JPH02217737A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH02217737A JPH02217737A JP1037533A JP3753389A JPH02217737A JP H02217737 A JPH02217737 A JP H02217737A JP 1037533 A JP1037533 A JP 1037533A JP 3753389 A JP3753389 A JP 3753389A JP H02217737 A JPH02217737 A JP H02217737A
- Authority
- JP
- Japan
- Prior art keywords
- air conditioning
- room
- indoor
- capacity
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004378 air conditioning Methods 0.000 claims abstract description 59
- 239000003507 refrigerant Substances 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 238000013021 overheating Methods 0.000 claims 1
- 238000004781 supercooling Methods 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 description 17
- 239000007788 liquid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、一台の室外機に複数台の室内機を接続して
構成したマルチタイプの空気調和機に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-type air conditioner configured by connecting a plurality of indoor units to one outdoor unit.
(従来の技術)
上記のようなマルチタイプの空気調和機の従来例として
、例えば特開昭63−220032号公報記載の装置を
挙げることができる。その装置においては、圧縮機と室
外熱交換器とを有する一台の室外機内に、それぞれ電動
膨張弁が介設された複数の分岐冷媒配管が設けられ、こ
れらの分岐冷媒配管に、それぞれ室内熱交換器を有する
室内機を互いに並列に接続した構成となされている。こ
のような装置においては、例えば冷房運転時、各室内熱
交換器での蒸発冷媒の過熱度を基準過熱度に維持するよ
うに各電動膨張弁の開度を制御することによって、各室
内機への循環冷媒量を調節するようになされている。(Prior Art) As a conventional example of the multi-type air conditioner as described above, for example, a device described in Japanese Patent Application Laid-Open No. 63-220032 can be cited. In this system, a plurality of branch refrigerant pipes each having an electric expansion valve are installed in a single outdoor unit having a compressor and an outdoor heat exchanger, and each of these branch refrigerant pipes is connected to an indoor heat exchanger. It has a configuration in which indoor units each having an exchanger are connected in parallel with each other. In such a device, for example, during cooling operation, the degree of superheating of the evaporative refrigerant in each indoor heat exchanger is maintained at the reference degree of superheat by controlling the opening degree of each electric expansion valve. The amount of circulating refrigerant is adjusted.
上記のような室内機としては、内装する室内熱交換器で
の熱貫流率、伝熱面積、通過風速等によって決定される
標準空調能力(以下、容量と言う)が、例えば2000
.2500.2800.3500.4500 ・・kc
al/hというように段階的に異なる機種の中から、据
付室内の広さや壁面の断熱構造等によって概算される室
内の空調負荷レベルに応じた機種が各室毎に選定される
。The above-mentioned indoor unit has a standard air conditioning capacity (hereinafter referred to as capacity) determined by the heat transfer coefficient, heat transfer area, passing wind speed, etc. of the indoor heat exchanger installed, for example, 2000 yen.
.. 2500.2800.3500.4500...kc
From models that vary in stages such as al/h, a model is selected for each room according to the indoor air conditioning load level estimated based on the size of the installation room, the wall insulation structure, etc.
ところで例えば負荷レベルが2300kcal/ hの
A室、及び3700kcal/ hのB室の2室への室
内機として、それぞれの負荷レベルに最も近い容量25
00.3500kcal / hの機種選定を行った場
合、各々の室内機の単独運転においては、A室側では容
量2500kcal/hの範囲内で、またB室側では容
量3500kcal/hを若干超えた能力範囲で、それ
ぞれの負イ’+:jL・ベルに対応した空調能力での運
転が行われる。By the way, for example, as an indoor unit for two rooms, room A with a load level of 2300 kcal/h and room B with a load level of 3700 kcal/h, the capacity 25 that is closest to each load level is
00. When selecting a model with a capacity of 3500kcal/h, when each indoor unit is operated independently, the capacity in room A is within the range of 2500kcal/h, and the capacity in room B is slightly over 3500kcal/h. Within the range, operation is performed at an air conditioning capacity corresponding to each negative A'+:jL Bell.
しかしながら両室内機を同時に運転する場合には、各々
の室内機への循環冷媒量が各容量比に応じて分配される
運転状態となるために、例えばA室側での負荷レベルに
見拾った空調能力で運転されている場合には、B室側で
の空調能力が不足した運転状態が継続するという問題が
生じる。このため従来は、各室内の負荷レベルにより適
合した容量の室内機を選定しても同時運転時に空調能力
の過不足状態を生じる場合には、能力不足側の室内機を
一クラス上の容量、上記B室の場合には4500kca
l/hの機種を選定し、各負荷レベルに対する能力不足
を生じないようにして、例えば暖房運転開始時の速暖性
等が損なわれないようにしている。However, when both indoor units are operated at the same time, the amount of circulating refrigerant to each indoor unit is distributed according to the capacity ratio. If the room is operated with the air conditioning capacity, a problem arises in that the operating state in which the air conditioning capacity on the B room side is insufficient continues. For this reason, conventionally, even if an indoor unit with a capacity that is suitable for the load level in each room is selected, if there is an excess or deficiency in air conditioning capacity during simultaneous operation, the indoor unit with the insufficient capacity is replaced with a capacity one class higher. In the case of room B above, 4500kca
A model of 1/h is selected so as not to cause insufficient capacity for each load level, so that, for example, quick heating performance at the start of heating operation is not impaired.
(発明が解決しようとする課題)
ところで、上記のように同時運転時の能力不足を生じさ
せないために、能力不足となる部屋の室内機とじて一ク
ラス上の機種を選定する必要があることから、例えば室
内機の合計容量が室内側の合計の負荷レベルに対して過
大となる据付状態が生じ、このため例えば据イ」コスト
が高くなるという問題を生じている。(Problem to be Solved by the Invention) By the way, in order to prevent a lack of capacity during simultaneous operation as described above, it is necessary to select a model one class higher as the indoor unit for the room where the capacity is insufficient. For example, an installation situation occurs in which the total capacity of the indoor units is excessive with respect to the total load level on the indoor side, resulting in a problem that, for example, the installation cost becomes high.
この発明は上記に鑑みなされたものであって、その目的
は、過大な容量の機種選定・を行うことなく室内の負荷
レベルにより適合させた運転が可能であり、この結果、
据付コストを従来よりも低減し得る空気調和機を提供す
ることにある。This invention was made in view of the above, and its purpose is to enable operation that is more suited to the indoor load level without selecting a model with an excessive capacity, and as a result,
An object of the present invention is to provide an air conditioner whose installation cost can be reduced compared to conventional ones.
(課題を解決するための手段)
そこでこの発明の空気調和機は、一台の室外機Xに複数
台の室内機A−Dを互いに並列に接続すると共に、各室
内機A−Dを循環する冷媒量をそれぞれ過熱度制御、或
いは過冷却度制御する流量制御手段19を有しで成る空
気調和機であって、第1図に示すように、各室内の空調
負荷を検出する空調負荷検出手段33と、各室内の検出
空調負荷の平均を演算する平均負荷演算手段41と、検
出空調負荷が上記平均負荷よりも小さい室内における室
内機A・・内の室内ファン25の回転速度を低下させる
風量変更手段42とを設けている。(Means for Solving the Problem) Therefore, the air conditioner of the present invention connects a plurality of indoor units A to D in parallel to one outdoor unit X, and circulates through each indoor unit A to D. An air conditioner comprising flow rate control means 19 for controlling the degree of superheating or supercooling of the amount of refrigerant, and as shown in FIG. 1, air conditioning load detection means for detecting the air conditioning load in each room. 33, an average load calculation means 41 that calculates the average of the detected air conditioning loads in each room, and an air volume that reduces the rotation speed of the indoor fan 25 in the indoor unit A in the room where the detected air conditioning load is smaller than the average load. A changing means 42 is provided.
(作用)
上記の空気調和機においては、例えば設定室温と検出室
温の差として検出される検出空調負荷が、各室毎の検出
空調負荷の平均よりも小さい室内における室内機内の室
内ファン25の回転速度の低下、すなわち風量の低下に
よって、上記室内機を循環する冷媒量が、上記低下され
た風量との熱交換量に見合った量へと流量制御手段19
により減少される。この結果、検出空調負荷が上記平均
よりも大きな他室の室内機への流量が増えて、これらの
室内機での空調能力が増加する。つまり、上記において
は検出空調負荷が平均よりも小さく、大きな空調能力を
必要としなくなった室内機への循環冷媒量を低下させて
、検出空調負荷が平均よりも大きく、したがってより大
きな空調能力を必要とする室内機への循環冷媒量を増加
させる循環冷媒の分配が行われる。これにより、例えば
各室の負荷レベルにより適合する容量の室内機の選定を
行った結果、ある部屋において負荷レベルよりも幾分率
さい容量の室内機の据付がなされた場合においても、他
室における検出空調負荷が小さくなったときに上記室内
機への循環冷媒量の増加、すなわち空調能力の増加がな
されて空調能力不足が解消される。したがって空調快適
性の低下を極力抑えた運転を、各室の負荷レベルにより
適合する容量の室内機をそれぞれ選定した場合にも維持
することができるので、従来よりも各室内機の合計の容
量を小さくすることが可能となり、この結果、据付コス
トの低減を図ることができる。(Function) In the above air conditioner, the rotation of the indoor fan 25 in the indoor unit in a room where the detected air conditioning load detected as the difference between the set room temperature and the detected room temperature is smaller than the average of the detected air conditioning loads for each room. By reducing the speed, that is, reducing the air volume, the amount of refrigerant circulating through the indoor unit is adjusted to an amount commensurate with the amount of heat exchanged with the reduced air volume.
is reduced by As a result, the flow rate to the indoor units in other rooms whose detected air conditioning load is larger than the above average increases, and the air conditioning capacity of these indoor units increases. In other words, in the above case, the detected air conditioning load is smaller than the average and the amount of circulating refrigerant to the indoor unit that no longer requires large air conditioning capacity is reduced, and the detected air conditioning load is larger than the average and therefore requires larger air conditioning capacity. The circulating refrigerant is distributed to increase the amount of circulating refrigerant to the indoor unit. As a result, even if an indoor unit with a capacity that is slightly lower than the load level is installed in one room as a result of selecting an indoor unit with a capacity that is more suitable for the load level of each room, it is possible to When the detected air conditioning load becomes small, the amount of refrigerant circulated to the indoor unit is increased, that is, the air conditioning capacity is increased, and the insufficient air conditioning capacity is resolved. Therefore, it is possible to maintain operation with as little deterioration of air conditioning comfort as possible even when selecting indoor units with capacities that suit the load level of each room. It becomes possible to reduce the size, and as a result, installation costs can be reduced.
(実施例)
次にこの発明の空気調和機の具体的な実施例について、
図面を参照しつつ詳細に説明する。(Example) Next, regarding a specific example of the air conditioner of this invention,
This will be explained in detail with reference to the drawings.
まず第2図には、この発明の一実施例における空気調和
機の冷媒回路図を示しており、同図において、Xは室外
機であり、この室外機Xには4台の室内機A−Dが接続
されている。First, Fig. 2 shows a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. In the figure, X is an outdoor unit, and this outdoor unit X has four indoor units A- D is connected.
上記室外機Xには圧縮機1が内装されており、この圧縮
IIIの吐出配管2と吸込配管3とばそれぞれ四路切換
弁4に接続され、この四路切換弁4にはさらに第1ガス
管5と第2ガス管6とが接続されている。なお上記圧縮
機1は、その回転速度、つまり圧縮能力を制御するため
のインバータ7を有するものであり1.また上記吐出配
管2には逆止弁8が、上記吸込配管3にはアキニームレ
ータ9がそれぞれ介設されている。A compressor 1 is installed in the outdoor unit Pipe 5 and second gas pipe 6 are connected. The compressor 1 has an inverter 7 for controlling its rotational speed, that is, its compression capacity.1. Further, a check valve 8 is provided in the discharge pipe 2, and an akinimulator 9 is provided in the suction pipe 3.
上記第1ガス管5は室外熱交換器10に接続され、また
上記第2ガヌ管6はヘッダー11に接続されると共に途
中にガス閉鎖弁12が介設されている。上記室外熱交換
器10には室外ファン13が付設されると共にさらに液
管14が接続されており、この液管14には、上記室外
熱交換器10側から順次ドライヤフィルタ15、第1電
動膨張弁16、受液器17、液閉鎖弁18が介設されて
いる。そして上記液管14の先端は、それぞれ第2電動
膨張弁(流量制御手段)19・・19の介設された複数
(図の場合には4本)の液支管20・・20に分岐され
る一方、上記ヘッダー11に、それぞれマフラー21・
・21の介設された4本のガス支管22・・22が接続
されており、これらのガス支管22と上記各液支管20
との間に、各室内機A、−Dにそれぞれ内装されている
室内熱交換器(室内機Aについてのみ図示する)23が
それぞれ連絡配管24・・24によって接続されている
。なお各室内機A−D内の各室内熱交換器23には、そ
れぞれ室内ファン25が付設されている。The first gas pipe 5 is connected to an outdoor heat exchanger 10, and the second gas pipe 6 is connected to a header 11, and a gas shutoff valve 12 is interposed therebetween. An outdoor fan 13 is attached to the outdoor heat exchanger 10, and a liquid pipe 14 is also connected to the liquid pipe 14. A dryer filter 15, a first electric expansion A valve 16, a liquid receiver 17, and a liquid shutoff valve 18 are provided. The tip of the liquid pipe 14 is branched into a plurality of (four in the case of the figure) liquid branch pipes 20...20 each having a second electric expansion valve (flow rate control means) 19...19 interposed therein. On the other hand, a muffler 21 and a muffler 21 are attached to the header 11, respectively.
・Four gas branch pipes 22 with 21 interposed therein are connected, and these gas branch pipes 22 and each of the liquid branch pipes 20 are connected to each other.
Indoor heat exchangers 23 (only the indoor unit A is shown) installed in each of the indoor units A and -D are connected between them by connecting pipes 24, . . . , 24, respectively. Note that an indoor fan 25 is attached to each indoor heat exchanger 23 in each of the indoor units A to D.
上記構成の空気調和機における暖房運転は、四路切換弁
4を図中実線で示す切換位置に位置させて、圧縮機1か
らの吐出冷媒を第2ガス管6から各室内熱交換器23へ
と供給して凝縮させ、次いで液管14を経由させて室外
熱交換器IO内で蒸発させた後、第1ガス管5から圧縮
機1へと返流させることによって行う。この場合、蒸発
冷媒の過熱度制御を第1電動膨張弁】6にて行い、各第
2電動膨張弁19では、各室内熱交換器23での凝縮冷
媒の過冷却度制御を行うことにより、各室内熱交換器2
3への冷媒分配量の制御を行う。なお運転停止部屋の室
内機A・・に対応する第2電動膨張弁19は停止開度(
自然放熱に見合うだけのわずかな量の冷媒を流し得る開
度)にする。For heating operation in the air conditioner configured as described above, the four-way switching valve 4 is located at the switching position shown by the solid line in the figure, and the refrigerant discharged from the compressor 1 is routed from the second gas pipe 6 to each indoor heat exchanger 23. The gas is supplied and condensed, then passed through the liquid pipe 14 and evaporated in the outdoor heat exchanger IO, and then returned to the compressor 1 from the first gas pipe 5. In this case, the degree of superheating of the evaporative refrigerant is controlled by the first electric expansion valve 6, and each second electric expansion valve 19 controls the degree of supercooling of the condensed refrigerant in each indoor heat exchanger 23. Each indoor heat exchanger 2
Controls the amount of refrigerant distributed to 3. The second electric expansion valve 19 corresponding to the indoor unit A in the room where the operation is stopped is at the stop opening (
The opening should be set to allow a small amount of refrigerant to flow, commensurate with natural heat dissipation.
一方、冷房運転は、四路切換弁4を図中破線で示す切換
位置に切換え、圧縮機1からの吐出冷媒を室外熱交換器
10側から各室内熱交換器23へと回流させることによ
って行う。このとき、第1電動膨張弁16は全開にし、
各第2電動膨張弁19で冷媒の過熱度制御を行う。なお
冷房停止部屋の室内機A・・に対応する第2電動膨張弁
19は全開にする。On the other hand, cooling operation is performed by switching the four-way switching valve 4 to the switching position shown by the broken line in the figure and circulating the refrigerant discharged from the compressor 1 from the outdoor heat exchanger 10 side to each indoor heat exchanger 23. . At this time, the first electric expansion valve 16 is fully opened,
Each second electric expansion valve 19 controls the degree of superheating of the refrigerant. The second electric expansion valve 19 corresponding to the indoor unit A in the room where cooling is stopped is fully opened.
次に上記空気調和機における運転の制御について、例え
ば暖房運転時を例に挙げて第3図の運転制御系統図を参
照して説明する。図のように、各室内機A−Dは室内制
御装置31(室内機Aについてのみ図示する)をそれぞ
れ備えており、各室内制御装置31には、運転操作用リ
モコン32と室温を検出する室温センサ(空調負荷検出
手段)33とがそれぞれ接続されている。上記各運転操
作用リモコン32は運転スイッチと、希望室温を設定す
るための温度設定スイッチとを有しており、上記運転ス
イッチがONであり、かつ室温センサ33での検出室温
が設定室温に達していないとき(室内サーモONのとき
)に、運転要求信号が上記検出室温と設定室温との温度
差信号ΔDと共に、各室内制御装置31から室外機Xに
対して出力され、また上記室内制御装置31によって室
内ファン25の作動が行われる。Next, control of the operation of the air conditioner will be described with reference to the operation control system diagram in FIG. 3, taking heating operation as an example. As shown in the figure, each of the indoor units A to D is equipped with an indoor control device 31 (only the indoor unit A is shown), and each indoor control device 31 includes a remote controller 32 for operation and a room temperature sensor for detecting the room temperature. A sensor (air conditioning load detection means) 33 is connected respectively. Each of the operation remote controllers 32 has an operation switch and a temperature setting switch for setting a desired room temperature, and when the operation switch is ON and the room temperature detected by the room temperature sensor 33 reaches the set room temperature. When the indoor thermostat is not on (when the indoor thermostat is ON), an operation request signal is output from each indoor control device 31 to the outdoor unit X together with a temperature difference signal ΔD between the detected room temperature and the set room temperature, and the indoor control device 31 operates the indoor fan 25.
一方、室外機Xは室外制御装置35とインバータ制御装
置36とを備えており、上記室外制御装置35内には、
周波数制御部37と弁制御部38とが設けられている。On the other hand, the outdoor unit X includes an outdoor control device 35 and an inverter control device 36, and the outdoor control device 35 includes:
A frequency control section 37 and a valve control section 38 are provided.
まず上記弁制御部3日によって、上記各室内機A−Dか
らの運転要求信号に応じて四路切換弁4を上記した暖房
運転時の切換位置に位置させると共に、暖房運転中、第
1電動膨張弁16の過熱度制御、各第2電動膨張弁19
の過冷却度制御が行われる。First, the valve control unit 3 positions the four-way switching valve 4 in the heating operation switching position in response to the operation request signal from each of the indoor units A to D, and during the heating operation, the first electric Superheat degree control of expansion valve 16, each second electric expansion valve 19
The degree of supercooling is controlled.
一方、上記周波数制御部37では、運転要求のある各室
内機の合計の容量を求め、さらに運転要求のある各室内
機からの温度差信号ΔDの中で最大温度差を抽出する。On the other hand, the frequency control section 37 calculates the total capacity of each indoor unit with an operation request, and further extracts the maximum temperature difference among the temperature difference signals ΔD from each indoor unit with an operation request.
次いで種々の容量と温度差との組合せに対して予め設定
されている初期周波数のデータテーブルから上記の合計
容量と最大温度差との組合せに対応する初期周波数を選
定し、これを上記インバータ制御装置36に出力する。Next, an initial frequency corresponding to the combination of the above total capacity and maximum temperature difference is selected from a data table of initial frequencies preset for various combinations of capacity and temperature difference, and this is selected from the data table of initial frequencies set in advance for various combinations of capacity and temperature difference. Output to 36.
これにより上記インバータ制御装置36によって圧縮機
1に対する上記初期周波数での駆動が開始され、その後
、上記初期周波数に応じる回転数となった後には、その
後の上記温度差信号ΔDの平均値の変化に応じた例えば
PMD制御による周波数が上記周波数制御部37におい
て逐次発生され、この周波数にて上記圧縮機lの圧縮能
力の制御を行いながら暖房運転を継続する。なお運転部
屋数の増減を生じた場合には、新たに上記の手順で初期
周波数の選定を行う制御から繰返される。そしてこのよ
うに制御される暖房運転の継続によって室内温度は徐々
に上昇し、各室における空調負荷、すなわち上記温度差
ΔDはOに近づき、そしてこの温度差ΔDを略Oに維持
する運転が継続される。As a result, the inverter control device 36 starts driving the compressor 1 at the initial frequency, and after the rotation speed has reached the initial frequency, the inverter control device 36 starts to drive the compressor 1 at the initial frequency. A corresponding frequency, for example, by PMD control, is sequentially generated in the frequency control section 37, and the heating operation is continued while controlling the compression capacity of the compressor 1 at this frequency. Note that if the number of operating rooms increases or decreases, the above-mentioned procedure is newly repeated starting from the control for selecting the initial frequency. As the heating operation controlled in this manner continues, the indoor temperature gradually rises, and the air conditioning load in each room, that is, the temperature difference ΔD approaches O, and operation continues to maintain this temperature difference ΔD at approximately O. be done.
ところで、例えばA室の空調負荷レベルが2300kc
al/ h SB室の空調負荷レベルが3700kca
l / hである場合の各室の室内機ASBとして、そ
れぞれの負荷レベルに最も近い容量2500.3500
kcal/hの機種が据付けられている場合に、例えば
両室内機A、Bによる暖房運転が略同時に開始されたよ
うなときには、運転開始当初の温度差ΔDは共に大きく
、この結果、室内機A、Bの合計容量6000kcal
/hに応じた最大の周波数が初期周波数として設定され
、この周波数にて圧縮機1の運転が開始される。したが
って圧縮機1からは、両室内機A、Bの合計容量に匹敵
する空調能力を与え得る冷媒量が吐出され、そして各室
内機A、Bへはそれらの容量比に略応じて分配される。By the way, for example, the air conditioning load level in room A is 2300kc.
al/h Air conditioning load level of SB room is 3700kca
l/h, the indoor unit ASB of each room is the capacity 2500.3500 that is closest to the respective load level.
When a kcal/h model is installed, for example, when both indoor units A and B start heating operation at the same time, the temperature difference ΔD at the beginning of operation is large, and as a result, indoor unit A , B total capacity 6000kcal
/h is set as the initial frequency, and operation of the compressor 1 is started at this frequency. Therefore, the compressor 1 discharges an amount of refrigerant that can provide an air conditioning capacity comparable to the total capacity of both indoor units A and B, and is distributed to each indoor unit A and B approximately according to their capacity ratio. .
この結果、A室側では、負荷レベル2300kcal/
hより幾分大きな空調能力での運転が行われ、B室側
では負荷レベル3700kcal/ hよりも小さな空
調能力での運転となる。このため従来は、A室側では迅
速な室温の上昇が得られるものの、B室側では空調能力
が室内負荷レベルに比べて小さいために、室温の上昇速
度が遅く、速暖性が得られないものとなっていた。そこ
で上記実施例においては、第3図に示すように、室外制
御装置35内に空調負荷監視制御部39をさらに設け、
上記のような能力不足側での速暖性を向上するようにな
されており、以下上記空調負荷監視制御部39でなされ
る制御について、第4図の制御フローチャートを参照し
て説明する。なお以下の説明においては、上記した各室
内ファン25は、4段階の回転速度の切換えが可能であ
って、最大風量を与える強風(H)から中風(M)、弱
風(L)、微風(LL)に至る4つのファンタップが設
けられ、室内制御装置31によっていずれかのファンタ
ップが選択されて、上記各風量での作動が行われるもの
とする。As a result, on the A room side, the load level is 2300kcal/
The room B side is operated at an air conditioning capacity slightly higher than the load level of 3,700 kcal/h. For this reason, in the past, although a quick rise in room temperature was achieved in room A, the air conditioning capacity in room B was small compared to the indoor load level, so the speed of rise in room temperature was slow and rapid heating was not achieved. It had become a thing. Therefore, in the above embodiment, as shown in FIG. 3, an air conditioning load monitoring control section 39 is further provided in the outdoor control device 35.
It is designed to improve the heating speed on the side where the capacity is insufficient as described above, and the control performed by the air conditioning load monitoring control section 39 will be described below with reference to the control flowchart of FIG. 4. In the following explanation, each of the indoor fans 25 described above can have four rotational speeds, from strong wind (H), which provides the maximum air volume, to medium wind (M), weak wind (L), and light wind ( It is assumed that four fan taps up to LL are provided, and one of the fan taps is selected by the indoor control device 31 to operate at each of the above-mentioned air volumes.
第4図のステップS1は、運転中の室内機A・・からそ
れぞれ送信されてくる前記温度差ΔDiの読込みを行う
ステップであり、次いでステップS2において上記で読
込んだ温度差ΔDiの合計ΣΔDiを求め、これを運転
中の室内機の台数nで除して、平均温度差、すなわち平
均負荷ΔDmeanを算出する。そしてステップS3に
おいて、上記平均負荷ΔD meanよりもΔDiの小
さい部屋mを抽出する。さらにステップS4において、
この部屋mでの温度差Δh+を予め定められている基準
温度差Δ叶と比較し、60mがΔ叶よりも小さい場合に
は、ステップS5において、上記部屋mの室内機におけ
る室内制御装置31に室内ファン25の回転速度の低下
指令を出力する。この低下指令により、例えばそれまで
強風(H)で室内ファン25を作動していた場合には、
これよりも−殿下の中風(M)へのファンタップの切換
えを上記室内制御装置31は行い、これにより室内熱交
換器23を通過する風量の減少が行われるこ七となる。Step S1 in FIG. 4 is a step of reading the temperature differences ΔDi sent from the indoor units A, etc. that are in operation, and then, in step S2, the total ΣΔDi of the temperature differences ΔDi read above is calculated. The average temperature difference, that is, the average load ΔDmean, is calculated by dividing this by the number n of indoor units in operation. Then, in step S3, a room m whose ΔDi is smaller than the average load ΔD mean is extracted. Furthermore, in step S4,
The temperature difference Δh+ in room m is compared with a predetermined reference temperature difference Δh+, and if 60 m is smaller than Δh+, in step S5, the indoor control device 31 of the indoor unit in room m is A command to reduce the rotational speed of the indoor fan 25 is output. Due to this lowering command, for example, if the indoor fan 25 was operated in strong wind (H) until then,
Rather than this, the indoor control device 31 switches the fan tap to His Royal Highness's medium wind (M), thereby reducing the amount of air passing through the indoor heat exchanger 23.
上記ステップS5の処理の終了後、或いはステップS4
においてΔDn+がΔ叶以上の判別結果の場合には、上
記ステップS1に戻る処理が行われ、これにより所定の
時間間隔を置いて、上記ステップ31以下の処理が繰返
される。After the process in step S5 is completed, or in step S4
If the determination result is that ΔDn+ is greater than or equal to ΔKan, the process returns to step S1, and the process from step 31 onward is repeated at a predetermined time interval.
上記制御の結果を、例えば上記したA室とB室で、それ
ぞれ室内ファン25を強風(H)にした暖房運転が略同
時に開始された場合を例に挙げて説明すると、前記のよ
うに運転開始後、A室側で負荷レベルよりも大きな空調
能力で、またB室側で負荷レベルよりも小さな空調能力
での運転が継続される結果、A室側の温度差ΔDaの方
がB室側の温度差ΔDbよりも早く小さくなり、このた
め平均負荷ΔD meanよりもΔDiの小さい部屋m
としてA室が抽出され、したがってA室側の温度差ΔD
aが基準温度差ΔDrと比較される。そしてΔDaがΔ
Drよりも小さくなった時、すなわちA室における室温
が設定室温近くにまで上昇した時に、A室の室内機A内
の室内ファン25の回転速度が強風([■)から中風(
M)に切換えられる。これにより室内機Aを通過する風
量が少なくなり、したがって循環冷媒との熱交換量が低
下するために、この室内機Aを循環する冷媒量を過冷却
度制御している第2電動膨張弁19において、低下した
熱交換量においても所定の過冷却度を維持するために、
開度を閉弁側に変更して上記室内機A内を循環する冷媒
量を少なくする制御が行われる。この結果、B室側の室
内機Bを循環する冷媒量が増加し、したがってそれまで
B室の負荷レベルよりも小さい空調能力で運転されてい
た室内機Bの空調能力が、上記負荷レベルと同等、或い
は同等以上に増加し、これによりB室側での室温の上昇
も速やかに行われることとなる。The results of the above control will be explained by taking as an example a case where the heating operation is started in room A and room B at the same time with the indoor fans 25 set to strong wind (H). As a result, the temperature difference ΔDa on the A room side is larger than that on the B room side as a result of continued operation at room A side with an air conditioning capacity higher than the load level and room B side with an air conditioning capacity lower than the load level. The temperature difference ΔDb becomes smaller faster than the temperature difference ΔDb, and therefore the room m where ΔDi is smaller than the average load ΔD mean
Therefore, the temperature difference ΔD on the A room side is
a is compared with a reference temperature difference ΔDr. And ΔDa is Δ
When the temperature becomes smaller than Dr, that is, when the room temperature in room A rises to near the set room temperature, the rotation speed of the indoor fan 25 in indoor unit A in room A changes from strong wind ([■) to moderate wind ().
M). As a result, the amount of air passing through the indoor unit A decreases, and therefore the amount of heat exchanged with the circulating refrigerant decreases, so the second electric expansion valve 19 controls the amount of refrigerant circulating through the indoor unit A to a degree of supercooling. In order to maintain a predetermined degree of supercooling even with a reduced heat exchange amount,
Control is performed to reduce the amount of refrigerant circulating within the indoor unit A by changing the opening degree to the valve closing side. As a result, the amount of refrigerant circulating through indoor unit B in room B increases, and therefore the air conditioning capacity of indoor unit B, which had previously been operated at an air conditioning capacity lower than the load level in room B, is now equal to the load level above. , or by the same amount or more, and as a result, the room temperature in room B side also increases quickly.
このように、上記においては各室の負荷レベルに、より
適合する容量の室内機をそれぞれ選定した結果、通常の
運転では空調能力余剰側と空調能力不足側とが生じるよ
うな場合に、空調能力余剰側における例えば暖房運転時
の速暖性を確保した後、余剰側の冷媒循環量を減少させ
て、不足側の冷媒循環量を増加させるような冷媒分配量
の制?I[lが行われる。この結果、各室内機として、
各室の負荷レベルにより適合すると共に、各室内機の合
計容量が室内側の合計の負荷レベルと路間−となるよう
な選定を行った場合に、空調能力の余剰分を不足側に回
すような制御状態となり、これによって従来のような各
室内機の容量比に基づく空調能力の偏りを生じた運転状
態が継続することはなく、能力不足側の室内において例
えば暖房運転時の速暖性も充分に得られる運転が行われ
るものとなっている。In this way, in the above case, as a result of selecting indoor units with capacities that are more suitable for the load level of each room, the air conditioning capacity is For example, after securing rapid heating during heating operation on the surplus side, is there a control on the refrigerant distribution amount that reduces the amount of refrigerant circulation on the surplus side and increases the amount of refrigerant circulation on the deficit side? I[l is performed. As a result, as each indoor unit,
In addition to being more suitable for the load level of each room, if the total capacity of each indoor unit is selected to be equal to the total indoor load level, the excess air conditioning capacity will be diverted to the insufficient air conditioning capacity. As a result, the operating state in which the air conditioning capacity is biased based on the capacity ratio of each indoor unit will not continue as in the past, and the speed of heating during heating operation will be improved in the room where the capacity is insufficient, for example. It is assumed that the operation will be carried out to obtain sufficient results.
なお上記においては、A室とB室での暖房同時運転開始
時を例に挙げて説明したが、一つの室内機の運転中に他
の室内機が新たに追加運転される場合や、また3室或い
は4室の同時運転時、さらに冷房運転時においても、上
記の制御によって空調能力の過不足を相互に補償して各
室での空調快適性を向上させる運転が行われることとな
る。また上記実施例においては、第4図のステップS2
によって平均負荷演算手段41を、またステップS5に
よって風量制御手段42をそれぞれ構成したが、同様の
機能を有するその他の構成とすることが可能である。ま
た上記実施例では、4段階に切換えられる室内ファン2
5を設けた例を示したが、例えば連続的に風量の変更を
なし得る室内ファンを設けると共に、上記での基準温度
差Δ叶との比較に基づく判断に替えて、例えば検出空調
負荷と平均負荷との差に応じた風量の低下を与えるよう
に構成すること等も可能である。In addition, in the above explanation, the simultaneous start of heating operation in room A and room B was explained as an example, but there may be cases where another indoor unit is newly operated while one indoor unit is operating, or During simultaneous operation of a room or four rooms, and even during cooling operation, the above-mentioned control will mutually compensate for excesses and deficiencies in air-conditioning capacity to improve air-conditioning comfort in each room. Further, in the above embodiment, step S2 in FIG.
Although the average load calculation means 41 and the air volume control means 42 are configured in step S5 and in step S5, other configurations having similar functions can be used. Furthermore, in the above embodiment, the indoor fan 2 can be switched to four stages.
5, but in addition to installing an indoor fan that can continuously change the air volume, for example, instead of making a judgment based on the comparison with the reference temperature difference Δ, for example, the detected air conditioning load and the average It is also possible to configure the air volume to be reduced in accordance with the difference between the load and the load.
(発明の効果)
上記のようにこの発明の空気調和機においては、ある部
屋において負荷レベルよりも幾分小さい容量の室内機の
据付がなされた場合においても、他室における検出空調
負荷が小さくなったときに上記室内機の空調能力の増加
がなされて空調能力不足が解消され、したがって、各室
の負荷レベルにより適合する容量の室内機をそれぞれ選
定した場合にも空調快適性の低下を極力抑えた運転を維
持することができるので、従来よりも各室内機の合計の
容量を小さくすることが可能となり、この結果、据付コ
ストの低減を図ることができる。(Effects of the Invention) As described above, in the air conditioner of the present invention, even when an indoor unit with a capacity slightly smaller than the load level is installed in a certain room, the detected air conditioning load in other rooms is reduced. When the air conditioning capacity of the above indoor units is increased, the lack of air conditioning capacity is resolved, and therefore, even when indoor units with capacities that match the load level of each room are selected, the decline in air conditioning comfort is minimized. Since it is possible to maintain stable operation, the total capacity of each indoor unit can be made smaller than in the past, and as a result, installation costs can be reduced.
第1図はこの発明の機能ブロック図、第2図はこの発明
の一実施例における空気調和機の冷媒回路図、第3図は
上記空気調和機の運転制御系統図、第4図は上記空気調
和機における空調負荷監視制御部でなされる制御のフロ
ーチャートである。
X・・・室外機、A−D・・・室内機、19・・・第2
電りJ膨張弁(流量制御手段)、25・・・室内ファン
、33・・・室温センサ(空調負荷検出手段)、41・
・・平均負荷演算手段、42・・・風量変更手段。
特許出願人 ダイキン工業株式会社第3図
/
×
第4図Fig. 1 is a functional block diagram of the present invention, Fig. 2 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the invention, Fig. 3 is an operation control system diagram of the air conditioner, and Fig. 4 is a diagram of the air conditioner. It is a flowchart of the control performed by the air conditioning load monitoring control section in the conditioner. X...Outdoor unit, A-D...Indoor unit, 19...Second
Electric J expansion valve (flow control means), 25... Indoor fan, 33... Room temperature sensor (air conditioning load detection means), 41.
. . . Average load calculation means, 42 . . . Air volume changing means. Patent applicant Daikin Industries, Ltd. Figure 3/ × Figure 4
Claims (1)
互いに並列に接続すると共に、各室内機(A〜D)を循
環する冷媒量をそれぞれ過熱度制御、或いは過冷却度制
御する流量制御手段(19)を有して成る空気調和機で
あって、各室内の空調負荷を検出する空調負荷検出手段
(33)と、各室内の検出空調負荷の平均を演算する平
均負荷演算手段(41)と、検出空調負荷が上記平均負
荷よりも小さい室内における室内機(A・・)内の室内
ファン(25)の回転速度を低下させる風量変更手段(
42)とを設けていることを特徴とする空気調和機。1. Connect multiple indoor units (A to D) in parallel to one outdoor unit (X), and control the degree of superheating or overheating of the amount of refrigerant circulating through each indoor unit (A to D). An air conditioner comprising a flow rate control means (19) for controlling the degree of cooling, an air conditioning load detection means (33) for detecting the air conditioning load in each room, and an average of the detected air conditioning loads in each room. an average load calculating means (41), and an air volume changing means (41) for reducing the rotational speed of the indoor fan (25) in the indoor unit (A...) in a room where the detected air conditioning load is smaller than the average load.
42).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037533A JPH02217737A (en) | 1989-02-17 | 1989-02-17 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037533A JPH02217737A (en) | 1989-02-17 | 1989-02-17 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02217737A true JPH02217737A (en) | 1990-08-30 |
Family
ID=12500165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1037533A Pending JPH02217737A (en) | 1989-02-17 | 1989-02-17 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02217737A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286316A (en) * | 2001-03-23 | 2002-10-03 | Daikin Ind Ltd | Freezing device |
WO2008149715A1 (en) * | 2007-05-30 | 2008-12-11 | Daikin Industries, Ltd. | Air conditioner |
JP2017203581A (en) * | 2016-05-11 | 2017-11-16 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
-
1989
- 1989-02-17 JP JP1037533A patent/JPH02217737A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286316A (en) * | 2001-03-23 | 2002-10-03 | Daikin Ind Ltd | Freezing device |
JP4613433B2 (en) * | 2001-03-23 | 2011-01-19 | ダイキン工業株式会社 | Refrigeration equipment |
WO2008149715A1 (en) * | 2007-05-30 | 2008-12-11 | Daikin Industries, Ltd. | Air conditioner |
JP2009008381A (en) * | 2007-05-30 | 2009-01-15 | Daikin Ind Ltd | Air conditioner |
US8280557B2 (en) | 2007-05-30 | 2012-10-02 | Daikin Industries, Ltd. | Air-conditioning apparatus |
JP2017203581A (en) * | 2016-05-11 | 2017-11-16 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100484800B1 (en) | Compressor's Operating Method in Air Conditioner | |
JPH037853A (en) | Air conditioner | |
JPH02223755A (en) | Air conditioner | |
CN113865059A (en) | Heating operation control method for multi-split air conditioner | |
JPH01285758A (en) | Heat pump type room cooling and hot-water supplying machine | |
JPH02217737A (en) | Air conditioner | |
JP3275669B2 (en) | Multi-room air conditioning system | |
KR950012148B1 (en) | Airconditioner | |
KR20190081837A (en) | air-conditioning system | |
JPH02217738A (en) | Air conditioner | |
JP3380384B2 (en) | Control device for air conditioner | |
JP2960237B2 (en) | Air conditioner | |
JP2536313B2 (en) | Operation control device for air conditioner | |
JPS5927145A (en) | Air conditioner | |
JPH0612477Y2 (en) | Refrigeration equipment | |
JPH081343B2 (en) | Air conditioner | |
JP2612864B2 (en) | Multi-room air conditioner | |
JPH10292949A (en) | Compressor capacity controller for air conditioner | |
JPH02223756A (en) | Air conditioner | |
JPH1026391A (en) | Method for controlling air conditioner | |
JP2600815B2 (en) | Heat pump system | |
JP2719456B2 (en) | Air conditioner | |
JP2889799B2 (en) | Heat pump equipment | |
JPH024374Y2 (en) | ||
JPH05312378A (en) | Air conditioner |