPH02211416 A JP H02211416A
Authority
JP
Japan
Prior art keywords
deflector
lens
tuning fork
light
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3106989A
Other languages
Japanese (ja)
Inventor
Michio Saito
斉藤 道夫
Takahiro Nakamura
貴廣 中村
Yuji Takeuchi
雄二 竹内
Hideto Kondo
秀人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3106989A priority Critical patent/JPH02211416A/en
Publication of JPH02211416A publication Critical patent/JPH02211416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain a sufficient number of scanning times and a sufficient deflection angle by providing a lens which adjusts the luminous flux between a light source and a tuning fork oscillator and providing a driving part for controlling the oscillator. CONSTITUTION:The laser light of the light source 1 has the prescribed deflection angle by a concave mirror 8 of the tuning fork oscillator 3 and is outputted to the outside by the oscillation of the tuning fork oscillator 3. The lens 6 is disposed between the light source 1 and the oscillator 3 and the state of the convergence and divergence of the luminous flux is adjusted by this lens. The reflected light is partly outputted by a half mirror 4 to a monitor section 5a and the oscillation of the tuning fork oscillator 3 is controlled accordance with the result of the detection in the monitor section 5a. The outside diameter of an object to be measured W is calculated from the time of the shaded part of the work by irradiation of this laser light. The deflection angle is made as large as >=5 times heretofore and the sufficient number of scanning times are obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源からの光を所望角度に偏向する偏向器お
よびこの偏向器を用いて被測定物の外径を測定する外径
測定装置に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a deflector that deflects light from a light source to a desired angle, and an outer diameter measuring device that uses this deflector to measure the outer diameter of an object to be measured. It is related to.

[従来の技術1 光源から出射される光束を所定の偏向角度をもって出力
するものとして回転ミラーや音叉偏向器等の偏向器が知
られている。応用例としてこの偏向器は光束を光軸に対
し平行で走査し被測定物に照射することで、光束が被測
定物に当たり陰になる部分の時間を算出することによっ
て被測定物の外径を測定する外径測定装置に適用されて
いる。
[Prior Art 1] Deflectors such as rotating mirrors and tuning fork deflectors are known as devices that output a light beam emitted from a light source with a predetermined deflection angle. As an application example, this deflector scans the light beam parallel to the optical axis and irradiates the object to be measured, and calculates the time during which the light beam hits the object and becomes a shadow, thereby determining the outer diameter of the object. It is applied to the outer diameter measuring device.

第5図は従来より被測定物の外径測定装置として用いら
れていた偏向器の概略構成を示している。
FIG. 5 shows a schematic configuration of a deflector conventionally used as an apparatus for measuring the outer diameter of an object to be measured.

この図に示す偏向器はレーザ光を出射する光源20と、
モータドライバ31によって駆動され、光源20からミ
ラー32を介して供給されるレーザ光を所定の偏向角度
θ、をもって出力する回転ミラー21と、光源20と回
転ミラー21との光路間に設けられて光源20からのレ
ーザ光を回転ミラー21に入射させるミラー22とを備
えて構成されるもので、回転ミラー21によって必要と
するレーザ光の偏向角度θ2を得ている。
The deflector shown in this figure includes a light source 20 that emits a laser beam,
A rotating mirror 21 that is driven by a motor driver 31 and outputs a laser beam supplied from a light source 20 via a mirror 32 at a predetermined deflection angle θ, and a light source that is provided between the optical path of the light source 20 and the rotating mirror 21. 20, and a mirror 22 that makes the laser beam from 20 enter a rotating mirror 21. The rotating mirror 21 obtains the required deflection angle θ2 of the laser beam.

また、上述した回転ミラー21に代えて音叉振動子を用
いた偏向器は、特に図示はしないが、音叉振動子の先端
に平面鏡が取付けられており、光源からのレーザ光をミ
ラーを介して音叉振動子の平面鏡・に入射させ、この平
面鏡を介して所定角度に偏向されたレーザ光を音叉振動
子の振動により走査させている。また、平面鏡と被測定
物との間の光路上には、ハーフミラ−が配設されており
、このハーフミラ−によって分岐されたレーザ光は、駆
動部のモニタ部によってその振幅および位相が検出され
、この検出結果に基づいて音叉振動子の振動が駆動回路
により制御されるようになっている。
In addition, a deflector using a tuning fork vibrator instead of the rotating mirror 21 described above has a plane mirror attached to the tip of the tuning fork vibrator, although not particularly shown, and the laser beam from the light source is transmitted through the mirror to the tuning fork. The laser beam is made incident on the plane mirror of the vibrator, and is deflected at a predetermined angle through the plane mirror, and is scanned by the vibration of the tuning fork vibrator. Further, a half mirror is disposed on the optical path between the plane mirror and the object to be measured, and the amplitude and phase of the laser beam branched by the half mirror are detected by the monitor section of the drive section. Based on this detection result, the vibration of the tuning fork vibrator is controlled by the drive circuit.

第6図は上述した音叉振動子による偏向器を外径測定装
置の投光部に組み込んだ場合の具体的な構成を示してい
る。
FIG. 6 shows a specific configuration in which the deflector using the above-mentioned tuning fork vibrator is incorporated into the light projecting section of the outer diameter measuring device.

すなわち、この偏向器を構成する各部品は、各部品間の
距離が一定に保たれた状態で筺体29内に位置決めされ
ており、光源25より出射されたレーザ光は音叉振動子
23の平面鏡24で反射され、ハーフミラ−27を介し
て最初のミラー26aに導かれる。このとき、レーザ光
の一部はハーフミラ−27で反射され、ミラー26bを
介してモニタ部28に導かれる。ミラー26aによって
反射されたレーザ光は筺体29の下方中央やや右側に位
置するミラー26cに導かれる。さらに、このミラー2
6cによって反射されたレーザ光は筐体29の下方左側
に位置するミラー26dに導かれた後、このミラー26
dに対向するようにして設けられたレンズ3oを介して
外部に出射される。そして、このレーザ光はレンズ30
の光軸に対し平行に走査され、被測定物に照射し、前述
した如くレーザ光の照射により被測定物の陰になる部分
の時間から被測定物の外径を求める。
That is, each component constituting this deflector is positioned within the casing 29 with the distance between each component kept constant, and the laser beam emitted from the light source 25 passes through the plane mirror 24 of the tuning fork vibrator 23. It is reflected by the mirror 27 and guided to the first mirror 26a via the half mirror 27. At this time, a portion of the laser beam is reflected by the half mirror 27 and guided to the monitor section 28 via the mirror 26b. The laser beam reflected by the mirror 26a is guided to the mirror 26c located slightly to the right of the lower center of the housing 29. Furthermore, this mirror 2
The laser beam reflected by 6c is guided to a mirror 26d located on the lower left side of the housing 29, and then this mirror 26d
The light is emitted to the outside via a lens 3o provided to face d. Then, this laser light is transmitted through the lens 30.
The object to be measured is scanned parallel to the optical axis of the laser beam, and the object to be measured is irradiated with the laser beam, and the outer diameter of the object to be measured is determined from the time of the portion of the object to be measured that is shaded by the laser beam irradiation, as described above.

C発明が解決しようとする課題] しかしながら、上述した従来の偏向器並びにこの偏向器
を用いた外径測定装置には以下に示すような問題点があ
った。
Problems to be Solved by the Invention] However, the above-described conventional deflector and an outer diameter measuring device using this deflector have the following problems.

すなわち、前述した回転ミラー21を用いた偏向器によ
れば、十分な大きな偏向角度θ8を得ることはできるが
、回転ミラー21は機械的に駆動される構成なので、こ
れを外径測定装置に適用した場合、処理部で応答速度の
制限を受けるため、走査回数が高速なものでも400〜
500回/S以下と少なく、また、一方向の走査である
ため、被測定物が振動している場合に悪影響を受けやす
いという問題があった。
That is, with the deflector using the rotating mirror 21 described above, a sufficiently large deflection angle θ8 can be obtained, but since the rotating mirror 21 is configured to be mechanically driven, this cannot be applied to an outer diameter measuring device. In this case, the response speed is limited by the processing unit, so even if the number of scans is high, it will be 400~
The number of scans is less than 500 times/s, and since the scan is performed in one direction, there is a problem that it is susceptible to adverse effects when the object to be measured vibrates.

また、後述した音叉振動子23を用いた偏向器では、レ
ーザ光の往復走査が可能となり、また上述した走査回数
が1000回/S以上行なえ、上述した被測定物が振動
している場合の影響は小さくできる。しかし、現状の音
叉S動子23を用いた偏向器は偏向角θが150mra
d程度以下と十分な偏向角度を得ることができない、ま
た、外径測定機の測定範囲を太き(とる場合、レンズ1
4(fθレンズ)の焦点距離(f)を長くして走査幅を
大きくとる必要がある。従って、光路上に複数のミラー
26を配設して音叉振動子23先端のミラー24とレン
ズ14と間の光路な延長する必要があった。このため、
部品点数が多(なり、複数のミラーによる機械的および
光学的な誤差の影響により走査空間での被測定物が動い
た場合による測定値誤差を招(とともに必要以上の設置
スペースをとり、装置が大型化するという問題があった
In addition, the deflector using the tuning fork vibrator 23 described later enables reciprocating scanning of the laser beam, and the above-mentioned scanning number can be performed more than 1000 times/s, and the above-mentioned influence when the measured object is vibrating. can be made smaller. However, the current deflector using the tuning fork S mover 23 has a deflection angle θ of 150 mra.
If the angle of deflection is less than d, it is not possible to obtain a sufficient deflection angle.
It is necessary to increase the scanning width by increasing the focal length (f) of the lens 4 (fθ lens). Therefore, it was necessary to extend the optical path between the mirror 24 at the tip of the tuning fork vibrator 23 and the lens 14 by disposing a plurality of mirrors 26 on the optical path. For this reason,
The number of parts is large, which leads to measurement errors due to movement of the object in the scanning space due to the influence of mechanical and optical errors caused by multiple mirrors (it also takes up more installation space than necessary, making the device difficult to use). There was a problem with increasing the size.

そこで、本発明は上述した問題点に鑑みてなされたもの
であって、その目的は、十分な走査回数並びに偏向角度
をもって安定した光束の偏向を得ることができる偏向器
および高精度でしかもコンパクト化が図れる該偏向器を
用いた外径測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the object thereof is to provide a deflector that can obtain stable beam deflection with a sufficient number of scans and a deflection angle, and to provide a highly accurate and compact deflector. It is an object of the present invention to provide an outer diameter measuring device using the deflector, which can achieve the following.

[課題を解決するための手段] 上記目的を達成するため、本発明による偏向器は、光源
と、該光源からの光束を所定の偏向角度をもって出射す
る凹面鏡が設けられた音叉振動子と、該音叉振動子と前
記光源との間の光路上に設けられ、偏向される光束の収
束および発散の状態を調整するレンズと、前記音叉振動
子の駆動を制御する駆動部とを備えたことを特徴として
いる。
[Means for Solving the Problems] In order to achieve the above object, a deflector according to the present invention includes a light source, a tuning fork vibrator provided with a concave mirror that emits a light beam from the light source at a predetermined deflection angle, and A lens provided on an optical path between a tuning fork vibrator and the light source to adjust convergence and divergence states of the deflected light beam, and a drive unit to control driving of the tuning fork vibrator. It is said that

また、この偏向器を用いた外径測定装置は、光源と、該
光源からの光束を所定の偏向角度をもって出射する凹面
鏡が設けられた音叉振動子と、該音叉振動子と前記光源
との間の光路上に設けられ、偏向される光束の収束およ
び発散の状態を調整するレンズと、前記音叉振動子の駆
動を制御する駆動部とを備えた偏向器と、該偏向器から
出射された光束を光軸に対し平行で走査するためのレン
ズと、該レンズから被測定物を介して通過する光束を収
束させるレンズと、該レンズにより収束された光束を受
光する受光器と、該受光器より得られた信号と該駆動部
より得られた信号に基づいて前記被測定物の外径を演算
する処理部とを備えたことを特徴としている。
In addition, an outer diameter measuring device using this deflector includes a light source, a tuning fork vibrator provided with a concave mirror that emits a light beam from the light source with a predetermined deflection angle, and a space between the tuning fork vibrator and the light source. a deflector, which is provided on the optical path of the deflector, and includes a lens that adjusts the convergence and divergence states of the deflected light beam, and a drive section that controls the driving of the tuning fork vibrator; and a light beam emitted from the deflector. a lens for scanning parallel to the optical axis, a lens for converging the light flux passing from the lens through the object to be measured, a light receiver for receiving the light flux converged by the lens, and a light receiver for receiving the light flux from the light receiver. The apparatus is characterized by comprising a processing section that calculates the outer diameter of the object to be measured based on the obtained signal and the signal obtained from the drive section.

[作用] 偏向器の光源より出射された光束は、光路上に配設され
たレンズおよび音叉振動子に設けられた凹面鏡によって
光束の収束および発散の状態が調整されながら凹面鏡に
より所定の偏向角度をもって音叉振動子の振動により外
部に出力される。その際、偏向角度は、従来の音叉振動
子による偏向のみでなく、さらに凹面鏡により偏向角度
を拡大している。
[Operation] The light beam emitted from the light source of the deflector is deflected at a predetermined deflection angle by the concave mirror while its convergence and divergence are adjusted by a lens disposed on the optical path and a concave mirror provided in the tuning fork vibrator. It is output to the outside by the vibration of the tuning fork vibrator. In this case, the deflection angle is not only determined by the conventional tuning fork vibrator, but also expanded by a concave mirror.

この偏向器を用いた外径測定装置では、偏向器からの光
束をレンズを用いて、その先軸に対し平行に走査し被測
定物に照射する。そして、偏向器からの光の照射により
被測定物を通過した光束は、検出処理部によって受光さ
れ、この受光と駆動部からの信号に基づいて被測定物の
外径が演算される。
In an outer diameter measuring device using this deflector, the light beam from the deflector is scanned parallel to the front axis of the lens using a lens and irradiated onto the object to be measured. The light flux that has passed through the object to be measured due to the light irradiation from the deflector is received by the detection processing section, and the outer diameter of the object to be measured is calculated based on the received light and the signal from the drive section.

[実施例1 第1図は本発明による偏向器の一実施例を示す概略構成
図である。
[Embodiment 1] FIG. 1 is a schematic diagram showing an embodiment of a deflector according to the present invention.

この実施例による偏向器は、被測定物に対し所定の偏向
角度で光束を走査させ、この光束の走査によって被測定
物の外径を測定する外径測定装置に適用されるもので、
光源1.ミラー2、音叉振動子3、ハーフミラ−4,駆
動部5.レンズ6、レンズ14が筺体7内に収容されて
概略構成されている。
The deflector according to this embodiment is applied to an outer diameter measuring device that scans the object to be measured with a light beam at a predetermined deflection angle and measures the outer diameter of the object by scanning the light beam.
Light source 1. Mirror 2, tuning fork vibrator 3, half mirror 4, drive unit 5. A lens 6 and a lens 14 are housed in a housing 7 and are generally configured.

光源lはレーザ光を出力しており、とのレーザ光はミラ
ー2によって音叉振動子3111に反射される。音叉振
動子3の先端には、各々凹面鏡8が固設されている。こ
の凹面鏡8は被測定物Wに対し十分な走査幅の光束が出
射されるべ(偏向角度θ、を得るためのもので、凹面鏡
の他に例えばシリンドリカル状あるいは非球面状に形成
された鏡を使用してもよい、そして、ここで偏向された
光は正弦的に音叉振動子3の固有振動数で往復走査され
ながらレンズ14を透過して被測定物Wへと出力される
The light source l outputs a laser beam, and the laser beam is reflected by the mirror 2 to the tuning fork vibrator 3111. A concave mirror 8 is fixed at the tip of each tuning fork vibrator 3. This concave mirror 8 is used to emit a light beam with a sufficient scanning width to the object W to be measured (to obtain a deflection angle θ). The deflected light may be transmitted through the lens 14 and output to the object W while being sinusoidally scanned back and forth at the natural frequency of the tuning fork vibrator 3.

ここで、′mm測定物上照射される光束を走査するのに
固有振動数で駆動される音叉振動子3を用いていること
から、被測定物Wに対しレーザ光の往復走査が行なえる
とともに、先端が凹面鏡、シリンドリカル状あるいは非
球面状の鏡により偏向角を従来の音叉偏向器に比べ5倍
以上向上させることができる。そのため、前述のごとく
、レンズ14(fθレンズ)の焦点距離を小さ(するこ
とができ、そして、凹面[8とレンズ14間のミラーの
数も少なくできるため、光学的な誤差を低減させること
ができる。故に高精度な測定が行なえる。
Here, since the tuning fork oscillator 3 driven by the natural frequency is used to scan the light beam irradiated onto the object to be measured, the object to be measured W can be scanned back and forth with the laser beam. By using a concave, cylindrical, or aspheric mirror at the tip, the deflection angle can be improved by more than five times compared to a conventional tuning fork deflector. Therefore, as mentioned above, the focal length of the lens 14 (fθ lens) can be made small, and the number of mirrors between the concave surface [8 and the lens 14 can also be reduced, so optical errors can be reduced. Therefore, highly accurate measurements can be performed.

ハーフミラ−4は凹面11Bからの光の一部を反射させ
ており、この反射光は駆動部5に出力される。
The half mirror 4 reflects a part of the light from the concave surface 11B, and this reflected light is output to the drive unit 5.

駆動部5はモニタ部5aおよび駆動回路5bを備えて構
成されており、モニタ部5aではハーフミラ−4によっ
て反射され導かれるレーザ光の振幅および位相を検出し
ている。また4駆動回路5bはこのモニタ部5aの検出
結果に基づいて常に音叉振動子3の振動を制御している
The drive unit 5 includes a monitor unit 5a and a drive circuit 5b, and the monitor unit 5a detects the amplitude and phase of the laser beam reflected and guided by the half mirror 4. Further, the four drive circuit 5b constantly controls the vibration of the tuning fork vibrator 3 based on the detection result of the monitor section 5a.

光源lと音叉振動子3との間の光路上に配設されたレン
ズ6は、音叉振動子3の凹面鏡8と合わせてこの凹面r
f48より偏向されるレーザ光の収束および発散の度合
いを調整している。
A lens 6 disposed on the optical path between the light source l and the tuning fork vibrator 3, together with the concave mirror 8 of the tuning fork vibrator 3,
The degree of convergence and divergence of the laser beam deflected by f48 is adjusted.

次に、第2図は上述した偏向器を備えた外径測定装置の
一実施例を示している。
Next, FIG. 2 shows an embodiment of an outer diameter measuring device equipped with the above-mentioned deflector.

この外径測定装置では上述した偏向器10と被測定物W
を挟んで対向する位置に、受光部11bが設置されてお
り、ここでは偏向器lOからのレーザ光の照射により被
測定物Wから通過して(る光束を光学系を介して受光器
17により受光する。そして、処理部18では受光器1
7からの信号とモニタ部5aからの信号を処理し、被測
定物の外径値を演算するとともに、被測定物のX方向の
位置の演算を行なっている。
In this outer diameter measuring device, the above-mentioned deflector 10 and the object to be measured W are used.
A light receiving section 11b is installed at a position opposite to each other with the laser beam irradiated from the deflector 1O. Then, in the processing section 18, the light receiver 1
7 and the monitor section 5a to calculate the outer diameter value of the object to be measured and the position of the object in the X direction.

さらに、この受光部11bにおいて被測定物Wの外径φ
を演算する動作について詳述すると、被測定物Wを通過
して受光された光は光電変換された後、この光電変換さ
れた信号によって制御される2つのサンプルホールド回
路(図示せず)に出力される。サンプルホールド回路で
は偏向器10におけるモニタ部5aで発生させた走査光
束のX方向の位置を表わす正弦波状の信号を被測定物W
の両縁に対応する時刻でホールドする。さらに、各サン
プルホールド回路からの信号の差分が演算され、被測定
物Wの外径φに比例した信号が出力される。この信号は
A/D変換されて処理部18に転送され、処理部18に
おいて被測定物Wの外径値φの演算がなされる。
Furthermore, in this light receiving section 11b, the outer diameter φ of the object W to be measured is
To explain in detail the operation of calculating , the light received after passing through the object W is photoelectrically converted, and then output to two sample and hold circuits (not shown) controlled by the photoelectrically converted signals. be done. In the sample hold circuit, a sinusoidal signal representing the position in the X direction of the scanning light beam generated by the monitor section 5a of the deflector 10 is sent to the object W to be measured.
Hold at the time corresponding to both edges of. Further, the difference between the signals from each sample and hold circuit is calculated, and a signal proportional to the outer diameter φ of the object W to be measured is output. This signal is A/D converted and transferred to the processing section 18, where the outer diameter value φ of the object W to be measured is calculated.

第3図は外径測定装置の実施例を示している。FIG. 3 shows an embodiment of the outer diameter measuring device.

なお、この第3図に示す投光部11aと第6図に示す従
来の投光部とはほぼ同一の縮尺で図示されており、これ
らの図を比較して見ても明らかなように本実施例による
投光部11aは、光路を最小限に短縮でき、外径測定装
置に適用した場合でも設置スペースを要することがない
ので、装置自身もコンパクトにできる構成となっている
Note that the light projecting section 11a shown in FIG. 3 and the conventional light projecting section shown in FIG. The light projecting section 11a according to the embodiment can shorten the optical path to the minimum, and does not require installation space even when applied to an outer diameter measuring device, so that the device itself can be made compact.

この外径測定装置の検出部9は前述した光源l、ミラー
2、音叉振動子3.ハーフミラ−4、駆動部5、レンズ
6の各部品が所定の距離を隔てて位置決め固定された投
光部11aと、この投光部11aより出射されて被測定
物Wを介して導かれるレーザ光を受光する受光部11b
が、各々別々の筺体7,12に構成されて1つの基台1
3上に所定の距離を置いて固設されている。
The detection section 9 of this outer diameter measuring device includes the aforementioned light source 1, mirror 2, tuning fork vibrator 3. A light projecting section 11a in which parts such as a half mirror 4, a driving section 5, and a lens 6 are positioned and fixed at a predetermined distance, and a laser beam emitted from the light projecting section 11a and guided through the object W to be measured. The light receiving section 11b receives the light.
are configured in separate housings 7 and 12, respectively, and form one base 1.
3 at a predetermined distance.

次に、上記のように構成される外径測定装置の動作につ
いて説明する。
Next, the operation of the outer diameter measuring device configured as described above will be explained.

偏向器lOを含む投光部11aと受光部ttbとの間の
基台13上に被測定物Wがセットされると、まず、偏向
器lOにおける光源lよりレーザ光が出射される。この
レーザ光はレンズ6によりて偏向されるビームの収束あ
るいは発散の度合いが調整されながらミラー2を介して
音叉振動子3の凹面t18で反射される。そして、さら
にこのレーザ光は凹面鏡8によって偏向角度、が十分に
保たれた状態で音叉振動子3の振動により正弦的にミラ
ー2およびレンズ14を介して光軸に平行に走査され被
測定物に照射される。このとき、レーザ光の一部の光は
ハーフミラ−4によって反射されミラー2を介してモニ
タ回路5aに導かれ、このモニタの結果によって音叉振
動子3の振動が制御され、出射されるレーザ光の走査位
置のシミ上レートが行なわれるようになっている。そし
て、被測定物にレーザ光が照射されると、この被測定物
を通過するレーザ光のみが受光部11bにおけるレンズ
15を介して受光器17により受光される。この受光さ
れた光は処理部18によって処理され被測定物Wの外径
φと被測定物WのX方向の位置が演算される。
When the object W to be measured is set on the base 13 between the light projecting section 11a and the light receiving section ttb including the deflector 1O, a laser beam is first emitted from the light source 1 in the deflector 1O. This laser light is reflected by the concave surface t18 of the tuning fork vibrator 3 via the mirror 2 while the degree of convergence or divergence of the beam deflected by the lens 6 is adjusted. Further, this laser beam is sinusoidally scanned parallel to the optical axis via the mirror 2 and lens 14 by the vibration of the tuning fork oscillator 3, with the deflection angle maintained sufficiently by the concave mirror 8, and is directed to the object to be measured. irradiated. At this time, a part of the laser beam is reflected by the half mirror 4 and guided to the monitor circuit 5a via the mirror 2, and the vibration of the tuning fork vibrator 3 is controlled based on the result of this monitoring, and the emitted laser beam is A spot rate of the scanning position is performed. Then, when the object to be measured is irradiated with the laser beam, only the laser beam that passes through the object to be measured is received by the light receiver 17 via the lens 15 in the light receiving section 11b. This received light is processed by the processing section 18, and the outer diameter φ of the object W to be measured and the position of the object W in the X direction are calculated.

第4図は外径測定機の性能を評価するためにレコーダ(
図示せず)によって記録される被測定物のX方向の移動
に対する外径の偏差状態を示すデータであって、従来の
第6図に示す偏向器を用いた外径測定装置と比較したも
のである。
Figure 4 shows a recorder (
This data shows the deviation state of the outer diameter of the measured object with respect to the movement of the object in the be.

このデータを見ると、従来のものでは被測定物の移動に
対する外径φの偏差dφが大きいのに対し、本実施例の
ものでは偏差dψが極めて小さく安定しており、前述の
ごとく常に高精度な被測定物の外径φの測定が行なえる
ことがわかる。従って、前述のごとくレンズ14の焦点
距離を小さくすることができ、そして、音叉振動子3と
レンズ14間のミラーの数も少なくできたため、光学的
な誤差を小さ(することができ高精度化が実現できた。
Looking at this data, it can be seen that in the conventional model, the deviation dφ of the outer diameter φ with respect to the movement of the object to be measured is large, whereas in this example, the deviation dψ is extremely small and stable, and as mentioned above, the accuracy is always high. It can be seen that the outer diameter φ of the object to be measured can be measured. Therefore, as mentioned above, the focal length of the lens 14 can be reduced, and the number of mirrors between the tuning fork vibrator 3 and the lens 14 can also be reduced. was realized.

以上説明したように被測定物に照射されるレーザ光の偏
向角度θ、が凹面鏡8によって十分に取れる本実施例の
偏向器10によれば、第4図および第5図に示すように
被測定物に照射される光の偏向角度を十分に得るべく各
光学部品間の距離が長(設定された従来の偏向器に比べ
て各光学部品間の距離を短縮することができるので、各
部品の実装スペースを極めて小さくすることができ、装
置自身のコンパクト化を図ることができる。また、レン
ズ14の焦点距離を小さくすることができ、そして、音
叉振動子3とレンズ14間のミラーの数も少なくできる
ので、光学的な誤差を低減させることができ、この偏向
器を外径測定装置に適用した場合に高精度な測定を行な
うことができる。
As explained above, according to the deflector 10 of this embodiment, in which the deflection angle θ of the laser beam irradiated onto the object to be measured can be sufficiently determined by the concave mirror 8, the object to be measured can be The distance between each optical component is long to obtain a sufficient deflection angle of the light irradiated onto the object (compared to a conventional deflector, the distance between each optical component can be shortened, The mounting space can be made extremely small, and the device itself can be made compact.Furthermore, the focal length of the lens 14 can be made small, and the number of mirrors between the tuning fork vibrator 3 and the lens 14 can also be made small. Since the deflector can be reduced in number, optical errors can be reduced, and when this deflector is applied to an outer diameter measuring device, highly accurate measurement can be performed.

また、上述した実施例では偏向器を外径測定装置に適用
した場合を例にとって説明したが、これに限ることなく
他の測定器である透明体の厚み計や三角測量を利用した
変位測定器等に適用するようにしてもよい0例えば厚み
計を例にとって説明すると、第7図に示すように光源l
よりレーザ光が出射されると、このレーザ光を音叉振動
子3および凹面鏡8によって所定の偏向角度を持つ平行
な振動スポットとして被測定物Wを走査し、被測定物W
からの反射光をスリット19を通して分離することで、
レーザ光の走査に同期して双峰波形の出力が得られ、こ
の信号のピーク間隔から被測定物Wの厚みが測定される
In addition, in the above-mentioned embodiments, the case where the deflector is applied to an outer diameter measuring device is explained as an example, but the deflector is not limited to this, and other measuring devices such as a thickness gauge of a transparent body or a displacement measuring device using triangulation can be used. For example, taking a thickness gauge as an example, as shown in FIG.
When a laser beam is emitted from the object W, the tuning fork vibrator 3 and the concave mirror 8 scan the object W with this laser beam as a parallel vibration spot having a predetermined deflection angle.
By separating the reflected light from the slit 19 through the slit 19,
A bimodal waveform output is obtained in synchronization with the scanning of the laser beam, and the thickness of the object W to be measured is measured from the peak interval of this signal.

なお、図中本実施例の偏向器の構成要素と同一部分には
同一番号を付しである。
In the figure, the same parts as the components of the deflector of this embodiment are given the same numbers.

[発明の効果] 以上説明したように本発明の偏向器によれば、十分な走
査回数並びに偏向角度をもって安定した光束の偏向を得
ることができる。また、凹面鏡によって偏向角度が十分
に得られることから、光路上に配設される光学部品間の
距離を必要最低限に短縮することができ、設置スペース
を多く必要とせずに各部品を配設でき、装置のコンパク
ト化を図ることができる。
[Effects of the Invention] As explained above, according to the deflector of the present invention, stable deflection of a light beam can be obtained with a sufficient number of scans and a sufficient deflection angle. In addition, since the concave mirror provides a sufficient deflection angle, the distance between optical components placed on the optical path can be shortened to the minimum necessary, allowing each component to be placed without requiring a large amount of installation space. This allows the device to be made more compact.

また、上記偏向器を用いた外径測定装置によれば、偏向
器より常に安定した光束が被測定物に照射されることか
ら、誤差の極めて少ない高精度な測定を行なうことがで
き、偏向器の偏向角度が大きいため、レンズllaの焦
点距離も小さくでき、装置のコンパクト化も図ることが
できる。
In addition, according to the outer diameter measuring device using the above-mentioned deflector, since the object to be measured is always irradiated with a more stable light beam than the deflector, it is possible to perform highly accurate measurements with extremely little error. Since the deflection angle is large, the focal length of the lens lla can also be made small, and the device can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による偏向器の一実施例を示す概略構成
図2第2図は同偏向器を備えた外径測定装置の一実施例
を示す概略構成図、第3図は同偏向器を備えた外径測定
装置の断面図、第4図は本発明の外径測定装置における
レコーダによって記録される被測定物の移動量に対する
外径の偏差状態を示すデータ、第5図は回転ミラーを用
いた従来の偏向器の概略構成を示す図、第6図は音叉振
動子による偏向器の具体的な内部構成を示す断面図、第
7図は本発明による偏向器を厚み計に適用した場合の構
成図である。 l・・・光源、3・・・音叉振動子、5・・・駆動部、
6−・・レンズ、8・・・凹面鏡、9・・・外径測定装
置、10・・・偏向器、lla・・・投光部、llb・
・・受光部、18・・・処理部。
Fig. 1 is a schematic diagram showing an embodiment of the deflector according to the present invention; Fig. 2 is a schematic diagram showing an embodiment of an outer diameter measuring device equipped with the deflector; and Fig. 3 is a schematic diagram showing an embodiment of the deflector. FIG. 4 is a cross-sectional view of an outer diameter measuring device equipped with an outer diameter measuring device according to the present invention, FIG. 6 is a sectional view showing the specific internal structure of a deflector using a tuning fork vibrator, and FIG. 7 is a diagram showing a deflector according to the present invention applied to a thickness gauge. FIG. l... Light source, 3... Tuning fork vibrator, 5... Drive unit,
6-...Lens, 8...Concave mirror, 9...Outer diameter measuring device, 10...Deflector, lla...Light projection part, llb...
... Light receiving section, 18... Processing section.

Claims (1)

【特許請求の範囲】 1)光源と、該光源からの光束を所定の偏向角度をもっ
て出射する凹面鏡が設けられた音叉振動子と、該音叉振
動子と前記光源との間の光路上に設けられ、偏向される
光束の収束および発散の状態を調整するレンズと、前記
音叉振動子の駆動を制御する駆動部とを備えたことを特
徴とする偏向器。 2)請求項1記載の偏向器において、該凹面鏡の代わり
に非球面鏡または、シリンドリカル状の鏡を用いたこと
を特徴とする特許請求の範囲第1項に係わる偏向器。 3)請求項1記載の偏向器において、該レンズとして該
凹面鏡の収差を減少するように設計されたレンズを用い
ることを特徴とする特許請求の範囲第1項に係わる偏向
器。 4)請求項1記載の偏向器と、該偏向器から出射された
光束を光軸に対し平行で走査するためのレンズと、該レ
ンズから被測定物を介して通過する光束を収束させるレ
ンズと、該レンズにより収束された光束を受光する受光
器と、該受光器より得られた信号と該駆動部より得られ
た信号に基づいて前記被測定物の外径を演算する処理部
とを備えたことを特徴とする外径測定装置。
[Scope of Claims] 1) A light source, a tuning fork vibrator provided with a concave mirror that emits a light beam from the light source with a predetermined deflection angle, and a tuning fork vibrator provided on an optical path between the tuning fork vibrator and the light source. 1. A deflector comprising: a lens that adjusts convergence and divergence states of a deflected light beam; and a drive section that controls driving of the tuning fork vibrator. 2) The deflector according to claim 1, wherein an aspherical mirror or a cylindrical mirror is used in place of the concave mirror. 3) The deflector according to claim 1, wherein a lens designed to reduce aberrations of the concave mirror is used as the lens. 4) A deflector according to claim 1, a lens for scanning the light flux emitted from the deflector parallel to the optical axis, and a lens for converging the light flux passing from the lens through the object to be measured. , a light receiver that receives the light beam converged by the lens, and a processing section that calculates the outer diameter of the object based on the signal obtained from the light receiver and the signal obtained from the drive section. An outer diameter measuring device characterized by:
JP3106989A 1989-02-13 1989-02-13 Deflector and outside diameter measuring instrument formed by using this deflector Pending JPH02211416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106989A JPH02211416A (en) 1989-02-13 1989-02-13 Deflector and outside diameter measuring instrument formed by using this deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106989A JPH02211416A (en) 1989-02-13 1989-02-13 Deflector and outside diameter measuring instrument formed by using this deflector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11264896A Division JPH08334318A (en) 1996-05-07 1996-05-07 Apparatus for measuring outer diameter

Publications (1)

Publication Number Publication Date
JPH02211416A true JPH02211416A (en) 1990-08-22

Family

ID=12321160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106989A Pending JPH02211416A (en) 1989-02-13 1989-02-13 Deflector and outside diameter measuring instrument formed by using this deflector

Country Status (1)

Country Link
JP (1) JPH02211416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596442A (en) * 1990-11-15 1997-01-21 Gap Technologies, Inc. Gyrating axial scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731608B2 (en) * 1976-09-28 1982-07-06
JPS57138615A (en) * 1981-02-19 1982-08-27 Yokogawa Hokushin Electric Corp Optical scanning device
JPS63113517A (en) * 1986-10-31 1988-05-18 Citizen Watch Co Ltd Scanner for laser printer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731608B2 (en) * 1976-09-28 1982-07-06
JPS57138615A (en) * 1981-02-19 1982-08-27 Yokogawa Hokushin Electric Corp Optical scanning device
JPS63113517A (en) * 1986-10-31 1988-05-18 Citizen Watch Co Ltd Scanner for laser printer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596442A (en) * 1990-11-15 1997-01-21 Gap Technologies, Inc. Gyrating axial scanner
US5959757A (en) * 1990-11-15 1999-09-28 Geo Labs, Inc. Gyrating programmable scanner
US6101017A (en) * 1990-11-15 2000-08-08 Plesko; George A. Gyrating programmable scanner
US6377380B1 (en) 1990-11-15 2002-04-23 Symbol Technologies, Inc. Gyrating programmable scanner

Similar Documents

Publication Publication Date Title
JPS6388409A (en) Laser vibrometer
EP3199946B1 (en) Deformation detecting device
US3506839A (en) Contactless probe system
JPH07502810A (en) Method and apparatus for measuring the slope of an interface in an optical system
JPH02211416A (en) Deflector and outside diameter measuring instrument formed by using this deflector
JPH095059A (en) Flatness measuring device
EP0227136B1 (en) Arrangement for optically measuring a surface profile
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
JP2020148632A (en) Inner diameter measuring apparatus
JP2003194518A (en) Laser distance measuring apparatus
US4685804A (en) Method and apparatus for the measurement of the location or movement of a body
JPH03225206A (en) Optical surface profile measuring device
JPH08334318A (en) Apparatus for measuring outer diameter
JPS5856094B2 (en) Microvibration measuring device
JP3387964B2 (en) Automatic tracking surveying instrument
JP2799492B2 (en) Position or length measuring device
JP3135630B2 (en) Laser-based measuring instrument using Doppler effect
JP2875624B2 (en) Surveying instrument
SU1167423A1 (en) Device for measuring motions
SU1040328A1 (en) Method of checking object oscillation amplitude and shape
JPH0720094A (en) Ultrasonic oscillation measuring apparatus
JPH07119603B2 (en) Sample plane position measuring device
JPH07243820A (en) Measuring apparatus of surface shape
JPH0640003B2 (en) Sample surface position measurement method
JPH0618353A (en) Calibration tester for optical blade vibration measurement equipment