JPH02204624A - Combustion chamber for internal combustion engine - Google Patents
Combustion chamber for internal combustion engineInfo
- Publication number
- JPH02204624A JPH02204624A JP2457389A JP2457389A JPH02204624A JP H02204624 A JPH02204624 A JP H02204624A JP 2457389 A JP2457389 A JP 2457389A JP 2457389 A JP2457389 A JP 2457389A JP H02204624 A JPH02204624 A JP H02204624A
- Authority
- JP
- Japan
- Prior art keywords
- combustion chamber
- intake
- valve
- exhaust valve
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 64
- 239000000446 fuel Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000003756 stirring Methods 0.000 abstract description 4
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
Landscapes
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は燃機関の燃焼室構造の改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an improvement in the structure of a combustion chamber of a combustion engine.
(従来の技術)
内燃機関の燃焼室への吸気の流入効率を高めるために、
吸気弁シートのシート面(当たり面)に接する球面の一
部により、燃焼室壁面を形成し、吸気弁と吸気弁シート
との隙間から燃焼室に流入する吸気の流れを円滑化する
提案がある(実公昭51−21203号公報)。(Prior art) In order to increase the efficiency of intake air flowing into the combustion chamber of an internal combustion engine,
There is a proposal to form a combustion chamber wall surface by a part of the spherical surface in contact with the seat surface (contact surface) of the intake valve seat, thereby smoothing the flow of intake air flowing into the combustion chamber from the gap between the intake valve and the intake valve seat. (Utility Model Publication No. 51-21203).
ところで、各燃焼室に2つの吸気弁をもつ機関では、主
として部分負荷域における燃焼改善をねらって、シリン
ダ内での吸気スワールを発生させる場合、通常シリンダ
中心に対して同一サイドに各吸気弁が位置するため、各
吸気弁からの吸気流が正面から衝突し、シリンダ内周に
沿うスワール(横スワール)を維持することが難しく、
このためスワールはピストンの運動方向への、いわゆる
縦スワールが主流となる。By the way, in an engine that has two intake valves in each combustion chamber, when generating intake swirl in the cylinder mainly with the aim of improving combustion in the partial load range, each intake valve is usually placed on the same side with respect to the center of the cylinder. Because of its location, the intake air from each intake valve collides head-on, making it difficult to maintain a swirl (horizontal swirl) along the inner circumference of the cylinder.
For this reason, the swirl is mainly a so-called vertical swirl in the direction of movement of the piston.
この縦スワールは、ピストンの下降に伴い、吸気ポート
から燃焼室の斜め下方に向けて流入した吸気が、対向す
る排気弁の下面を通り、シリンダ内壁面、ピストン頂面
に当たり、縦渦を描くように上昇していく流れである。This vertical swirl is caused by the intake air flowing diagonally downward into the combustion chamber from the intake port as the piston descends, passes through the bottom surface of the opposing exhaust valve, hits the cylinder inner wall surface and the top surface of the piston, and forms a vertical vortex. The trend is to increase.
(発明が解決しようとする課題)
ところが、吸気弁と吸気弁シートのwR間から流入し、
燃焼室壁面に沿って排気弁の下面を通り抜けるように流
れる吸気の主流は、排気弁側の壁面の凹凸等により、流
れが妨げられやすく、縦方向のスワールは短時間のうち
に減衰しやすかった。(Problem to be solved by the invention) However, the air flows in from between the intake valve and the wR of the intake valve seat,
The mainstream of intake air flowing along the combustion chamber wall and passing through the bottom of the exhaust valve was easily blocked by irregularities on the wall on the exhaust valve side, and vertical swirls tended to attenuate in a short period of time. .
このため、吸入行程から圧縮行程にかけて十分に縦スワ
ールを持続させることが難しく、燃料と空気の混合が促
進されず、部分負荷域での燃焼改善が不十分となること
があった。For this reason, it is difficult to sustain the vertical swirl sufficiently from the intake stroke to the compression stroke, and the mixing of fuel and air is not promoted, resulting in insufficient combustion improvement in the partial load range.
本発明はこのような問題を解決することを目的とする。The present invention aims to solve such problems.
(課題を解決するための手段)
そこで本発明は、燃焼室に設ける吸気弁と排気弁、及び
これに連なる吸気ポートと排気ポートとを対向的に配置
し、燃焼室内で縦スワールを生起するようにしたした内
燃機関において、前記縦スワールの主流が生起される排
気弁側の燃焼室空間の容積を、吸気弁側の燃焼室空間よ
りも大きく設定した。(Means for Solving the Problems) Therefore, the present invention provides an arrangement in which an intake valve and an exhaust valve provided in a combustion chamber, and an intake port and an exhaust port connected thereto, are arranged to face each other so as to generate a vertical swirl in the combustion chamber. In the internal combustion engine, the volume of the combustion chamber space on the exhaust valve side where the main stream of the vertical swirl is generated is set to be larger than the volume of the combustion chamber space on the intake valve side.
(作用)
吸気弁から燃焼室に流入する吸気は、吸気弁シートとの
環状隙間から、これに連なる燃焼室壁面に沿って案内さ
れる。ところで、燃焼室に流入する吸気の主流は、吸気
ポートが排気ポートと対向しているため、そのまま対向
する排気弁の下面へと流れていき、したがって吸気弁の
手前から下方へと回り込む縦スワールに比較して、排気
弁の下面を通ってから下方へと回り込む縦スワールの方
がはるかに強力となる。そして、この強力な縦スワール
の生起される燃焼室空間の占める容積比率を、吸気弁側
よりも大きくとっであるため、吸気の多くは強力なスワ
ールの撹拌作用を効率よく受ける。この結果、部分負荷
域等での燃焼が促進され、燃費や排気組成が改善される
。(Function) Intake air flowing into the combustion chamber from the intake valve is guided from the annular gap with the intake valve seat along the wall surface of the combustion chamber that is connected to the annular gap. By the way, since the intake port faces the exhaust port, the main flow of the intake air flowing into the combustion chamber flows directly to the bottom of the opposing exhaust valve, and therefore forms a vertical swirl that wraps around downward from the front of the intake valve. In comparison, the vertical swirl that passes through the bottom surface of the exhaust valve and then wraps around downward becomes much more powerful. Since the volume ratio occupied by the combustion chamber space where this strong vertical swirl occurs is larger than that of the intake valve side, most of the intake air is efficiently subjected to the stirring action of the strong swirl. As a result, combustion is promoted in the partial load range, etc., and fuel efficiency and exhaust composition are improved.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図〜第4図に第1の実施例を示すが、まず第1図に
おいて、4はシリンダヘッド、11はシリンダブロック
、12はピストンで、シリンダヘッド4の下面とピスト
ン12の上面との間に燃焼室18が画成される。The first embodiment is shown in FIGS. 1 to 4. First, in FIG. 1, 4 is a cylinder head, 11 is a cylinder block, and 12 is a piston. A combustion chamber 18 is defined therebetween.
シリンダヘッド4には、燃焼室18の天井壁面の中心部
に位置して点火栓17が取付けられ、この周囲に位置し
て2つの吸気弁13、並びに2つの排気弁14が配設さ
れる。An ignition plug 17 is attached to the cylinder head 4 at the center of the ceiling wall surface of the combustion chamber 18, and two intake valves 13 and two exhaust valves 14 are arranged around the ignition plug 17.
第2図にも示すように、各吸気弁13と排気弁14は、
シリンダ列中心線を境にして互いに反対のサイドに位置
し、かつ各一対の吸気弁13と排気弁14が互いに対向
するように配置される。As shown in FIG. 2, each intake valve 13 and exhaust valve 14 are
Each pair of intake valves 13 and exhaust valves 14 are located on opposite sides of the cylinder row center line and are arranged to face each other.
各吸気弁13はシリンダ列中心線を境にして、シリンダ
ヘッド4の同一サイドに並列的に形成した吸気ポート5
と連通し、同様にして排気弁14も並列的な排気ポート
7と連通ずる。Each intake valve 13 has an intake port 5 formed in parallel on the same side of the cylinder head 4 with the cylinder row center line as the border.
Similarly, the exhaust valve 14 also communicates with the parallel exhaust port 7.
そして、燃焼室18のシリンダヘッド側の天井壁面は、
各吸気弁シート6及び各排気弁シート8を中心にして、
答弁の弁軸上及びに頂点があり、かつ着座面からほぼ接
線方向に延びる円錐面9及び10の一部をもって形成さ
れる。The ceiling wall surface on the cylinder head side of the combustion chamber 18 is
Centering around each intake valve seat 6 and each exhaust valve seat 8,
It is formed with parts of conical surfaces 9 and 10 having apexes on and on the valve axis of the valve and extending substantially tangentially from the seating surface.
ただし、円錐面9の延長面は排気弁シート8の下面より
も下方に位置させ、円錐面9に沿って流れる吸気の主流
が排気弁シート8の下方をスムーズに通過できるように
する。However, the extended surface of the conical surface 9 is located below the lower surface of the exhaust valve seat 8 so that the main flow of intake air flowing along the conical surface 9 can smoothly pass below the exhaust valve seat 8.
燃焼室18周辺部には、シリンダヘッド4の下面と同一
面の、スキッシュエリヤ15と16とが形成される。ス
キッシュエリヤ15は円錐面つとシリンダ内周面との間
に、また他方のスキッシュエリヤ16は円錐面10とシ
リンダ内周面と゛の間に形成される。Squish areas 15 and 16 are formed around the combustion chamber 18 and are flush with the lower surface of the cylinder head 4 . The squish area 15 is formed between one conical surface and the inner circumferential surface of the cylinder, and the other squish area 16 is formed between the conical surface 10 and the inner circumferential surface of the cylinder.
第3図、第4図に示すように、ピストン12の頂面には
、排気弁14の下方に位置して、浅い皿型の凹部20が
形成される。凹部20は両排気弁14に対応してほぼ対
称形のまゆ型に形成され、この凹部20により、排気弁
14の下方の燃焼室空間の容積が、吸気弁13の下方の
燃焼室空間の容積よりも大きくなるように設定しである
。As shown in FIGS. 3 and 4, a shallow dish-shaped recess 20 is formed on the top surface of the piston 12, located below the exhaust valve 14. As shown in FIGS. The recess 20 is formed in a substantially symmetrical cocoon shape corresponding to both exhaust valves 14 , and this recess 20 allows the volume of the combustion chamber space below the exhaust valve 14 to be increased from the volume of the combustion chamber space below the intake valve 13 . It is set to be larger than .
以上のように精成され、次に作用を説明する。It is purified as described above, and its action will be explained next.
吸気ポート5からの吸入空気は、吸気弁13が開くと吸
気弁シート6との環状隙間から燃焼室18へ流れ込み、
その主流は吸気弁シート6に連なる円錐面9に沿って案
内される0円錐面9に沿う吸気の流れは渦を発生するこ
となく滑らかに流入し、高速回転域においても吸気充填
効率を高める働きをする。When the intake valve 13 opens, the intake air from the intake port 5 flows into the combustion chamber 18 through the annular gap with the intake valve seat 6.
The main flow of the intake air is guided along the conical surface 9 connected to the intake valve seat 6.The flow of intake air along the conical surface 9 flows smoothly without generating vortices, and works to increase the intake air filling efficiency even in the high speed rotation range. do.
そして吸入空気の主流は、吸気ポート5の傾斜角度に応
じて、円錐面9に沿って吸気弁13がら対向する排気弁
14の下面に向けて流れ込む。The main flow of the intake air flows along the conical surface 9 from the intake valve 13 toward the lower surface of the exhaust valve 14 facing the intake valve 13, depending on the inclination angle of the intake port 5.
この吸気の主流は排気弁14の下面から下方に回り込み
、さらにピストン12の頂面に当たり上昇していく縦ス
ワールSeを、排気弁14の下方に形成する。この吸気
の主流に対して、吸気弁13の手前側から吸気の一部が
下方に回り込み、前記縦スワールSeに対して反対方向
に旋回する縦スワールSiを、吸気弁13の下面に形成
する。The main flow of this intake air flows downward from the lower surface of the exhaust valve 14, and further hits the top surface of the piston 12 to form a vertical swirl Se below the exhaust valve 14. A part of the intake air flows downward from the front side of the intake valve 13 with respect to the main flow of the intake air, and a vertical swirl Si that swirls in the opposite direction to the vertical swirl Se is formed on the lower surface of the intake valve 13.
排気弁14の下面の縦スワールSeは、吸気ポート5の
延長上に排気弁14があり、吸気の主流が高速で排気弁
下面へと流れ込むため、吸気弁13の下面の縦スワール
Siに比較して、はるかに強力となる。The vertical swirl Se on the lower surface of the exhaust valve 14 is compared to the vertical swirl Si on the lower surface of the intake valve 13 because the exhaust valve 14 is an extension of the intake port 5 and the main flow of intake air flows into the lower surface of the exhaust valve at high speed. It becomes much more powerful.
ところで、排気弁14の下面の燃焼室空間の容積は、ピ
ストン12の頂面に形成した凹部20により、吸気弁1
3の下面の燃焼室空間の容積よりも大きくなっているた
め、強力な縦スワールの生成される領域の容積比率が高
く、したがって多くの混合気がこの縦スワールの影響に
より、効率よく燃焼させられることになる。Incidentally, the volume of the combustion chamber space on the lower surface of the exhaust valve 14 is reduced by the recess 20 formed on the top surface of the piston 12.
Since the volume is larger than the volume of the combustion chamber space on the lower surface of 3, the volume ratio of the area where strong vertical swirl is generated is high, so much of the air-fuel mixture can be efficiently combusted due to the influence of this vertical swirl. It turns out.
このため、全体的な燃焼時間が短縮され、主として部分
負荷域での燃費や排気組成の改善が図れるのである。Therefore, the overall combustion time is shortened, and fuel efficiency and exhaust composition can be improved mainly in the partial load range.
第5図〜第7図に示す第2の実施例は、2つの吸気弁1
3a、13bと1つの排気弁14をもつ3弁式の機関に
応用したもので、吸気弁13Mの下面から排気弁14の
下面にかけて、ピストン12の頂面には、略楕円型の凹
部20aを形成しである。四部20aは吸気弁側よりも
排気弁側に次第に深くなる傾斜底面21に形成される。The second embodiment shown in FIGS. 5 to 7 has two intake valves 1
3a, 13b and one exhaust valve 14, a substantially elliptical recess 20a is formed on the top surface of the piston 12 from the lower surface of the intake valve 13M to the lower surface of the exhaust valve 14. It is formed. The four portions 20a are formed with an inclined bottom surface 21 that is gradually deeper toward the exhaust valve side than the intake valve side.
この場合も、排気弁14の下面の燃焼室空間の容積が吸
気弁13aの下面の燃焼室空間よりも大きくなっている
ため、強力な縦スワールにより多くの混合気を効率よく
燃焼させることができる。In this case as well, since the volume of the combustion chamber space on the bottom surface of the exhaust valve 14 is larger than the combustion chamber space on the bottom surface of the intake valve 13a, a large amount of the air-fuel mixture can be efficiently combusted by a strong vertical swirl. .
第8図〜第10図の第3の実施例は、吸気弁13と排気
弁14を1つづつもつ、2弁式の機関であるが、この場
合も、ピストン12の頂面に形成する排気弁14の下面
の凹部20bを、吸気弁13の下面の凹部20cよりも
大きくして、燃焼室空間の容積を拡大している。これに
より、吸気の主流が集まる排気弁側の燃焼時間を短縮し
て、全体的な燃焼特性の改善を図っている。The third embodiment shown in FIGS. 8 to 10 is a two-valve engine having one intake valve 13 and one exhaust valve 14. The recess 20b on the lower surface of the valve 14 is made larger than the recess 20c on the lower surface of the intake valve 13 to expand the volume of the combustion chamber space. This shortens the combustion time on the exhaust valve side, where the main flow of intake air gathers, and improves the overall combustion characteristics.
第11図に示す第4の実施例多よ、排気弁14の弁軸の
傾きβを、吸気弁13の弁軸の傾きαよりも小さく設定
することにより、排気弁側の燃焼室壁面22をへこませ
、これにより、排気弁側の燃焼室空間の容積を大きくし
である。In the fourth embodiment shown in FIG. 11, by setting the inclination β of the valve shaft of the exhaust valve 14 to be smaller than the inclination α of the valve shaft of the intake valve 13, the combustion chamber wall surface 22 on the exhaust valve side is This increases the volume of the combustion chamber space on the exhaust valve side.
さらにまた、第12図に示す第5の実施例は、弁軸の傾
きに加えて、吸気弁13の弁径(スロート径)Diを、
排気弁14の弁径Deよりも小さくするか、吸気弁側の
円錐面9の頂角θiを、排気弁側の円錐面10の頂角θ
eよりも小さくすることにより、排気弁側の燃焼室空間
の容積を相対的に拡大したものである。Furthermore, in the fifth embodiment shown in FIG. 12, in addition to the inclination of the valve shaft, the valve diameter (throat diameter) Di of the intake valve 13 is
Either make the apex angle θi of the conical surface 9 on the intake valve side smaller than the valve diameter De of the exhaust valve 14, or change the apex angle θi of the conical surface 10 on the exhaust valve side.
By making it smaller than e, the volume of the combustion chamber space on the exhaust valve side is relatively expanded.
第13図、第14図に示す第6の実施例は、2つの排気
弁14a:14bの間にはさまれる領域の、円錐面10
a、10bの斜面の角度を、他の円錐面10よりも緩い
傾斜にして、排気弁14の下面の燃焼室空間の容積を拡
大したものである。なお、この場合には、排気弁側のス
キッシュエリヤ16aの面積も減るので、容積拡大に寄
与する。The sixth embodiment shown in FIGS. 13 and 14 has a conical surface 10 in a region sandwiched between two exhaust valves 14a and 14b.
The angles of the slopes a and 10b are made gentler than the other conical surfaces 10 to expand the volume of the combustion chamber space on the lower surface of the exhaust valve 14. In this case, the area of the squish area 16a on the exhaust valve side is also reduced, which contributes to an increase in volume.
また、第15図に示す第7の実施例は、同じく排気弁1
4aと14bの間にはさまれる領域の燃焼室壁面を、円
錐面10ではなく、これよりも曲率の大きい緩やかな曲
面または平面23で構成し、かつスキッシュエリヤ16
bを小さくすることにより、排気弁下面の燃焼室空間の
容積拡大を図ったものである。Further, the seventh embodiment shown in FIG. 15 also has an exhaust valve 1.
The wall surface of the combustion chamber in the region sandwiched between 4a and 14b is configured not by the conical surface 10 but by a gently curved surface or flat surface 23 with a larger curvature than the conical surface 10, and the squish area 16
By reducing b, the volume of the combustion chamber space on the lower surface of the exhaust valve is increased.
さらに第16図に示す第8の実施例では、スキッシュエ
リヤ16bを除去して、曲面または平面23のみとする
ことにより、さらに排気弁下面の燃焼室空間の容積拡大
を実現した。Furthermore, in the eighth embodiment shown in FIG. 16, by removing the squish area 16b and leaving only a curved or flat surface 23, the volume of the combustion chamber space on the lower surface of the exhaust valve is further increased.
次ぎに第17図に示す第9の実施例は、吸気弁13aよ
りも13bの弁径を大きく設定し、これに対して排気弁
14aは14bよりも大きく設定する。Next, in a ninth embodiment shown in FIG. 17, the valve diameter of the intake valve 13b is set larger than that of the intake valve 13a, and the exhaust valve 14a is set larger than the diameter of the exhaust valve 14b.
つまり、吸排気弁は、大きい吸気弁13bと小さい排気
弁14bが対向するように配設することにより、吸気の
主流が流れる吸気弁13bからの吸気を、排気弁14b
よりも容積の大きい排気弁14aの下面へと偏向させる
ことにより、点火栓17の下面を過ぎって強い縦スワー
ルを生起することができる。That is, by arranging the intake and exhaust valves so that the large intake valve 13b and the small exhaust valve 14b face each other, the intake air from the intake valve 13b through which the main flow of intake air flows is transferred to the exhaust valve 14b.
By deflecting the gas toward the lower surface of the exhaust valve 14a, which has a larger volume than that of the exhaust valve 14a, a strong vertical swirl can be generated past the lower surface of the ignition plug 17.
さらに第18図の第10の実施例は、2つの吸気弁13
a、13bのうち、一方の吸気弁13bの弁径を大きく
すると共に、弁径の小さな吸気弁13aに対向して単一
の排気弁14を配置したものである。この場合にも、吸
気の主流が流れる吸気弁13bからの吸気は、クロスす
るようにして排気弁14の下面方向に流れ、強力な縦ス
ワールを形成する。Furthermore, the tenth embodiment shown in FIG.
Of the intake valves a and 13b, one of the intake valves 13b has a larger valve diameter, and a single exhaust valve 14 is disposed opposite the intake valve 13a, which has a smaller valve diameter. In this case as well, the intake air from the intake valve 13b, through which the main flow of intake air flows, crosses toward the lower surface of the exhaust valve 14, forming a strong vertical swirl.
したがってこれら第9、第10の実施例では、いずれも
燃焼室空間の容積の大きい方の排気弁下面へと吸気の主
流が流れ、このとき発生する強力な縦スワールにより燃
焼改善が図れる。Therefore, in both the ninth and tenth embodiments, the main flow of the intake air flows to the lower surface of the exhaust valve having the larger volume of the combustion chamber space, and the strong vertical swirl generated at this time improves combustion.
(発明の効果)
以上のように本発明によれば、燃焼室に流入する吸気は
、吸気ポートが排気ポートと対向しているため、そのま
ま対向する排気弁の下面へと主流が流れていき、したが
って吸気弁の手前から下方へと回り込む縦スワールに比
較して、排気弁の下面を通ってから下方へと回り込む縦
スワールの方がはるかに強力となり、そして、この強力
な縦スワールの生起される排気弁下面の燃焼室空間の占
める容積比率を、吸気弁側よりも大きくとっであるため
、吸気の多くは強力なスワールの撹拌作用を効率よく受
け、この結果、部分負荷域等での全体的な燃焼が促進さ
れ、燃費や排気組成が改善される。(Effects of the Invention) As described above, according to the present invention, since the intake port faces the exhaust port, the main flow of the intake air flowing into the combustion chamber directly flows to the lower surface of the opposing exhaust valve. Therefore, compared to the vertical swirl that wraps around downward from the front of the intake valve, the vertical swirl that wraps around downward after passing through the bottom surface of the exhaust valve is much stronger, and this strong vertical swirl is generated. Since the volume ratio occupied by the combustion chamber space on the bottom surface of the exhaust valve is larger than that on the intake valve side, most of the intake air is efficiently subjected to the stirring action of the powerful swirl, and as a result, the overall combustion is promoted, improving fuel efficiency and exhaust composition.
第1図は本発明の第1の実施例を示す縦断面図(第2図
のA−A断面)、第2図は同じく平面図、第3図は同じ
くピストンの平面図、第4図は第3図のB−B線断面図
、第5図は第2の実施例を示す平面図、第6図は同じく
ピストンの平面図、第7図は第6図のC−C線断面図、
第8図は第3の実施例を示す平面図、第9図は同じくピ
ストンの平面図、第10図は第9図のD−D線断面図、
第11図は第4の実施例を示す縦断面図、第12図は第
5の実施例を示す縦断面図、第13図は第6の実施例を
示す平面図、第14図は同じくそのEE線断面図、第1
5図は第7の実施例を示す平面図、第16図は第8の実
施例を示す平面図、第17図は第9の実施例を示す平面
図、第18図は第10の実施例を示す平面図である。
4・・・シリンダヘッド、5・・・吸気ポート、6・・
・吸気弁シート、8・・・排気弁シート、9,10・・
・円錐面、11・・・シリンダブロック、12・・・ピ
ストン、13・・・吸気弁、14・・・排気弁、17・
・・点火栓、18・・・燃焼室。
第6
図
第
図
第
図
第
9図
第10図
第11図
1112図
第15図
第16図
第13図
第14図
第17図
$18図FIG. 1 is a longitudinal sectional view (A-A section in FIG. 2) showing the first embodiment of the present invention, FIG. 2 is a plan view, FIG. 3 is a plan view of the piston, and FIG. 4 is a plan view of the piston. 3 is a sectional view taken along line B-B, FIG. 5 is a plan view showing the second embodiment, FIG. 6 is a plan view of the piston, and FIG. 7 is a sectional view taken along line C-C in FIG.
FIG. 8 is a plan view showing the third embodiment, FIG. 9 is a plan view of the piston, and FIG. 10 is a sectional view taken along line D-D in FIG. 9.
FIG. 11 is a longitudinal sectional view showing the fourth embodiment, FIG. 12 is a longitudinal sectional view showing the fifth embodiment, FIG. 13 is a plan view showing the sixth embodiment, and FIG. 14 is a longitudinal sectional view showing the fifth embodiment. EE line sectional view, 1st
5 is a plan view showing the seventh embodiment, FIG. 16 is a plan view showing the eighth embodiment, FIG. 17 is a plan view showing the ninth embodiment, and FIG. 18 is a plan view showing the tenth embodiment. FIG. 4... Cylinder head, 5... Intake port, 6...
・Intake valve seat, 8... Exhaust valve seat, 9, 10...
- Conical surface, 11... Cylinder block, 12... Piston, 13... Intake valve, 14... Exhaust valve, 17.
...Spark plug, 18...Combustion chamber. Figure 6 Figure Figure Figure 9 Figure 10 Figure 11 Figure 1112 Figure 15 Figure 16 Figure 13 Figure 14 Figure 17 Figure $18
Claims (1)
ポートと排気ポートとを対向的に配置し、燃焼室内で縦
スワールを生起するようにしたした内燃機関において、
前記縦スワールの主流が生起される排気弁側の燃焼室空
間の容積を、吸気弁側の燃焼室空間よりも大きく設定し
たことを特徴とする内燃機関の燃焼室。In an internal combustion engine in which an intake valve and an exhaust valve provided in a combustion chamber, and an intake port and an exhaust port connected thereto are arranged oppositely to generate a vertical swirl in the combustion chamber,
A combustion chamber for an internal combustion engine, characterized in that the volume of the combustion chamber space on the exhaust valve side, where the main stream of the vertical swirl is generated, is set larger than the combustion chamber space on the intake valve side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2457389A JPH02204624A (en) | 1989-02-02 | 1989-02-02 | Combustion chamber for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2457389A JPH02204624A (en) | 1989-02-02 | 1989-02-02 | Combustion chamber for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02204624A true JPH02204624A (en) | 1990-08-14 |
Family
ID=12141911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2457389A Pending JPH02204624A (en) | 1989-02-02 | 1989-02-02 | Combustion chamber for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02204624A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106014602A (en) * | 2015-03-24 | 2016-10-12 | 马自达汽车株式会社 | Engine |
JP2016180356A (en) * | 2015-03-24 | 2016-10-13 | マツダ株式会社 | Engine air-intake structure |
-
1989
- 1989-02-02 JP JP2457389A patent/JPH02204624A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106014602A (en) * | 2015-03-24 | 2016-10-12 | 马自达汽车株式会社 | Engine |
JP2016180359A (en) * | 2015-03-24 | 2016-10-13 | マツダ株式会社 | Engine air-intake device |
JP2016180356A (en) * | 2015-03-24 | 2016-10-13 | マツダ株式会社 | Engine air-intake structure |
US9797336B2 (en) | 2015-03-24 | 2017-10-24 | Mazda Motor Corporation | Intake device of engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6615789B2 (en) | Piston for internal combustion engines | |
JP3222379B2 (en) | Combustion chamber structure of internal combustion engine | |
JP3997781B2 (en) | In-cylinder direct injection engine | |
JPS5838610B2 (en) | internal combustion engine | |
JPH02204624A (en) | Combustion chamber for internal combustion engine | |
JPH0830414B2 (en) | Combustion chamber structure of internal combustion engine | |
JPH02215921A (en) | Combustion chamber of internal combustion engine | |
JP2713448B2 (en) | Engine combustion chamber | |
JPH086594B2 (en) | Combustion chamber of internal combustion engine | |
JP2603216Y2 (en) | Combustion chamber structure of internal combustion engine | |
JP2524387B2 (en) | Combustion chamber of internal combustion engine | |
JPH02248616A (en) | Combustion chamber of internal combustion engine | |
JPH0849546A (en) | Combustion chamber for internal combustion engine | |
JPH02301618A (en) | Combustion chamber structure of internal combustion engine | |
JPH086595B2 (en) | Combustion chamber of internal combustion engine | |
JPS6275019A (en) | Combustion device for diesel engine | |
JP2594054B2 (en) | Direct injection diesel engine | |
JPH0842390A (en) | Suction port structure for internal combustion engine | |
JPH02241922A (en) | Combustion chamber in internal combustion engine | |
JP2022083621A (en) | Combustion chamber structure for engine | |
JPH02305316A (en) | Combustion chamber structure of internal combustion engine | |
JP2566257B2 (en) | Engine combustion chamber structure | |
JP2022083620A (en) | Combustion chamber structure | |
JP2022083619A (en) | Combustion chamber structure for engine | |
JPH02248618A (en) | Combustion chamber of internal combustion engine |