JPH02211297A - Treatment of sludge - Google Patents
Treatment of sludgeInfo
- Publication number
- JPH02211297A JPH02211297A JP63229758A JP22975888A JPH02211297A JP H02211297 A JPH02211297 A JP H02211297A JP 63229758 A JP63229758 A JP 63229758A JP 22975888 A JP22975888 A JP 22975888A JP H02211297 A JPH02211297 A JP H02211297A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- treatment
- anaerobic digestion
- anaerobic
- digestion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 66
- 230000029087 digestion Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 23
- 230000000813 microbial effect Effects 0.000 claims abstract description 17
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 238000001238 wet grinding Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 6
- 238000005063 solubilization Methods 0.000 abstract description 6
- 230000007928 solubilization Effects 0.000 abstract description 6
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000002028 Biomass Substances 0.000 abstract 3
- 230000003113 alkalizing effect Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 235000011121 sodium hydroxide Nutrition 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 8
- 244000005700 microbiome Species 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 6
- 239000010865 sewage Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 235000019621 digestibility Nutrition 0.000 description 3
- 244000000010 microbial pathogen Species 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010801 sewage sludge Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000005446 dissolved organic matter Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 244000245420 ail Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 210000001621 ilium bone Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、下水汚泥、農水産廃棄物等の有機性汚泥の処
理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating organic sludge such as sewage sludge and agricultural and fishery waste.
(従来の技術)
下水あ理場における都市下水の標準的な微生物処理にお
いては、下水はまず曝気槽で好気的微生物処理され、そ
の後、沈殿槽に送られる。沈殿槽から排出される上澄み
は二次的な処理工程に送られ、一方、沈殿した大量の汚
泥すなわち余剰汚泥は、濃縮後、焼却されたり廃棄され
たりすることもあるが、脱水、焼却が困難な性状である
ばかりか、廃棄処分には病原性微生物を撒散らして環境
を悪化させるという問題もあるので、処分する前になる
べくその量を減らす処理を施す必要がある。そのための
処理方法の代表的なものは、嫌気性消化処理であって、
嫌気性微生物の代謝を利用して有機物を有機酸、メタン
ガス、炭酸ガス等に分解する。(Prior Art) In standard microbial treatment of urban sewage in a sewage treatment plant, sewage is first subjected to aerobic microbial treatment in an aeration tank and then sent to a settling tank. The supernatant discharged from the settling tank is sent to a secondary treatment process, while the large amount of settled sludge, or surplus sludge, is sometimes incinerated or disposed of after thickening, but it is difficult to dewater and incinerate it. Not only do they have dangerous properties, but when they are disposed of, there is also the problem of dispersing pathogenic microorganisms and deteriorating the environment, so it is necessary to take steps to reduce the amount of these microorganisms as much as possible before disposal. A typical treatment method for this purpose is anaerobic digestion treatment,
Decomposes organic matter into organic acids, methane gas, carbon dioxide gas, etc. using the metabolism of anaerobic microorganisms.
しかしながら、余剰汚泥は微生物の塊のようなものであ
ってきわめて分解しにくいから、その嫌気性消化に要す
る日数は、中温消化(vA度35〜37℃)の場合で2
0〜30日と長い。しかも、それだけの日数を費やして
も有機物の分解率は40〜50%程度にとどまり、した
がって排出液は依然として高濃度の有機物を含有し、そ
の後の水処理の大きな負担となっている。However, excess sludge is like a mass of microorganisms and is extremely difficult to decompose, so the number of days required for anaerobic digestion is 2 days in the case of mesophilic digestion (VA degree 35-37℃).
It is long, from 0 to 30 days. Moreover, even if such a number of days are spent, the decomposition rate of organic matter remains at about 40 to 50%, and therefore the effluent still contains a high concentration of organic matter, which becomes a heavy burden for subsequent water treatment.
上述のように、従来の汚泥処理法は能率が悪く、そのた
め大型の嫌気性消化槽を必要とし、固形物の減量効果も
満足できるものではなかった。また、排出される水は有
機物濃度が高く、側底そのまま放流できるものではない
し、さらに処理するとしても大きな負担となるものであ
った。As mentioned above, conventional sludge treatment methods are inefficient, require large anaerobic digestion tanks, and have unsatisfactory solids reduction effects. In addition, the discharged water has a high concentration of organic matter, so it cannot be discharged directly to the bottom of the tank, and further treatment would be a heavy burden.
そこで本発明は、従来の汚泥処理法における上述の問題
点を解決し、より短時日でより高率の減量と有機物の分
解を達成できる汚泥処理法を提供しようとするものであ
る。Therefore, the present invention aims to solve the above-mentioned problems in conventional sludge treatment methods and to provide a sludge treatment method that can achieve a higher rate of weight loss and decomposition of organic matter in a shorter period of time.
本発明が提供する汚泥処理法は、有機性汚泥にそのpH
が9〜11になるまでアルカリを添加して汚泥中の微生
物菌体の可溶化を生じさせ、さらに湿式ミル処理により
残存微生物菌体等を破砕し、処理後の汚泥を嫌気性消化
処理し、該嫌気性消化処理後の汚泥から分離された水を
好気的微生物処理することを特徴とする。In the sludge treatment method provided by the present invention, organic sludge is
Solubilization of microbial cells in the sludge is caused by adding alkali until the value reaches 9 to 11, further crushing remaining microbial cells etc. by wet milling, and subjecting the treated sludge to anaerobic digestion, The method is characterized in that the water separated from the sludge after the anaerobic digestion treatment is subjected to aerobic microbial treatment.
以下、本発明の汚泥処理法ついて更に詳しく説明する。Hereinafter, the sludge treatment method of the present invention will be explained in more detail.
汚泥のアルカリ処理は、力性ソーダ、炭酸ソーダ等のア
ルカリを汚泥pHが9〜11になるまで加え、温度約2
0〜30℃で0.5〜1時間程度保持することにより行
う。これにより、汚泥中の微生物の細胞壁が破壊され、
蛋白質、糖などの細胞内成分が溶出するいわゆる可溶化
が起こる。PH11以上の強アルカリ性にすることは、
可溶化促進には有効でも、後の嫌気性消化工程において
そのような強アルカリ性の汚泥中で増殖するメタン菌の
十分量を消化槽内に蓄積させることが困難になるので、
好ましくない。For alkaline treatment of sludge, add alkali such as sodium hydroxide or soda carbonate until the pH of the sludge reaches 9 to 11, and heat the sludge at a temperature of about 2.
This is carried out by holding at 0 to 30°C for about 0.5 to 1 hour. This destroys the cell walls of microorganisms in the sludge,
So-called solubilization occurs in which intracellular components such as proteins and sugars are eluted. To make it strongly alkaline with a pH of 11 or higher,
Although it is effective in promoting solubilization, it becomes difficult to accumulate a sufficient amount of methane bacteria that proliferate in such strongly alkaline sludge in the digester during the subsequent anaerobic digestion process.
Undesirable.
アルカリ処理した汚泥をさらに湿式ミル処理する。The alkali-treated sludge is further subjected to wet mill treatment.
この湿式ミル処理は、水中に懸濁している固形物に主と
して剪断摩擦力を作用させることにより固形物の微細化
を行う処理であって、具体的には、回転円筒式ミル、振
動ボールミル、遠心式ボールミル、媒体攪拌式ミル、コ
ロイドミル等を用いて高度の摩砕を行うものである。湿
式ミル処理の中でも、媒体攪拌式ミルは処理効果の点で
最もすぐれているので、特に好ましい。This wet milling process is a process in which solids are pulverized by mainly applying shearing frictional force to the solids suspended in water. A high degree of grinding is performed using a type ball mill, a media stirring type mill, a colloid mill, etc. Among the wet milling methods, the media agitation mill is particularly preferred because it has the best processing effect.
この媒体攪拌式ミルは、円筒状容器に挿入した攪拌用デ
ィスクを高速で回転させることによって容器内のビーズ
を激しく攪拌し、ビーズ間に剪断摩擦力を生じさせて摩
砕を行うものであって、用途に応じて大小様々なビーズ
が使われるが、汚泥可溶化に好ましいビーズは、粒径が
0.05〜1■のものである。その場合、攪拌用ディス
クの回転数は1000〜3000rpm(周速lO〜3
0 m/5ec)程度、被処理汚泥の滞留時間は通常の
汚泥を処理する場合で5〜60分程度が適当である。This media stirring type mill violently stirs the beads in the container by rotating a stirring disk inserted in a cylindrical container at high speed, creating a shearing friction force between the beads and grinding them. Although beads of various sizes are used depending on the purpose, preferred beads for solubilizing sludge have a particle size of 0.05 to 1 square centimeter. In that case, the rotational speed of the stirring disk is 1000 to 3000 rpm (peripheral speed lO to 3
0 m/5ec), and the residence time of the sludge to be treated is approximately 5 to 60 minutes when ordinary sludge is treated.
アルカリ処理によって可溶化しなかった微生物細胞や繊
維質の有機物も、この湿式ミル処理によって可溶化し、
あるいは嫌気性消化を受は易い形態に破砕されする。湿
式ミル処理だけでも可溶化や破砕は可能であるが、アル
カリ処理によって膨潤し一部可溶化した汚泥構成成分に
対しては、湿式ミル処理の効果は一層顕著に且つ短時間
に現れる。Microbial cells and fibrous organic matter that were not solubilized by alkaline treatment are also solubilized by this wet mill treatment.
Alternatively, it is crushed into a form that is more amenable to anaerobic digestion. Although solubilization and crushing can be achieved by wet milling alone, the effects of wet milling are more pronounced and appear in a shorter time on sludge constituents that have swelled and been partially solubilized by alkali treatment.
湿式ミル処理を施した後の汚泥の嫌気性消化処理は、単
一の嫌気性消化槽において、次のようにして行う。Anaerobic digestion of sludge after wet milling is carried out in a single anaerobic digestion tank as follows.
汚泥は、アルカリ処理を受けていることによりpH9〜
11のやや強いアルカリ性であるが、これを、中和する
ことなくそのまま嫌気性消化槽に供給する。通常、下水
汚泥中のメタン菌の増殖に好適なpHは8未満の弱アル
カリ性とされており、特に酸生成菌とメタン菌とを共存
さ、せる単一槽消化の場合のpalは、従来、調整する
場合も無調整の場合も7前後であるから、本発明の消化
法においてpHは従来よりもかなり高い値に設定される
。本発明の消化法においては、pHがこのように高い値
であることにより、第一に汚泥成分の可溶化がさらに進
み、嫌気性微生物による消化を受は易い状態になる。第
二に、病原性微生物が全く検出されないまでに死滅する
。The sludge has a pH of 9~ due to the alkaline treatment.
No. 11 is somewhat strongly alkaline, but it is supplied as is to the anaerobic digestion tank without neutralization. Normally, the pH suitable for the growth of methane bacteria in sewage sludge is considered to be weakly alkaline, less than 8. In particular, in the case of single-tank digestion in which acid-producing bacteria and methane bacteria coexist, PAL is The pH is around 7 both when adjusted and when not adjusted, so in the digestion method of the present invention, the pH is set to a much higher value than conventional ones. In the digestion method of the present invention, due to such a high pH value, firstly, the sludge components are further solubilized, making them more susceptible to digestion by anaerobic microorganisms. Second, pathogenic microorganisms are killed off to the point where they are no longer detectable.
上述のようにpHが高い状態の汚泥中で旺盛に増殖する
好アルカリ性メタン菌は、通常の下水汚泥や従来の嫌気
性消化槽からの消化汚泥の中には少ないが、嫌気性消化
槽の運転開始に当たり同じpHに維持して行う馴養期間
を設けることにより、槽内嫌気性菌菌叢の大部分を占め
るものとすることができる。As mentioned above, alkaliphilic methane bacteria, which proliferate vigorously in sludge with a high pH, are rare in normal sewage sludge and digested sludge from conventional anaerobic digestion tanks, but when operating an anaerobic digestion tank, By providing an acclimatization period in which the pH is maintained at the same level at the beginning, it is possible to ensure that the anaerobic bacteria in the tank occupy the majority of the bacterial flora.
馴養により好アルカリ性嫌気性菌群が準備されたならば
、消化槽に被処理汚泥を供給して正常運転としての嫌気
性消化を開始する。この処理において、槽内温度は特に
限定されるものではないが、30〜40℃が適当であり
、また滞留日数は2〜5日が適当である。Once the alkaliphilic anaerobic bacteria group is prepared by acclimatization, the sludge to be treated is supplied to the digestion tank and anaerobic digestion is started as normal operation. In this treatment, the temperature inside the tank is not particularly limited, but a temperature of 30 to 40° C. is appropriate, and a retention period of 2 to 5 days is appropriate.
嫌気性消化槽から排出された汚泥は、固液を分離した後
、そのまま適宜処分することもできるが、本発明の処理
法においては、液相部分についてさらに好気的微生物処
理を行う。この処理は、アルカリ処理および湿式ミル処
理によって可溶化したものの嫌気性微生物によっては分
解されなかった溶存有機物を好気性微生物に分解させる
ためのものであって、これにより溶存有機物の約50%
以上を分解し、そのまま放流可能な水にするか、後段の
水処理工程の負担を軽減する。The sludge discharged from the anaerobic digestion tank can be appropriately disposed of as it is after separating solid and liquid, but in the treatment method of the present invention, the liquid phase portion is further subjected to aerobic microbial treatment. This treatment is for aerobic microorganisms to decompose dissolved organic matter that was solubilized by alkali treatment and wet mill treatment but not decomposed by anaerobic microorganisms, and this process reduces the amount of dissolved organic matter by about 50%.
The above water can be decomposed into water that can be discharged as is, or the burden of subsequent water treatment processes can be reduced.
以上、余剰汚泥を処理する場合について本発明を説明し
たが、本発明の処理法は、下水処理場において発生する
他の汚泥の処理にも好適であることは勿論、製あんなと
農水産加工工場からの廃棄物、家畜糞尿、膏体処理廃棄
物、魚腸骨などの廃棄処理する場合にも適用可能である
。The present invention has been described above for the case of treating surplus sludge, but the treatment method of the present invention is of course suitable for treating other sludge generated at sewage treatment plants, as well as at manufacturing plants and agricultural and fishery processing plants. It can also be applied to the disposal of waste from plants, livestock manure, plaster treatment waste, fish iliac bones, etc.
都市下水処理場より採取した余剰汚泥および混合汚泥(
余剰汚泥と初沈汚泥との1:1混合物)について、本発
明による処理とその比較実験を行なった。汚泥の組成お
よび実験条件は次のとおりである。Excess sludge and mixed sludge collected from urban sewage treatment plants (
A 1:1 mixture of surplus sludge and initial settling sludge) was treated according to the present invention and a comparative experiment was conducted. The composition of the sludge and the experimental conditions are as follows.
汚泥組成:
TS(%) VS(%)
余剰汚泥 4.0 3.0混合汚泥
3.8 3.1アル力リ処理条件:
25%力性ソーダ溶液を汚泥pHがlOになるまで添加
し、常温で30分間撹拌する。Sludge composition: TS (%) VS (%) Surplus sludge 4.0 3.0 mixed sludge
3.8 3.1 Alkaline treatment conditions: Add 25% aqueous soda solution until the sludge pH reaches 1O, and stir at room temperature for 30 minutes.
湿式ミル処理条件:
使用装置:媒体撹拌式ミル・バールミル(アシザワ株式
会社、型式PMISTS、ビーズ径0.2mm。Wet mill processing conditions: Equipment used: Media stirring type mill/bar mill (Ashizawa Co., Ltd., model PMISTS, bead diameter 0.2 mm.
ディスク回転数130Orpm、濁速度6m/sec滞
留時間:5分
嫌気性消化条件:
51容ファーメンタ−を使用、300rp■で連続撹拌
消化温度:37℃
滞留日数:2日
実験開始時の馴養:下水処理場から採取した中温消化汚
泥を最初の種汚泥に用いて次のように実施最初の2週間
:滞留日数10日
次の2週間:滞留日数5日
最後の2週間:滞留日数2日
好気的微生物処理:
嫌気性消化汚泥を遠心分離して得られた上澄液を、多孔
質セラミックスを充填したバイオリアクターに供給し、
溶存酸素濃度が約1 ppmになるように曝気量を調節
するとともに滞留時間が6時間になるようにした。Disc rotation speed: 130 rpm, turbidity rate: 6 m/sec Residence time: 5 minutes Anaerobic digestion conditions: Using a 51-volume fermentor, continuous stirring at 300 rpm Digestion temperature: 37°C Residence days: 2 days Acclimatization at the start of the experiment: Sewage Mesophilic digested sludge collected from the treatment plant was used as the initial seed sludge and carried out as follows: First two weeks: Retention days: 10 days Next two weeks: Retention days: 5 days Last two weeks: Retention days: 2 days Aerobic Microbial treatment: The supernatant obtained by centrifuging the anaerobic digested sludge is supplied to a bioreactor filled with porous ceramics.
The aeration amount was adjusted so that the dissolved oxygen concentration was approximately 1 ppm, and the residence time was adjusted to 6 hours.
比較のため、アルカリ処理および湿式ミル処理を全く行
わずに同じ嫌気性消化および好気的微生物処理を行なっ
た実験(比較例1)および湿式ミル処理のみを行いアル
カリ処理を行わないほかは上記と同様にした実験(比較
例2)を行なった。For comparison, an experiment was conducted in which the same anaerobic digestion and aerobic microbial treatment were performed without any alkali treatment or wet mill treatment (Comparative Example 1), and an experiment similar to the above except that only wet mill treatment was performed and no alkali treatment was performed. A similar experiment (Comparative Example 2) was conducted.
嫌気性消化槽の馴養終了後10日間、嫌気性消化槽にお
ける消化率(VS除去率)、ガス発生量、ガスのメタン
含有率および揮発性有機酸量を測定し、さらに、好気的
微生物処理におけるBODの測定を行なった。For 10 days after the acclimatization of the anaerobic digester, the digestibility (VS removal rate), amount of gas generated, methane content of gas, and amount of volatile organic acids in the anaerobic digester were measured, and further aerobic microbial treatment was performed. The BOD was measured.
測定値の平均値を表1および表2に示す。The average values of the measured values are shown in Tables 1 and 2.
表1 汚泥二余剰汚泥
比較例1 比較例2 実施例
嫌気性消化
消化槽内pH
消化率(%)
ガス発生量(ffi/VS−tg)
ガス中のメタン(%)
揮発性有機酸(mg/A)
8.2 8.3
9.1
好気的微生物処理
処理前BOD (mg/I) 2300処理後BOD
(mg/I) 83BOD除去率(%) 96
.4
97.2 98.2
表2 汚泥:混合汚泥
比較例1 比較例2 実施例
嫌気性消化
消化槽内pH
消化率(%)
ガス発生量(a/VS−にり
ガス中のメタン(%)
揮発性有機酸(+u/A)
好気的微生物処理
処理前B OD (−g/I)
処理後BOD (at/1)
BOD除去率(%)
〔発明の効果〕
8.1
8.4
9.2
97.0 96.8 98.4本発明の汚泥処
理法によれば、
上述のように極めて
短時間で従来の最高の水準と同等またはそれ以上の高い
消化率を嫌気性消化工程において達成し、汚泥量を顕著
に減少させることができるとともに、排出水の水質も良
好にすることができる。ルたがって、従来と比べて消化
槽の単位体積当たりの処理能力の大幅な向上、あるいは
消化槽の著しい小型化が可能になるとともに、消化汚泥
発生量が減少してその後処理が容易になるという、顕著
な効果が奏される。また、強いアルカリ性で処理されて
いることにより、嫌気性消化槽から排出される消化汚泥
は病原性微生物を含まないだけでなく、その中に残って
いる嫌気性微生物が強いアルカリ性で増殖したものであ
って自然界に放出されると大部分死滅してしまうもので
あるため、消化汚泥を廃棄したとき環境を汚染する恐れ
が少ないという利点がある。Table 1 Comparative example 1 of sludge and surplus sludge Comparative example 2 Example anaerobic digestion Digestion tank pH Digestibility (%) Gas generation amount (ffi/VS-tg) Methane in gas (%) Volatile organic acid (mg) /A) 8.2 8.3 9.1 BOD before aerobic microbial treatment (mg/I) BOD after 2300 treatment
(mg/I) 83 BOD removal rate (%) 96
.. 4 97.2 98.2 Table 2 Sludge: Mixed sludge Comparative Example 1 Comparative Example 2 Example Anaerobic Digestion Digestion tank pH Digestion rate (%) Gas generation amount (a/VS-Methane in garlic gas (%) Volatile organic acid (+u/A) BOD before aerobic microbial treatment (-g/I) BOD after treatment (at/1) BOD removal rate (%) [Effect of the invention] 8.1 8.4 9 .2 97.0 96.8 98.4 According to the sludge treatment method of the present invention, as mentioned above, a high digestibility equal to or higher than the highest conventional level can be achieved in the anaerobic digestion process in an extremely short time. In addition to significantly reducing the amount of sludge, it also improves the quality of the effluent water.As a result, the processing capacity per unit volume of the digestion tank is significantly improved compared to conventional methods, or the This has the remarkable effect of making it possible to significantly downsize the tank, reduce the amount of digested sludge generated, and make subsequent treatment easier.Also, because it is treated with strong alkalinity, anaerobic digestion is possible. The digested sludge discharged from the tank not only does not contain pathogenic microorganisms, but also contains the remaining anaerobic microorganisms that have grown in strong alkaline conditions, and most of them will die if released into the natural world. Therefore, there is an advantage that there is less risk of polluting the environment when the digested sludge is disposed of.
Claims (1)
添加して汚泥中の微生物菌体の可溶化を生じさせ、さら
に湿式ミル処理により残存微生物菌体等を破砕し、処理
後の汚泥を嫌気性消化処理し、該嫌気性消化処理後の汚
泥から分離された水を好気的微生物処理することを特徴
とする汚泥の処理方法。Alkali is added to organic sludge until the pH reaches 9 to 11 to solubilize the microbial cells in the sludge, and residual microbial cells are crushed by wet milling, and the treated sludge is A method for treating sludge, which comprises subjecting the sludge to anaerobic digestion and subjecting water separated from the sludge after the anaerobic digestion to aerobic microbial treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229758A JPH02211297A (en) | 1988-09-16 | 1988-09-16 | Treatment of sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229758A JPH02211297A (en) | 1988-09-16 | 1988-09-16 | Treatment of sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02211297A true JPH02211297A (en) | 1990-08-22 |
Family
ID=16897216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229758A Pending JPH02211297A (en) | 1988-09-16 | 1988-09-16 | Treatment of sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02211297A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004181349A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Heavy Ind Ltd | Apparatus and method for sludge treatment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5349855A (en) * | 1976-10-18 | 1978-05-06 | Hitachi Ltd | Method of anaerobic digestion of organic waste matter |
JPS5588897A (en) * | 1978-12-27 | 1980-07-04 | Hitachi Plant Eng & Constr Co Ltd | Organic waste treating method |
JPS588320A (en) * | 1981-07-06 | 1983-01-18 | Amada Co Ltd | Positioning device |
JPS5936597A (en) * | 1982-08-26 | 1984-02-28 | Mitsubishi Kakoki Kaisha Ltd | Treatment of night soil |
JPS61174994A (en) * | 1985-01-28 | 1986-08-06 | Matsushita Electric Ind Co Ltd | Treatment of methane fermentation waste liquid |
JPS61263699A (en) * | 1985-05-17 | 1986-11-21 | Mikurotetsuku Tsuu Wan:Kk | Method and apparatus for generating gaseous methane |
JPS6297698A (en) * | 1985-10-25 | 1987-05-07 | レナ−ト・ジ−・エリツクソン | Method of reconstituting and inverting sludge |
JPS63224798A (en) * | 1987-03-16 | 1988-09-19 | Kensetsusho Doboku Kenkyu Shocho | Anaerobic digestion process |
-
1988
- 1988-09-16 JP JP63229758A patent/JPH02211297A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5349855A (en) * | 1976-10-18 | 1978-05-06 | Hitachi Ltd | Method of anaerobic digestion of organic waste matter |
JPS5588897A (en) * | 1978-12-27 | 1980-07-04 | Hitachi Plant Eng & Constr Co Ltd | Organic waste treating method |
JPS588320A (en) * | 1981-07-06 | 1983-01-18 | Amada Co Ltd | Positioning device |
JPS5936597A (en) * | 1982-08-26 | 1984-02-28 | Mitsubishi Kakoki Kaisha Ltd | Treatment of night soil |
JPS61174994A (en) * | 1985-01-28 | 1986-08-06 | Matsushita Electric Ind Co Ltd | Treatment of methane fermentation waste liquid |
JPS61263699A (en) * | 1985-05-17 | 1986-11-21 | Mikurotetsuku Tsuu Wan:Kk | Method and apparatus for generating gaseous methane |
JPS6297698A (en) * | 1985-10-25 | 1987-05-07 | レナ−ト・ジ−・エリツクソン | Method of reconstituting and inverting sludge |
JPS63224798A (en) * | 1987-03-16 | 1988-09-19 | Kensetsusho Doboku Kenkyu Shocho | Anaerobic digestion process |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004181349A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Heavy Ind Ltd | Apparatus and method for sludge treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20160018572A (en) | Microbial-based waste water treatment compositions and methods of use thereof | |
JPS5864200A (en) | Anaerobic digestion of cellulose-containing waste matter | |
JP3400292B2 (en) | Waste treatment method | |
JPH0470079B2 (en) | ||
JP2003103292A (en) | Combined treatment method of wastewater and waste derived from organism | |
EP0041565A1 (en) | Improved anaerobic and aerobic digestion of waste and biomass by use of lactobacillus culture additives | |
JPH02211297A (en) | Treatment of sludge | |
JPH0739895A (en) | Treating method and device for waste liquid containing organic solid content | |
JP2001269656A (en) | Method for treating food waste | |
JPH0470078B2 (en) | ||
JPH0283098A (en) | Treatment of sludge | |
JP3853971B2 (en) | Aerobic digestion method of excess sludge | |
GB1589551A (en) | Activated sludge process for waste water purification | |
Murphy, M. & Lotter | The effect of acetate on polyphosphate formation and degradation in activated sludge with particular reference to Acinetobacter calcoaceticus: a microscopic study | |
JP2572334B2 (en) | Method and apparatus for microbiological reduction of excess sludge | |
JPH0438480B2 (en) | ||
JPS63224798A (en) | Anaerobic digestion process | |
JP4995755B2 (en) | Method for wet methane fermentation of organic waste with high fat content | |
JPH0438478B2 (en) | ||
JP3973294B2 (en) | Shell Methane Fermentation Processing Equipment | |
JP2004073906A (en) | Jellyfish treatment method | |
JP2005324173A (en) | Method and apparatus for treating sludge | |
CS275735B6 (en) | Method of mesophilic or thermophilic anaerobic enzymatic conditioning of liquid organic substances and biological materials | |
JP2001302377A (en) | Method for composting dehydrated cake | |
JPH0566199B2 (en) |