[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02215098A - Accelerator electrode plate and manufacture thereof - Google Patents

Accelerator electrode plate and manufacture thereof

Info

Publication number
JPH02215098A
JPH02215098A JP8933859A JP3385989A JPH02215098A JP H02215098 A JPH02215098 A JP H02215098A JP 8933859 A JP8933859 A JP 8933859A JP 3385989 A JP3385989 A JP 3385989A JP H02215098 A JPH02215098 A JP H02215098A
Authority
JP
Japan
Prior art keywords
electrode plate
cooling
grooves
plate
metal plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8933859A
Other languages
Japanese (ja)
Other versions
JP2703975B2 (en
Inventor
Sumiichi Shibuya
渋谷 純市
Kazuhiro Takenaka
一博 竹中
Kazunari Nakamoto
一成 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1033859A priority Critical patent/JP2703975B2/en
Publication of JPH02215098A publication Critical patent/JPH02215098A/en
Application granted granted Critical
Publication of JP2703975B2 publication Critical patent/JP2703975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To improve cooling efficiency and heat resistance and prevent the occurrence of deformation during the operation for a long period by overlapping and connecting flat side metal plates on both sides of a center metal plate, and boring neutron passing beam holes in the thickness direction of the metal plate. CONSTITUTION:Metal plates 1-3 are made of a molybdenum material, the metal plates 1 and 3 are flat plates, and the metal plate 2 has cooling water passage grooves 4 with through grooves by discharge machining. When the cooling water passage grooves 4 are made through grooves, there is no restriction on the machining precision, size precision and machining time of the cooling grooves 4, and the machining time can be sharply shortened. The cooling grooves 4 can be designed and manufactured in an optional shape, particularly in the shape required to increase the cooling efficiency. The cooling efficiency is increased, the deformation of an electrode plate is prevented, and its life is extended.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、中性子等を加速するためのビーム加速器の電
極板およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electrode plate of a beam accelerator for accelerating neutrons and the like, and a method of manufacturing the same.

(従来の技術) 一般にビーム加速用電極板に使用される材料としては、
電気的特性および冷却能力等を確保するために、導電性
および熱伝導性に優れた銅板が採用されている。
(Prior art) Materials generally used for beam acceleration electrode plates include:
In order to ensure electrical properties, cooling capacity, etc., a copper plate with excellent electrical and thermal conductivity is used.

一般にビーム加速用電極板は使用時に高温度に加熱され
るため、冷却操作が必要とされる。従来のビーム加速用
電極板は第8図(a)に示すように銅板で形成された電
極板本体(41)にろう材(42)によって銅製の冷却
管(43)が固着される。また冷却管の冷却面積を増大
し、冷却能力を向上させる目的で、第8図(b)に示す
ように断面が角形状の冷却管(43)を電極板本体(4
1)にろう付して構成する場合もある。
Generally, beam acceleration electrode plates are heated to a high temperature during use, so cooling operations are required. In a conventional beam acceleration electrode plate, as shown in FIG. 8(a), a cooling pipe (43) made of copper is fixed to an electrode plate body (41) formed of a copper plate with a brazing material (42). In addition, in order to increase the cooling area of the cooling pipe and improve the cooling capacity, a cooling pipe (43) with a rectangular cross section is connected to the electrode plate body (43) as shown in Fig. 8(b).
1) may be constructed by brazing.

使用時には冷却管(43)内に冷却用流体が流れ、ビー
ム加速用電極板は所定温度に冷却される。
During use, a cooling fluid flows in the cooling pipe (43), and the beam acceleration electrode plate is cooled to a predetermined temperature.

しかしながら、第8図(a)、(b)に示すようなろう
材(42)を使用したビーム加速用電極板を高真空中で
使用すると、ろう材(42)に含有される高い蒸気圧を
有する成分が経時的に蒸発し、ビーム加速性能を大きく
阻害する。そのため、使用前に長時間に亘ってベーキン
グを実施し蒸気を生じる揮発成分を予め除去する操作が
なされているが、完全な除去はむずかしい、そのためビ
ーム加速装置の性能維持に限界がある。
However, when a beam acceleration electrode plate using a brazing filler metal (42) as shown in FIGS. 8(a) and (b) is used in a high vacuum, the high vapor pressure contained in the brazing filler metal (42) is reduced. These components evaporate over time, greatly impeding beam acceleration performance. Therefore, prior to use, a long period of baking is performed to remove the volatile components that generate steam, but complete removal is difficult, and as a result, there is a limit to maintaining the performance of the beam accelerator.

そこで、第8図(C)、(d)に示すようにろう材(4
2)を使用せずに複数の電極板要素(44)を相互に突
き合せ、その接合端面(47)を溶接を行なったり、ま
たは、相互に拡散接合することによって一体化する方法
も開発されている。
Therefore, as shown in Fig. 8(C) and (d), the brazing material (4
2) A method has also been developed in which a plurality of electrode plate elements (44) are butted against each other and their joint end surfaces (47) are welded or diffusion bonded to each other to integrate them. There is.

第8図(d)は、プラズマ・核融合学会第4回年次大会
(1987年)予稿集29頁c6rNBI電極板の新し
い製作方法」において開示されているビーム加速器の電
極板の構造およびその製作方法を示している。
Figure 8(d) shows the structure and fabrication of an electrode plate for a beam accelerator disclosed in ``New Manufacturing Method for C6RNBI Electrode Plates'', p. 29 of the proceedings of the 4th Annual Conference of the Plasma and Nuclear Fusion Society (1987). Shows how.

すなわち第8図(d)に示す電極板は電極板本体(41
)と蓋板(45)とからなり、下部の電極板本体(41
)には冷却孔用の細溝(46)が加工、形成されている
。蓋板(45)は電極板本体(41)の細溝(46)を
覆うように組合せされる。
That is, the electrode plate shown in FIG. 8(d) has an electrode plate main body (41
) and a cover plate (45), the lower electrode plate body (41
) are machined and formed with narrow grooves (46) for cooling holes. The cover plate (45) is assembled to cover the narrow groove (46) of the electrode plate body (41).

次に、電極板本体(41)と蓋板(45)は真空中にお
いて、固相拡散によって接合され、一体の電極板が得ら
れると同時に電極板内部の細溝により冷却溝(48)が
形成される。その後1機械加工によりビーム孔をあける
Next, the electrode plate main body (41) and the cover plate (45) are joined by solid-phase diffusion in a vacuum to obtain an integrated electrode plate, and at the same time, cooling grooves (48) are formed by narrow grooves inside the electrode plate. be done. After that, a beam hole is made by machining.

しかしながら、第8図(d)に示すビーム加速器電極板
において、ビームの照射時間を長くする場合、従来のビ
ーム加速器電極板の材料である銅板では、加熱により変
形が生じ、ビーム孔に変形が生じる。
However, in the beam accelerator electrode plate shown in FIG. 8(d), when the beam irradiation time is increased, the copper plate, which is the material of the conventional beam accelerator electrode plate, is deformed by heating, causing deformation of the beam hole. .

この問題点を解決するために銅板を耐熱材料であるモリ
ブデン板に替えることで照射時間を高めることが考えら
れ、第8図(d)に示した構造のモリブデン製の電極板
も開発されている。
In order to solve this problem, it is possible to increase the irradiation time by replacing the copper plate with a molybdenum plate, which is a heat-resistant material, and an electrode plate made of molybdenum with the structure shown in Figure 8(d) has also been developed. .

(発明が解決しようとする課題) しかしながら、モリブデン材料は銅材料に比較して切削
などの機械加工性が悪い。とくに、ビーム加速器電極板
のように高精度な位置が要求されるビーム孔や冷却溝の
加工は難しい。
(Problem to be Solved by the Invention) However, molybdenum materials have poor machinability such as cutting, compared to copper materials. In particular, machining beam holes and cooling grooves that require highly accurate positioning, such as beam accelerator electrode plates, is difficult.

本発明は、上記の問題点を解決するためになされたもの
であり、冷却と耐熱性がよく、長時間稼動しても変形を
生ずることのない加速器電極板およびその製造方法を提
供することを目的とする。
The present invention has been made to solve the above problems, and aims to provide an accelerator electrode plate that has good cooling and heat resistance and does not deform even after long-term operation, and a method for manufacturing the same. purpose.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の加速器fl!極板は、冷却水路用貫通溝を設け
た中央部金属板の両側に平板の側部金属板を重ね合せて
接合し、金属板の厚さ方向に中性子通過用ビーム孔をあ
けた構成とする。
(Means for solving the problem) Accelerator fl of the present invention! The electrode plate has a configuration in which flat side metal plates are stacked and bonded on both sides of a central metal plate with a through groove for cooling channels, and beam holes for neutron passage are drilled in the thickness direction of the metal plate. .

また、その製造方法としては、放電加ニレ;よってI冷
却水路用貫通溝を設けた中央部金属板の両側に平板の側
部金属板を重ね合せて接合部を真空シールし、熱間等方
圧加圧によって前記接合部を拡散接合するようにする。
In addition, the manufacturing method is electric discharge elm; therefore, flat side metal plates are superimposed on both sides of a central metal plate provided with a through groove for the I cooling channel, the joint is vacuum-sealed, and hot isostatic The bonding portion is diffusion bonded by applying pressure.

(作用) 本発明においては、冷却水路用溝を貫通溝にしたので、
放電加工が可能となる。放電加工によると冷却水路用溝
の位置精度と溝加工精度が高まるとともに、溝加工に要
する時間も短縮出来る。
(Function) In the present invention, since the cooling channel groove is a through groove,
Electric discharge machining becomes possible. Electrical discharge machining improves the positional accuracy and groove machining accuracy of cooling channel grooves, and also reduces the time required for groove machining.

放電加工によると、従来、直線であった冷却溝を中性子
通過用ビームに沿って蛇行した冷却溝にすることができ
冷却効率を高めることも出来る。
According to electrical discharge machining, cooling grooves that were conventionally straight can be made into meandering cooling grooves along the neutron passing beam, thereby increasing cooling efficiency.

また、貫通溝を有する金属板の上下面に金属板を拡散接
合により接合するので冷却溝を有する機密性に優れた耐
熱用の加速器電極板を提供することが8来る。
Furthermore, since the metal plates are bonded to the upper and lower surfaces of the metal plate having the through grooves by diffusion bonding, it is possible to provide a heat-resistant accelerator electrode plate having cooling grooves and having excellent airtightness.

拡散接合の加圧手段にガス圧を利用した等方圧加圧を用
いることは、薄板の均等加圧を可能とするとともに、各
種サイズの電極板の大きさに制約されない製造方法を提
供出来る。
Using isostatic pressure using gas pressure as the pressure means for diffusion bonding makes it possible to uniformly press the thin plate and provides a manufacturing method that is not restricted by the size of electrode plates of various sizes.

耐熱材料のモリブデン板と熱伝導性のよい銅板の複合材
とした電極板にすることで耐熱性と熱伝導性の材料の特
長を生かし、照射寿命の長い電極板を提供出来る。
By making the electrode plate a composite material of a heat-resistant molybdenum plate and a thermally conductive copper plate, we can take advantage of the heat-resistant and thermally conductive features of the material and provide an electrode plate with a long irradiation life.

(実施例1) (実施例1の構成) 次に本発明の一実施例について添付図面を参照して説明
する。
(Example 1) (Configuration of Example 1) Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本実施例に係る加速器電極板の構成を示す分解
斜視図である。
FIG. 1 is an exploded perspective view showing the structure of an accelerator electrode plate according to this embodiment.

モリブデン材利用からなる金属板■、■、■は金属板■
、■が平板で、金属板■は放電加工により貫通溝を有す
る冷却水路用溝■を有している。
Metal plates made of molybdenum material■,■,■are metal plates■
, (2) are flat plates, and the metal plate (2) has a cooling channel groove (2) having a through groove formed by electrical discharge machining.

金属板■、■、■の板厚は1mmである。冷却水路用溝
0)の形状は溝幅が0.5画と極めて狭い。
The thickness of the metal plates ■, ■, and ■ is 1 mm. The shape of the cooling channel groove 0) is extremely narrow, with a groove width of 0.5 strokes.

第2図は、第1図の電極板の製造方法を実施するための
装置の一実施例を示す断面図である。
FIG. 2 is a sectional view showing an embodiment of an apparatus for carrying out the method for manufacturing the electrode plate shown in FIG. 1.

第1図に示したモリブデンの金属板■、(2)、■の接
合面にインサート材0.■をそれぞれに挿入し、組合せ
た後に、拡散接合装置(ハ)に設定する。
Insert material 0.0. After inserting (2) into each and combining them, set them in the diffusion bonding device (c).

拡散接合装置■は加熱用ヒータ■、リフレクタ−(lO
)、支持台(11)、加圧治具(12)、断熱材(13
)、真空ポンプ(14)等から構成される。
The diffusion bonding device ■ is equipped with a heating heater ■, a reflector (lO
), support stand (11), pressure jig (12), heat insulating material (13
), a vacuum pump (14), etc.

接合面にインサート材0.■を挿入し1組合せた後に、
拡散接合装置(ハ)に設定する。設定後に拡散接合装置
■のロータリポンプと油拡散ポンプとからなる真空ポン
プ(14)により、装置内の圧力をI X 10−’T
orr以下にする。その後、モリブデンヒータからなる
加熱用ヒータ■に電流を流し、装置内の雰囲気温度およ
び接合体であるモリブデンの金属板■、I2.■の表面
温度を800℃〜1100℃に保つために加熱する。
No insert material on the joint surface. After inserting ■ and combining 1,
Set to the diffusion bonding device (c). After setting, the vacuum pump (14) consisting of a rotary pump and an oil diffusion pump of the diffusion bonding device (1) is used to reduce the pressure inside the device to I
Make it below orr. After that, a current is passed through the heater (2), which is a molybdenum heater, to reduce the ambient temperature within the device and the molybdenum metal plate (2), which is the bonded body, I2. (2) Heat to maintain the surface temperature at 800°C to 1100°C.

次に図示しない油圧ポンプを用いて加圧治具(12)を
下降させ、モリブデンの金属板■、■、■に均等加圧を
加える。その均等加圧力はおよそ3〜10kgf/mu
”の値である。均等加圧力を加えるために、加圧治具(
12)は、とくに高温時に於いても変形が比較内生じに
くい材料であるグラファイト材料と高温酸化しにくいス
テンレス鋼からなる複合材料を用いている。
Next, a pressure jig (12) is lowered using a hydraulic pump (not shown), and uniform pressure is applied to the molybdenum metal plates (1), (2), and (2). The uniform pressure is approximately 3 to 10 kgf/mu
” value. In order to apply uniform pressure, a pressure jig (
12) uses a composite material made of graphite material, which is relatively less likely to deform even at high temperatures, and stainless steel, which is less susceptible to high temperature oxidation.

接合面に挿入するインサート材(O20は5〜10ミク
ロンの厚さを有するチタン箔を用いる。
The insert material inserted into the joint surface (O20 uses titanium foil with a thickness of 5 to 10 microns.

(実施例1の作用) 上記の構成に記したように、モリブデンの金属板の、1
2.■の接合面にチタン箔のインサート材0、■をはさ
んで接合温度800℃〜1100℃、加圧力3〜lOk
gf/mm2の均等加圧力を30分から2時間かけると
、金属板■、■、■とインサート材(0゜■が相互拡散
し、金屑学的な接合が得られる。
(Effect of Example 1) As described in the above configuration, 1 of the molybdenum metal plate
2. Sandwich titanium foil insert material 0 and ■ on the joint surface of
When a uniform pressing force of gf/mm2 is applied for 30 minutes to 2 hours, the metal plates (2), (2), and (2) and the insert material (0°) interdiffuse, resulting in a metal-like bond.

従って、本構成の金属板■、■、■は、平板と冷却水路
用の溝に)を有する板の3枚構成の加速器電極板の製造
を可能とする。
Therefore, the metal plates (1), (2), and (2) of this configuration make it possible to manufacture an accelerator electrode plate having a three-piece configuration of a flat plate and a plate having grooves for cooling channels.

とくに、本実施例によれば、冷却溝に)を放電加工によ
り貫通溝としたので極めて狭い冷却溝あるいは冷却溝の
ピッチあるいは寸法精度が高いものが得られる。また、
拡散接合法を用いて接合するために、極めて高精度な加
速電極板の製造が可能となる。
In particular, according to this embodiment, since the cooling grooves () are formed into through grooves by electric discharge machining, extremely narrow cooling grooves or cooling grooves with high pitch or dimensional accuracy can be obtained. Also,
Since the diffusion bonding method is used for bonding, it is possible to manufacture accelerating electrode plates with extremely high precision.

(実施例1の効果) 本実施例によれば、冷却水路用溝を貫通溝にするので、
従来、モリブデン材によるビーム加速器電極板の製造が
困難とされていた。冷却溝の加工精度9寸法精度および
加工時間等に於いて、その制約がなく、また加工時間の
大幅短縮が可能となる。また、冷却溝の形状が任意な形
状とくに冷却効率を高めるために必要な形状に設計、製
造が可能となるために冷却効率を高めることが出来る。
(Effects of Example 1) According to this example, since the cooling channel groove is a through groove,
Conventionally, it has been difficult to manufacture beam accelerator electrode plates from molybdenum materials. Machining Accuracy 9 of Cooling Grooves There are no restrictions on dimensional accuracy, machining time, etc., and machining time can be significantly shortened. Further, since the cooling grooves can be designed and manufactured into any shape, especially the shape required to improve the cooling efficiency, the cooling efficiency can be improved.

さらに、冷却効率を高めることでビーム加速器電極板の
変形がなく長寿命化が可能となる。
Furthermore, by increasing the cooling efficiency, the beam accelerator electrode plate will not be deformed and its life can be extended.

(実施例2) (実施例2の構成) 次に他の実施例について説明する。(Example 2) (Configuration of Example 2) Next, other embodiments will be described.

第3図は本実施例に係る加速器電極板の冷却水路用溝加
工の形状を示すもので、第1図に示した金属板■の平面
図を示す。
FIG. 3 shows the shape of the cooling channel grooves formed on the accelerator electrode plate according to this embodiment, and is a plan view of the metal plate (2) shown in FIG. 1.

第3図に示すように、冷却水路用溝0)の加工は図面よ
りその位置を割り出した中性子通過用ビーム孔(15)
に沿って蛇行した溝を放電加工により形成する。
As shown in Figure 3, the processing of the cooling channel groove 0) is carried out at the neutron passage beam hole (15) whose position is determined from the drawing.
A meandering groove is formed by electrical discharge machining.

その他の構成は実施例1に示すものと同様である。The other configurations are the same as those shown in the first embodiment.

(実施例2の作用) 中性子通過用のビーム孔(15)の位置および配列が第
3図に示すように2列に配置され、かつチドリになって
いる特長を生かすために、冷却水路用溝に)はビーム孔
(15)に沿って溝加工を施す。そのため冷却水路用溝
■が直線状であった従来の構造に対して長くなる。
(Operation of Example 2) In order to take advantage of the fact that the beam holes (15) for neutron passage are arranged in two rows and staggered as shown in FIG. 2) is grooved along the beam hole (15). Therefore, the cooling channel groove (2) is longer than in the conventional structure, which was linear.

このようにすると1発熱源であるビーム孔(15)に沿
って冷却水が流れるので、ビーム孔(15)の近傍を冷
却することが出来る。
In this way, the cooling water flows along the beam hole (15), which is one heat source, so that the vicinity of the beam hole (15) can be cooled.

(実施例2の効果) 本実施例によれば冷却水路用溝を中性子通過用のビーム
孔に沿って蛇行した形状にするので、冷却水路用溝が長
くなり冷却効率が高まる。またビーム孔のごく近傍を冷
却水が流れるために、冷却効率が高まるとともに、熱変
形を最小に抑えることが出来る。
(Effects of Embodiment 2) According to this embodiment, the cooling channel groove is formed into a meandering shape along the beam hole for neutron passage, so the cooling channel groove becomes longer and the cooling efficiency increases. Furthermore, since the cooling water flows very close to the beam hole, cooling efficiency is increased and thermal deformation can be minimized.

冷却効率を高めることと、熱変形を抑えることでビーム
加速器電極板としての長寿命化が可能となる。
By increasing cooling efficiency and suppressing thermal deformation, it is possible to extend the life of the beam accelerator electrode plate.

(実施例3) 次に実施例313ついて説明する。(Example 3) Next, Example 313 will be explained.

第4図はモリブデン材からなる金属板■、■。Figure 4 shows metal plates ■ and ■ made of molybdenum material.

■を組合せた後に、真空中に於いてシール溶接(16)
、 (17)を行なった斜視図を示す、第5図(a)お
よび(b)は、金属板の斜視図および金属板を真空対し
を行なうための容器(18)および蓋(19)の斜視図
を示す。
After combining ■, seal welding in vacuum (16)
5(a) and (b) are perspective views of the metal plate and the container (18) and lid (19) for vacuuming the metal plate. Show the diagram.

第4図および第5図に示す目的は、接合しようとする金
属板■、■、■の接合面を真空雰囲気にするためであり
、その手段はその他の方法でも良い。
The purpose shown in FIGS. 4 and 5 is to create a vacuum atmosphere on the bonding surfaces of the metal plates (1), (2), (3) to be bonded, and other methods may be used for this purpose.

このようにして得られた金属板■、■、■の組合せたも
のを第6図に示す接合′装置(20)に入れる。
The thus obtained combination of metal plates (1), (2), and (2) is placed in a bonding device (20) shown in FIG.

なお、いずれの場合も金属板ω、■、■の接合面には実
施例1で述べたようにインサート材を用いる。
Incidentally, in any case, an insert material is used at the joint surfaces of the metal plates ω, 2, and 2 as described in Example 1.

接合装置(20)に入れた後の手順は、ロータリーポン
プおよび油拡散ポンプからなる真空ポンプ(14)を起
動させ、接合装置i!(20)内を1×lO″″’ T
orr程度の圧力にする。その後、不活性ガスであるア
ルゴンガスをガス供給装置(21)より接合装置!(2
0)内に供給し、・接合装置 (20)内のガス圧力を
およそ390kgf/−に加圧する。
The procedure after entering the bonding device (20) is to start the vacuum pump (14) consisting of a rotary pump and an oil diffusion pump, and move the bonding device i! (20) inside 1×lO″″’T
Make the pressure about orr. After that, argon gas, which is an inert gas, is supplied to the bonding device from the gas supply device (21)! (2
0) and pressurize the gas pressure in the bonding device (20) to approximately 390 kgf/-.

その後、モリブデンヒータからなる加熱用ヒータ0)を
加熱し、接合装置(20)内の雰囲気温度とガス圧力を
徐々に高める。
Thereafter, the heater 0) consisting of a molybdenum heater is heated to gradually increase the atmospheric temperature and gas pressure within the bonding apparatus (20).

最終的には雰囲気温度を800℃〜1100℃、ガス圧
力を300kgf/csr 〜100100O/aJに
し、 およそ30分から2時間保持する。
Finally, the atmospheric temperature is set to 800° C. to 1100° C. and the gas pressure is set to 300 kgf/csr to 100,100 O/aJ, and maintained for approximately 30 minutes to 2 hours.

その後、冷却し、シール溶接(16)、 (17)を最
終形状のビーム加速器電極板に加工する。あるいは容器
(18) 、蓋(19)を除去し同様に加工する。
Thereafter, it is cooled and the seal welds (16) and (17) are processed into the final shape of the beam accelerator electrode plate. Alternatively, the container (18) and lid (19) are removed and processed in the same manner.

本実施例によれば加圧源にフルコンガスのガス体を用い
ているために、均等加圧による接合が可能である。
According to this embodiment, since Flucon gas is used as the pressurization source, it is possible to join by uniform pressurization.

その接合条件はガス圧力300kgf/L31〜100
100O/ai。
The bonding conditions are gas pressure 300kgf/L31~100
100O/ai.

雰囲気温度800℃〜1100℃、保持時間30分〜2
時間であり、この条件lこ於いてモリブデン材からなる
金属板■、■、■はインサート材を介して相互拡散し、
金属学的な接合が得られる。
Atmosphere temperature: 800°C to 1100°C, holding time: 30 minutes to 2
Under these conditions, the metal plates ■, ■, and ■ made of molybdenum material interdiffuse through the insert material,
A metallurgical bond can be obtained.

従って、本構成のビーム加速器電極板の製造が可能とな
る。
Therefore, it becomes possible to manufacture a beam accelerator electrode plate having this configuration.

本実施例によればアルゴンガスのガス圧力を利用するた
めに、接合装置には加圧機構が不要となる。そのために
、加圧治具により生じていた接合面の温度のバラツキが
なくなり、高品質の接合が得られるようになる。
According to this embodiment, since the gas pressure of argon gas is utilized, a pressurizing mechanism is not required in the bonding apparatus. Therefore, variations in temperature of the bonding surfaces caused by the pressure jig are eliminated, and high-quality bonding can be obtained.

また、加速器電極板のサイズに応じた加圧治具を必要と
しないために、加速器電極板の大、小のサイズが製造可
能となる。さらに加速器電極板の形状が角型あるいは電
型に限定されず、複雑な形状の電極板の製造も可能とな
る。
Further, since a pressure jig corresponding to the size of the accelerator electrode plate is not required, the accelerator electrode plate can be manufactured in large and small sizes. Furthermore, the shape of the accelerator electrode plate is not limited to a rectangular or electric type, and it is also possible to manufacture an electrode plate with a complicated shape.

(実施例4) 次に実施例4について説明する。(Example 4) Next, Example 4 will be explained.

第7図は加速電極板の構成を示す断面図である。FIG. 7 is a sectional view showing the configuration of the accelerating electrode plate.

耐熱材料であるモリブデン材からなる金属板(31)、
 (33)と熱伝導性に優れる銅板(32)からなる複
合電極板とする。
A metal plate (31) made of molybdenum material, which is a heat-resistant material,
(33) and a copper plate (32) with excellent thermal conductivity.

この複合電極板を第2図あるいは第6図に示す接合装置
に入れ、実施例1および実施例3で説明したような接合
を行なう。なお本実施例ではインサート材は使用しない
This composite electrode plate is placed in the bonding apparatus shown in FIG. 2 or FIG. 6, and bonding as described in Examples 1 and 3 is performed. Note that no insert material is used in this embodiment.

このような構成により、接合温度を700〜900℃。With such a configuration, the bonding temperature can be maintained at 700 to 900°C.

加圧力を0.5kgf/ m” 〜2 kgf/ m”
 の比較的低い値で、およそ30分から2時間保持する
ことでモリブデンと銅は接合される。
Pressure force is 0.5 kgf/m” to 2 kgf/m”
Molybdenum and copper are bonded by holding the temperature at a relatively low value for approximately 30 minutes to 2 hours.

このようにして得られた銅とモリブデンの複合材からな
る電極板は、耐熱性が要求される中性子が照射される面
にモリブデン板を配置し、また、冷却水路用溝を施す金
属板には、銅板を配置したものである。耐熱および冷却
効率の面に於いてそれぞれモリブデン板および銅板の物
性を利用したもので相乗効果が得られる。
In the electrode plate made of a composite material of copper and molybdenum obtained in this way, a molybdenum plate is placed on the surface that is irradiated with neutrons, which requires heat resistance, and a metal plate with grooves for cooling channels is , with copper plates arranged. In terms of heat resistance and cooling efficiency, synergistic effects can be obtained by utilizing the physical properties of molybdenum plates and copper plates, respectively.

また、3枚の組合せにすることで電極板の変形。In addition, the electrode plates can be transformed by combining three plates.

とくに異種材の線膨脹率の違いからくる熱変形を最小限
に抑えることが出来る。
In particular, thermal deformation caused by differences in linear expansion coefficients of different materials can be minimized.

本実施例によれば電極板に要求される耐熱性および冷却
効率を高めることができる。
According to this embodiment, the heat resistance and cooling efficiency required for the electrode plate can be improved.

従って、耐照射時間の改善や長寿命化に寄与する極めて
熱変形の少ない電極板の製造が可能となる。
Therefore, it is possible to manufacture an electrode plate with extremely little thermal deformation, which contributes to improved irradiation resistance time and extended service life.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、下記のような効果
がある。
As explained above, the present invention has the following effects.

モリブデン材からなるビーム加速器電極板の冷却水路用
溝が任意な形状に加工出来るために、冷却効率が大幅に
向上するので、熱変形が小さく、電極板としての長寿命
化が図れる。
Since the cooling channel grooves of the beam accelerator electrode plate made of molybdenum material can be machined into any shape, cooling efficiency is greatly improved, thermal deformation is small, and the life of the electrode plate can be extended.

また、電極板の製造方法として、ガス圧を用いた接合装
置を用いるので、接合性の向上が図れるために、気密性
に優れた電極板が得られるとともに、電極板のサイズお
よび形状に限定されない比較的、自由度の高い設計通り
の電極板の製造が可能となる。
In addition, as the electrode plate manufacturing method uses a bonding device that uses gas pressure, it is possible to improve bonding performance, resulting in an electrode plate with excellent airtightness, and is not limited by the size and shape of the electrode plate. It is possible to manufacture an electrode plate as designed with a relatively high degree of freedom.

さらに、1!極板の構成を複合化することにより、冷却
効率が大幅に向上するので耐熱性に富んだビーム加速器
電極板が得られる。
Furthermore, 1! By combining the configurations of the electrode plates, the cooling efficiency is greatly improved and a beam accelerator electrode plate with high heat resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の加速器電極板を示す分
解斜視図、第2図は上記電極板の製造方法を実施するた
めの装置の一実施例を示す断面図、第3図は本発明の第
2の実施例の金属板の平面図、第4図は本発明の第3の
実施例に係る金属板の組合せの斜視図、第5図(a)は
第3の実施例の金属板の組合せの斜視図、第5図(b)
は金属板を真空オ 封じ、る容器および蓋の斜視図、第6図は上記金属板を
真空対じする装置の一実施例を示す断面図、第7図は本
発明の第4の実施例の電極板の斜視図。 第8図(a)、(b)、(c)、(d)は従来の加速器
電極板を示す断面図である。 1.2.3・・・金属板 4・・・冷却水路用溝5・・
・給排水用穴   6.7・・・インサート材・8・・
・拡散接合装置  9・・・加熱用ヒータ10・・・リ
フレクタ−11・・・支持台12・・・加圧治具   
 13・・・断熱材14・・・真空ポンプ   15・
・・ビーム孔16、17・・・シール溶接 18・・・
容器19・・・蓋       20・・・接合装置2
1・・・ガス供給装置 22・・・アルゴンガスボンベ
31、32.33・・・金属板 41・・・電極板本体
42・・・ろう材     43・・・冷却管44・・
・電極板要素   45・・・蓋板46・・・細溝  
    47・・・接合端面48・・・冷却溝    
 49・・・溶接ビード第1図 /4 第2図 第 図 第 図 (ム)
FIG. 1 is an exploded perspective view showing an accelerator electrode plate according to a first embodiment of the present invention, FIG. 2 is a sectional view showing an embodiment of an apparatus for carrying out the method for manufacturing the electrode plate, and FIG. is a plan view of a metal plate according to a second embodiment of the present invention, FIG. 4 is a perspective view of a combination of metal plates according to a third embodiment of the present invention, and FIG. 5(a) is a plan view of a metal plate according to a third embodiment of the present invention. A perspective view of a combination of metal plates, FIG. 5(b)
6 is a perspective view of a container and a lid for vacuum sealing a metal plate, FIG. 6 is a cross-sectional view showing an embodiment of a device for vacuum sealing the metal plate, and FIG. 7 is a fourth embodiment of the present invention. FIG. 3 is a perspective view of an electrode plate. FIGS. 8(a), (b), (c), and (d) are cross-sectional views showing conventional accelerator electrode plates. 1.2.3... Metal plate 4... Cooling channel groove 5...
・Hole for water supply and drainage 6.7...Insert material ・8...
・Diffusion bonding device 9... Heater 10... Reflector 11... Support stand 12... Pressure jig
13...Insulating material 14...Vacuum pump 15.
...Beam holes 16, 17...Seal welding 18...
Container 19...Lid 20...Joining device 2
1... Gas supply device 22... Argon gas cylinder 31, 32. 33... Metal plate 41... Electrode plate body 42... Brazing material 43... Cooling pipe 44...
・Electrode plate element 45...Cover plate 46...Small groove
47... Joint end surface 48... Cooling groove
49...Weld bead Fig. 1/4 Fig. 2 Fig. Fig. (mu)

Claims (4)

【特許請求の範囲】[Claims] (1)冷却水路用貫通溝を設けた中央部金属板の両側に
平板の側部金属板を重ね合せて接合し、金属板の厚さ方
向に中性子通過用ビーム孔をあけたことを特徴とする加
速器電極板。
(1) Flat side metal plates are stacked and bonded on both sides of a central metal plate provided with a through groove for cooling channels, and beam holes for neutron passage are bored in the thickness direction of the metal plates. accelerator electrode plate.
(2)冷却水路用貫通溝が蛇行していることを特徴とす
る請求項(1)記載の加速器電極板。
(2) The accelerator electrode plate according to claim (1), wherein the cooling water passage through groove is meandering.
(3)側部金属板はモリブデン、タングステンなどの耐
熱材料であり、中央部金属板は銅のような熱伝導性およ
び導電性のよい金属であることを特徴とする請求項(1
)記載の加速器電極板。
(3) Claim (1) characterized in that the side metal plates are made of a heat-resistant material such as molybdenum or tungsten, and the central metal plate is made of a metal with good thermal conductivity and electrical conductivity such as copper.
) Accelerator electrode plate described.
(4)放電加工によって冷却水路用貫通溝を設けた中央
部金属板の両側に平板の側部金属板を重ね合せて接合部
を真空シールし、熱間等方圧加圧によって前記接合部を
拡散接合することを特徴とする加速器電極板の製造方法
(4) Lay flat side metal plates on both sides of a central metal plate with a through groove for cooling channels formed by electrical discharge machining, vacuum seal the joint, and seal the joint by hot isostatic pressing. A method for manufacturing an accelerator electrode plate characterized by diffusion bonding.
JP1033859A 1989-02-15 1989-02-15 Accelerator electrode plate and method of manufacturing the same Expired - Lifetime JP2703975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033859A JP2703975B2 (en) 1989-02-15 1989-02-15 Accelerator electrode plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033859A JP2703975B2 (en) 1989-02-15 1989-02-15 Accelerator electrode plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02215098A true JPH02215098A (en) 1990-08-28
JP2703975B2 JP2703975B2 (en) 1998-01-26

Family

ID=12398231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033859A Expired - Lifetime JP2703975B2 (en) 1989-02-15 1989-02-15 Accelerator electrode plate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2703975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509472A (en) * 1991-11-14 1996-04-23 Kabushiki Kaisha Toshiba Heat-resisting plate having a cooling structure and method of manufacturing it
JP2004342704A (en) * 2003-05-13 2004-12-02 Tokyo Electron Ltd Upper electrode and plasma treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509472A (en) * 1991-11-14 1996-04-23 Kabushiki Kaisha Toshiba Heat-resisting plate having a cooling structure and method of manufacturing it
JP2004342704A (en) * 2003-05-13 2004-12-02 Tokyo Electron Ltd Upper electrode and plasma treatment device
JP4493932B2 (en) * 2003-05-13 2010-06-30 東京エレクトロン株式会社 Upper electrode and plasma processing apparatus

Also Published As

Publication number Publication date
JP2703975B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US20120282538A1 (en) Fuel cell stack structure and fuel cell stack structure manufacturing method
TWI680551B (en) Steam room
JP2004511067A (en) Junction electrochemical cell components
US6511759B1 (en) Means and method for producing multi-element laminar structures
JP6528257B1 (en) Brazing bonding method of alumina dispersion strengthened copper
US11648625B2 (en) Method using a laser for welding between two metallic materials or for sintering of powder(s), application for making bipolar plates for PEM fuel cells
JPH02215098A (en) Accelerator electrode plate and manufacture thereof
JP3554835B2 (en) Backing plate manufacturing method
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
TW200523399A (en) Metal product producing method, metal product, metal component connecting method, and connection structure
CN108716871B (en) Heat dissipating element and manufacturing method thereof
JPH0529001A (en) Manufacture of gas separator
JP3802257B2 (en) Manufacturing method of ion source electrode plate
CN108907460A (en) Thermal unit manufacturing method
JP3719945B2 (en) Hot static pressure bonding method and first wall structure manufacturing method
JP2523742B2 (en) Electrode plate and manufacturing method thereof
JP5019200B2 (en) Ion source electrode
JPH08253373A (en) Production of vacuum airtight vessel sealant, vacuum airtight vessel, and ceramic-metal junction body
TWI661172B (en) Heat dissipation component and manufacturing method thereof
US20240120507A1 (en) Process for producing a lightweight bipolar plate for an electrochemical device
JP4526681B2 (en) Sealing method for electronic component package
JPH10321152A (en) Ion acceleration electrode plate and its manufacture
KR19990087413A (en) Proximity net planar sputtering target and method for producing the medium
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JP2005050600A (en) Electrode plate for ion source and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12