[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0219370A - Production of maleic anhydride - Google Patents

Production of maleic anhydride

Info

Publication number
JPH0219370A
JPH0219370A JP17022788A JP17022788A JPH0219370A JP H0219370 A JPH0219370 A JP H0219370A JP 17022788 A JP17022788 A JP 17022788A JP 17022788 A JP17022788 A JP 17022788A JP H0219370 A JPH0219370 A JP H0219370A
Authority
JP
Japan
Prior art keywords
catalyst
fluidized bed
gas
cyclone
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17022788A
Other languages
Japanese (ja)
Other versions
JPH089606B2 (en
Inventor
Masayuki Otake
大竹 正之
Yoshiaki Iizuka
義明 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP63170227A priority Critical patent/JPH089606B2/en
Publication of JPH0219370A publication Critical patent/JPH0219370A/en
Publication of JPH089606B2 publication Critical patent/JPH089606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To advantageously obtain the title compound from >= 4C aliphatic hydrocarbon using a specific fluid bed catalyst by returning the catalyst recovered in a cyclone to a reoxidation zone provided in the lower region of a thick fluid layer and simultaneously controlling inlet temperature of the cyclone. CONSTITUTION:When >= 4C aliphatic hydrocarbon is subjected to catalytic vapor phase oxidation by an oxygen-containing gas fed from the lower part of a gas dispersing plate 2 in a fluid bed reactor 1 providing the gas dispersing plate 2 at the bottom, forming a thick fluid layer 1 consisting of an oxidation catalyst using a V-P based complex oxide as an active catalyst above the plate 2 and providing cyclones 12 and 13 for recovering a scattering catalyst at the top to provide the title compound, the above-mentioned raw material is fed to the position 7 separated apart from the above of the dispersing plate 2 in the lower region of the fluid layer 5 and simultaneously substantial part of the recovered catalyst is returned to the lower region of a flow stream layer 5. Further, a heat exchanger 11 is installed in a dilute fluid layer 10 above the fluid layer 5 and the inlet temperature of the cyclones 12 and 13 is controlled to 330-450 deg.C to suppress non-catalyst oxidation, secure the safeness and simultaneously reduce the loss of product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無水マレイン酸の製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing maleic anhydride.

詳しくは本発明は、炭素数ケ以上の脂肪族炭化水素、例
えばブタン、ブテン類、ブタジェン等を原料として、そ
の気相酸化によシ無水マレイン酸を製造する方法の改良
に関する。
Specifically, the present invention relates to an improvement in a method for producing maleic anhydride by gas phase oxidation using an aliphatic hydrocarbon having at least a carbon number, such as butane, butenes, butadiene, etc., as a raw material.

〔従来の技術〕[Conventional technology]

無水マレイン酸は通常、ベンゼンの気相酸化又はブタン
、ブテン類、ブタジェン等の炭素数9以上の脂肪族炭化
水素の気相酸化によシ製造される。また無水マレイン酸
はオルトキシレンやナフタレンの気相酸化による無水フ
タル酸製造工程における副生物としても回収されている
Maleic anhydride is usually produced by gas phase oxidation of benzene or aliphatic hydrocarbons having 9 or more carbon atoms such as butane, butenes, butadiene. Maleic anhydride is also recovered as a by-product in the phthalic anhydride production process by gas-phase oxidation of ortho-xylene and naphthalene.

工業的に有利な製造法としては炭素数ダの脂肪族炭化水
素を原料として無水マレイン酸を製造する方法があり、
そのための触媒やプロセスの開発に多くの努力が払われ
てきた。
An industrially advantageous production method is to produce maleic anhydride using an aliphatic hydrocarbon having a carbon number of 2 as a raw material.
Many efforts have been made to develop catalysts and processes for this purpose.

全製造する反応の留意点として生成物である無水マレイ
ン酸の反応性が高いことが挙げられる。
A point to be noted in all the reactions involved is that the product, maleic anhydride, has high reactivity.

即ち、高温の空気等の酸素含有ガス雰囲気下では無水マ
レイン酸が無触媒酸化を受は易く、収率面及び安全面で
の配慮が必要となる。また原料にブタン又はブタンを含
有する炭素数9の炭化水素類混合物を使用する場合、触
媒層を出た反応生成ガス中には未反応ブタンが実質的濃
度で含有されている。この場合、やはりブタンが空気等
の酸素含有ガス雰囲気下で高温で無触媒酸化を受は易い
ので、安全面での配慮が必要となってくる。
That is, maleic anhydride is susceptible to non-catalytic oxidation in an oxygen-containing gas atmosphere such as high-temperature air, and consideration must be given to yield and safety. Further, when butane or a mixture of hydrocarbons having 9 carbon atoms containing butane is used as a raw material, unreacted butane is contained in a substantial concentration in the reaction product gas leaving the catalyst layer. In this case, since butane is susceptible to non-catalytic oxidation at high temperatures in an oxygen-containing gas atmosphere such as air, safety considerations must be taken.

工業プロセスでは従来、主として熱交換器型の多管反応
器に直径敷部の触媒粒子を充填した固定床式触媒層で上
記酸化が実施されてきた。
In industrial processes, the above-mentioned oxidation has conventionally been carried out mainly in a fixed bed type catalyst bed in which a heat exchanger-type multitubular reactor is filled with catalyst particles of a diameter bed.

この場合、反応生成ガスは触媒層を出てから冷却用熱交
換器に入るまでの数秒ないし数十秒の時間、反応温度に
近い高温に維持されることになるが、器壁の影響は小さ
く、無触媒酸化を受は易いのは主として触媒層から反応
器出口までの空間であシ、数秒間にわたり反応生成ガス
がこの空間で高温に維持されているのが実情である。そ
のため、反応生成ガスの組成によっては無触媒酸化によ
って誘発される自然発火及び爆発の危険性が高まシ、ま
たそれほどではなくとも、生成物の損失、副生物の増加
等の可能性が高かった。この対策としては反応器内で触
媒層から出たガスに非水性冷却ガスを混合したシ、また
冷却流体と間接熱交換したシして温度を下げる方法が提
案されている(特開昭53−一と773号、米国特許第
4t、0(14魁27号)。
In this case, the reaction product gas is maintained at a high temperature close to the reaction temperature for several seconds to several tens of seconds after leaving the catalyst bed until entering the cooling heat exchanger, but the influence of the vessel walls is small. The space from the catalyst layer to the outlet of the reactor is mainly susceptible to non-catalytic oxidation, and the reality is that the reaction product gas is maintained at a high temperature in this space for several seconds. Therefore, depending on the composition of the reaction product gas, there is a high risk of spontaneous combustion and explosion induced by non-catalytic oxidation, and to a lesser extent, there is a high possibility of loss of products and increase in by-products. . As a countermeasure to this problem, methods have been proposed in which the temperature is lowered by mixing a non-aqueous cooling gas with the gas discharged from the catalyst layer in the reactor, or by indirectly exchanging heat with the cooling fluid (Japanese Unexamined Patent Application Publication No. 1983-1982). No. 1 and 773, U.S. Patent No. 4t, 0 (14 Kai No. 27).

一方、最近注目されてきている流動床触媒を用いる気相
酸化プロセスでは、気体の上昇流によって大量の酸化触
媒が流動状態におかれている濃厚流動層中で炭化水素の
気相酸化を行なう。
On the other hand, in the gas phase oxidation process using a fluidized bed catalyst, which has recently attracted attention, hydrocarbons are oxidized in the gas phase in a dense fluidized bed in which a large amount of oxidation catalyst is kept in a fluidized state by an upward flow of gas.

より具体的には気体状の炭化水素原料を予め空気等の酸
素含有ガスと混合して濃厚流動層に導入するか又は空気
等の酸素含有ガスで流動状態にある濃厚流動層に気体状
の炭化水素原料を導入して接触反応を行なう。
More specifically, gaseous hydrocarbon raw materials are mixed in advance with an oxygen-containing gas such as air and introduced into a dense fluidized bed, or gaseous carbonization is carried out in a dense fluidized bed in a fluidized state with an oxygen-containing gas such as air. A hydrogen raw material is introduced and a catalytic reaction is carried out.

ここで使用される酸化触媒は、バナジウム及びリンを主
要構成元素とする複合酸化物(以下「バナジウム−リン
系複合酸化物」という)を活性成分とするものであシ、
従来公知の種々の方法で製造することができる。それ等
の例としては例えば米国特許第4t、5コJ!?/号、
同第θ3り乞0’13号、同第各II!;j、’131
1号、同第乞j / 7.771号、同第乞j / 0
..2 j 1号、同第乞s / /、 670号、欧
州特許第コ2↓Q6コ号、米国特許第41,3り乞75
6号、同第乞5コ0. /コア号、同第11.(174
!;2り号等を挙げることができる0 これらの流動床方式反応の場合、触媒は反応生成ガスに
同伴されて濃厚流動層より上方に触媒粒子の運動エネル
ギーに応じて運搬される。
The oxidation catalyst used here has a composite oxide containing vanadium and phosphorus as main constituent elements (hereinafter referred to as "vanadium-phosphorus composite oxide") as an active ingredient.
It can be manufactured by various conventionally known methods. Examples of these include U.S. Patent Nos. 4t and 5J! ? /issue,
The same No. θ3 request 0'13, the same No. II! ;j, '131
No. 1, same No. J / 7.771, same No. J / 0
.. .. 2 j No. 1, Patent No. 670, European Patent No. 2↓Q6, U.S. Patent No. 41,3 No. 75
No. 6, No. 5, 0. /Core issue, No. 11. (174
! In the case of these fluidized bed reactions, the catalyst is carried upwards from the dense fluidized bed in accordance with the kinetic energy of the catalyst particles, accompanied by the reaction product gas.

到達する高さは一般に輸送出口高さ(TDH)と呼ばれ
ている(例えば国井大蔵著「流動化法」(昭和37年i
o月2S日初版、日刊工業新聞社発行)等参照)。ガス
に同伴された触媒はこ経由して濃厚流動層に循環されて
再使用される。
The height reached is generally called the transport exit height (TDH) (for example, the "Fluidization method" by Okura Kunii (1966 i)
First published on October 2S, published by Nikkan Kogyo Shimbun), etc.). The catalyst entrained in the gas is circulated through this to the dense fluidized bed and reused.

従って流動床反応器では触媒の大部分が存在する濃厚流
動層の上方にその容積の数倍にも達する触媒密度の低い
希薄流動層が存在する。この領域は触媒密度が低いため
に原料炭化水素や生成物の無触媒酸化が進行する危険性
が固定床反応に比較してはるかに大きい。
Therefore, in a fluidized bed reactor, a dilute fluidized bed with a low catalyst density, which is several times the volume of the dense fluidized bed, exists above the dense fluidized bed where most of the catalyst is present. Since the catalyst density is low in this region, the risk of non-catalytic oxidation of feedstock hydrocarbons and products is much greater than in fixed bed reactions.

一般に無触媒酸化を抑制するためには反応生成ガスの温
度を可・友釣に下げるのが良いことは知られている。例
えば前記特開昭53−コf、 / / 3号には、固定
床式反応器において触媒層を出たガスを675°F (
ssy℃)以下、好ましくは625°F(,7コタ℃)
以下、より好ましくは5gθ’F(3011℃)以下に
冷却することが記載されている。しかしながら、このよ
うに反応生成ガスの温度を単に可及的に低下させるとい
う手法をそのまま流動床式反応器に適用したとしても、
流動床反応を円滑に進めることは事実上不可能であシ、
実際的でない。何故なら過度の冷却はサイクロンで捕集
されて濃厚流動層に循環される触媒粒子の温度を過度に
低下させ、かえりて反応停止、触媒劣化等の危険性が増
大するほか、希薄流動層部分に設置される過大な除熱用
熱交換器チューブにより相当径が過度に低下し、ガス線
速が増大してTDHO値そのものにも影響するからであ
る。また、流動床式の気相酸化反応器で異常反応時に希
薄流動層に水蒸気、空気、窒素等のガスを吹き込んで冷
却するようにした構造のものも提案されているが、この
場合もサイクロンでの触媒捕集のための負荷が過度に増
大し、流動床触媒の損失となる場合が多い。また無水マ
レイン酸を製造する反応では通常、バナジウム−リン系
複合酸化物を含む触媒を使用するため、水蒸気吹込みの
場合には触媒の吸湿固化、流動性悪化等の危険性も高い
It is generally known that in order to suppress non-catalytic oxidation, it is better to lower the temperature of the reaction product gas to a moderate level. For example, in the above-mentioned Japanese Patent Application Laid-Open No. 53-1983, the gas exiting the catalyst layer in a fixed bed reactor is heated to 675°F (
ssy °C) or less, preferably 625 °F (,7 kota °C)
Hereinafter, it is described that the temperature is more preferably cooled to 5 gθ'F (3011°C) or less. However, even if this method of simply lowering the temperature of the reaction product gas as much as possible is applied to a fluidized bed reactor,
It is virtually impossible for fluidized bed reactions to proceed smoothly;
Not practical. This is because excessive cooling will excessively lower the temperature of the catalyst particles that are collected by the cyclone and circulated to the dense fluidized bed, increasing the risk of reaction termination and catalyst deterioration. This is because the installed excessively large heat exchanger tube for heat removal causes an excessive reduction in the equivalent diameter, which increases the linear gas velocity and affects the TDHO value itself. In addition, a fluidized bed type gas phase oxidation reactor has been proposed in which a gas such as water vapor, air, or nitrogen is blown into the diluted fluidized bed to cool it during an abnormal reaction, but in this case, a cyclone is also used. The load for catalyst collection increases excessively, often resulting in loss of fluidized bed catalyst. Furthermore, since a catalyst containing a vanadium-phosphorus complex oxide is usually used in the reaction for producing maleic anhydride, there is a high risk of the catalyst absorbing moisture and solidifying, deteriorating fluidity, etc. in the case of steam injection.

上記のように、流動床反応方式でブタン等の炭素数9以
上の脂肪族炭化水素の気相酸化によシ無水マレイン酸を
製造するための従来の技術では、濃厚流動層での反応を
安定に実施しつつ反応器上部の希薄流動層での無触媒酸
化によるブタン等の未反応炭化水素や生成物である無水
マレイン酸の損失を防止し、かつ安全を確保するのが困
難であり、あるいは希薄流動層での異常反応時に希薄流
動層に冷却用ガスを大量に導入することによる触媒の損
失を招くなどの問題点があった。
As mentioned above, in the conventional technology for producing maleic anhydride by gas phase oxidation of aliphatic hydrocarbons having 9 or more carbon atoms such as butane using a fluidized bed reaction method, the reaction in a concentrated fluidized bed is stabilized. It is difficult to prevent the loss of unreacted hydrocarbons such as butane and the product maleic anhydride due to non-catalytic oxidation in the dilute fluidized bed at the top of the reactor, and to ensure safety, or There were problems such as catalyst loss due to the introduction of a large amount of cooling gas into the diluted fluidized bed when an abnormal reaction occurred in the diluted fluidized bed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは流動床式反応器内における触媒粒子の挙動
及び流動床式反応器の特性に関する知見をもとに希薄流
動層での無触媒酸化を抑制して安全性を確保し、かつ生
成物の損失を可及的に低減するための方法につき鋭意検
討を重ねた結果、本発明に到達した。
Based on the knowledge of the behavior of catalyst particles in a fluidized bed reactor and the characteristics of a fluidized bed reactor, the present inventors suppressed non-catalytic oxidation in a diluted fluidized bed to ensure safety and produce As a result of extensive research into ways to reduce property loss as much as possible, we have arrived at the present invention.

即ち、本発明の要旨は、バナジウム−リン系複合酸化物
を活性成分とする酸化触媒を収容した流動床反応器に、
底部のガス分散板の下方から酸素含有ガスを供給し、該
触媒を流動化させてガス分散板の上方に該触媒の濃厚流
動層を形成させ、該濃厚流動層中に炭素数μ以上の脂肪
族炭化水素を供給して気相酸化反応によシ無水マレイン
酸を生成させ、該触媒の少量を随伴しつつ該濃厚流動層
から流出して該濃厚流動層の上方に該触媒の希薄流動層
を形成しつつ上昇する反応生成ガスを頂部のサイクロン
を経て流動床反応器から抜き出し、次いで抜き出された
反上記炭化水素の供給を上記濃厚流動層の下部領域であ
って上記ガス分散から上方に離れた位上記サイクロンで
回収された上記触媒の実質的部分を上記濃厚流動層の下
部領域に戻すこと、並びに、 上記反応生成ガスの上記サイクロン入口での温度が33
0−(730℃の範囲となるように、上記希薄流動層内
に設置された間接熱交換装置によって該ガスを冷却する
こと、 を特徴とする無水マレイン酸の製造法、に存する。
That is, the gist of the present invention is to provide a fluidized bed reactor containing an oxidation catalyst containing a vanadium-phosphorus composite oxide as an active ingredient.
Oxygen-containing gas is supplied from below the gas dispersion plate at the bottom to fluidize the catalyst to form a dense fluidized bed of the catalyst above the gas dispersion plate. Maleic anhydride is produced by a gas phase oxidation reaction by supplying a group hydrocarbon, which flows out of the rich fluidized bed while entraining a small amount of the catalyst and forms a dilute fluidized bed of the catalyst above the rich fluidized bed. The reaction product gases rising while forming are withdrawn from the fluidized bed reactor via a cyclone at the top, and then a feed of the withdrawn hydrocarbons is directed upwardly from the gas dispersion in the lower region of the dense fluidized bed. returning a substantial portion of the catalyst recovered in the cyclone at a distance to the lower region of the dense fluidized bed;
A method for producing maleic anhydride, comprising: cooling the gas to a temperature in the range of 0-(730°C) using an indirect heat exchanger installed in the dilute fluidized bed.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明方法では流動状態の酸化触媒を収容した流動床反
応器中で原料炭化水素と酸素含有ガスとを接触させて気
相酸化反応によp無水マレイン酸を生成させる。
In the method of the present invention, p-maleic anhydride is produced by a gas phase oxidation reaction by bringing a raw material hydrocarbon into contact with an oxygen-containing gas in a fluidized bed reactor containing an oxidation catalyst in a fluidized state.

触媒としてはバナジウム−リン系〆複合酸化物を活性成
分とする酸化触媒を使用する。該触媒は前記のような公
知の種々の方法で製造することができる。
As the catalyst, an oxidation catalyst containing a vanadium-phosphorus composite oxide as an active ingredient is used. The catalyst can be produced by various known methods as described above.

原料炭化水素としては炭素数弘以上の脂肪族炭化水素が
使用される。好適な原料炭化水素はブタン(n−ブタン
)、ブテン類(/−ブテン、コープテン)、ブタジェン
(l、3−ブタジェン)等の炭素数グの脂肪族炭化水素
であシ、より好適にはブタンである。
As the raw material hydrocarbon, aliphatic hydrocarbons having at least several carbon atoms are used. Suitable raw material hydrocarbons are aliphatic hydrocarbons having several grams of carbon, such as butane (n-butane), butenes (/-butene, copeten), butadiene (l,3-butadiene), and more preferably butane. It is.

酸素含有ガスとしては通常、空気が使用されるが、不活
性ガスで希釈された空気、酸素を加えて富化された空気
等を使用することもできる。
Air is usually used as the oxygen-containing gas, but air diluted with an inert gas, air enriched by adding oxygen, etc. can also be used.

本発明方法に使用される流動床反応器は、底部に触媒流
動層の下端を画するガス分散板を、また頂部に反応生成
ガスから飛散触媒を回収して触媒流動層に戻すためのサ
イクロンを備えた通常のものでよいが、濃厚流動層の下
部領域であってガス分散板から上方に離れた位置に原料
炭化水素の供給口を備え、濃厚流動層の下部領域、例え
ばガス分散板と上記炭化水素供給口との間またはその近
辺の位置、にサイクロンで回流動層が形成されるべき位
置に反応生成ガスの除熱のための間接熱交換装置、例え
ば除熱コイル、全備えている必要がある。
The fluidized bed reactor used in the method of the present invention has a gas distribution plate at the bottom defining the lower end of the catalyst fluidized bed, and a cyclone at the top for recovering the scattered catalyst from the reaction product gas and returning it to the catalyst fluidized bed. The feedstock hydrocarbon feed port may be provided in the lower region of the dense fluidized bed at a position upwardly away from the gas distribution plate, and the feedstock hydrocarbon feed port is provided in the lower region of the dense fluidized bed, for example, at a position apart from the gas distribution plate and the above. An indirect heat exchange device for heat removal from the reaction product gas, such as a heat removal coil, must be provided at a location between or near the hydrocarbon supply port where a circulating bed is to be formed in the cyclone. There is.

第1図は本発明方法に使用される流動床反応器の内部構
成の一例を示す模式図である。流動分散板コの下方の供
給ログから反応器中に吹き込まれる。ガス分散板上の酸
化触媒は酸素含有ガスによって流動化させられ、ガス分
散板の上方に濃厚流動層5を形成する。6は反応温度を
制御するために濃厚流動層中に設置された除熱コイルで
ある。原料炭化水素は供給管7を経てgから濃厚流動層
内に吹き込まれる。供給口gは原料炭化水素と酸素含有
ガスとの混合を促進するために下向きに開口しているが
、十分な混合が保証されるならば他の方向に開口してい
てもよい。濃厚流動層内においては原料炭化水素の気相
酸化反応により無水マレイン酸が生成する0 目的生成物の無水マレイン酸のほかに未反応の酸素及び
原料炭化水素、並びに副生ずる二酸化炭素、水及び−酸
化炭素等を様々な濃度で含有する反応生成ガスは触媒の
比較的少量を随伴しつつ濃厚流動層の上面9から流出し
てその上方に触媒の希薄流動層ioを形成する。前記の
ように希薄流動層の容積は通常、濃厚流動層のそれの数
倍にも及ぶものである。/lは希薄流動層中に設置され
た除熱コイルであシ、後述のように制御された程度にお
いて反応生成ガスを除熱するものである。反応生成ガス
は次いで反応器頂部に設置されたサイクロン/2、/3
に生成ガスから目的生成物である無水マレイン酸が回収
される。この無水マレイン酸回収の方法は周知であシ、
多様な方法が知られているが、主として水性媒体又は有
機媒体による吸収、吸収液の濃縮、及び蒸留精製から成
っている。
FIG. 1 is a schematic diagram showing an example of the internal configuration of a fluidized bed reactor used in the method of the present invention. It is blown into the reactor from the feed log below the fluidized distribution plate. The oxidation catalyst on the gas distribution plate is fluidized by the oxygen-containing gas, forming a dense fluidized bed 5 above the gas distribution plate. 6 is a heat removal coil installed in the dense fluidized bed to control the reaction temperature. The raw material hydrocarbon is blown into the dense fluidized bed from g via the supply pipe 7. The feed port g opens downward to promote mixing of the raw material hydrocarbon and the oxygen-containing gas, but may open in other directions as long as sufficient mixing is ensured. In the dense fluidized bed, maleic anhydride is produced by the gas phase oxidation reaction of the raw material hydrocarbon.In addition to the target product maleic anhydride, unreacted oxygen and the raw material hydrocarbon, as well as by-products carbon dioxide, water and - The reaction product gas containing various concentrations of carbon oxide and the like flows out from the upper surface 9 of the dense fluidized bed, accompanied by a relatively small amount of the catalyst, forming a lean fluidized bed io of the catalyst thereabove. As mentioned above, the volume of the lean fluidized bed is usually several times that of the dense fluidized bed. /l is a heat removal coil installed in the dilute fluidized bed, which removes heat from the reaction product gas to a controlled extent as described below. The reaction product gas is then passed through cyclones /2 and /3 installed at the top of the reactor.
The desired product, maleic anhydride, is recovered from the produced gas. This method of recovering maleic anhydride is well known;
A variety of methods are known, but mainly consist of absorption with aqueous or organic media, concentration of the absorption liquid, and purification by distillation.

第1図の流動床反応器lにおいてサイクロンは第1段サ
イクロン/コ及び第一段サイクロン13の一段式となっ
ているが、必要により3段式又はより多段の構成とする
こともできる。第1段サイクロン/コのデイツプレッグ
15の下端16はガス分散板コと原料炭化水素供給口g
との間の領域に開口していて、サイクロンで回収される
触媒の実質的部分が該領域に戻されるように構成されて
いる。なお、後述のようにデイツプレッグの下端16を
供給口gよりもやや上方の位置に設けることも可能であ
る。第2段サイクロン13のデイツプレッグ17の下端
tgは濃厚流動層内のより高い位置に開口していて、上
記触媒の残シの部分を濃厚流動層に戻すようにされてい
る。
In the fluidized bed reactor 1 in FIG. 1, the cyclone is a single-stage type with a first-stage cyclone/co and a first-stage cyclone 13, but a three-stage or more multi-stage configuration can be used if necessary. The lower end 16 of the date preg 15 of the first stage cyclone/co is connected to the gas distribution plate g and the feedstock hydrocarbon supply port g.
and is configured such that a substantial portion of the catalyst recovered in the cyclone is returned to the region. Note that it is also possible to provide the lower end 16 of the date preg at a position slightly above the supply port g, as will be described later. The lower end tg of the date preg 17 of the second stage cyclone 13 opens at a higher position within the dense fluidized bed, so that the residual portion of the catalyst is returned to the dense fluidized bed.

上記のような構成の流動床反応器中で原料炭化水素の気
相酸化反応を行なう場合、反応器内は反応と物質の(一
部循環を含む)流れとを含む極めて複雑な系となシ、反
応器内の各帯域が相互に影響を及ぼし合うことになるの
で、各帯域の条件設定に当ってはこの相互依存関係を考
慮に入れる必要がある。
When performing a gas phase oxidation reaction of feedstock hydrocarbons in a fluidized bed reactor with the above configuration, the inside of the reactor is an extremely complex system that includes reactions and material flows (including some circulation). Since each zone in the reactor influences each other, it is necessary to take this interdependence into account when setting the conditions for each zone.

例えば濃厚流動層を流出して希薄流動層中を上昇する反
応生成ガス中には残留する未反応原料炭化水素、例えば
ブタン及び反応生成物である無水マレイン酸、さらには
反応で副生ずる一酸化炭素が可燃性物質として含まれて
いる。また空気等の酸素含有ガスとして反応器に供給し
た酸素の中の少なくとも一部は未反応で反応生成ガス中
に残留する。従って反応生成ガスの組成は場合によって
は爆発範囲に入ることになるので、工業プロセスでは可
燃性物質の濃度及び組成、酸素濃度等を監視してこれが
爆発範囲に入らないように、反応器に供給する原料炭化
水素の濃厚流動層中での濃度を決定し、かつ温度、圧力
に対して爆発範囲が少なからぬ依存性を有するので、こ
れを考慮に入れて濃厚流動層の反応条件を決定する必要
がある。
For example, the reaction product gas that flows out of the dense fluidized bed and rises in the diluted fluidized bed contains residual unreacted raw material hydrocarbons, such as butane and maleic anhydride, which is a reaction product, as well as carbon monoxide, which is a by-product of the reaction. Contains combustible materials. Further, at least a portion of the oxygen supplied to the reactor as an oxygen-containing gas such as air remains unreacted in the reaction product gas. Therefore, the composition of the reaction product gas may fall within the explosive range in some cases, so in industrial processes, the concentration and composition of flammable substances, oxygen concentration, etc. are monitored and the gas is supplied to the reactor to ensure that it does not fall within the explosive range. It is necessary to determine the concentration of the raw material hydrocarbon in the dense fluidized bed, and to determine the reaction conditions of the dense fluidized bed, taking this into consideration as the explosion range has considerable dependence on temperature and pressure. There is.

しかし、反応温度に関して言えば、これは触媒の性能や
特性及び接触時間等に依存するところが大きい。従って
濃厚流動層の反応温度は主としてこの観点から決められ
る。特にバナジウム−リン系複合酸化物を活性成分とす
る触媒ではあまりに反応温度が低いと触媒の再酸化速度
が低いために強く還元され、反応性の変化や失活の懸念
が生じる。このため濃厚流動層での反応は通常310〜
zoo℃、好ましくは(Io。
However, as for the reaction temperature, it largely depends on the performance and characteristics of the catalyst, the contact time, etc. Therefore, the reaction temperature of the dense fluidized bed is determined primarily from this point of view. In particular, in the case of a catalyst containing a vanadium-phosphorus complex oxide as an active component, if the reaction temperature is too low, the reoxidation rate of the catalyst will be low and the catalyst will be strongly reduced, giving rise to concerns about changes in reactivity and deactivation. For this reason, the reaction in a dense fluidized bed is usually 310~
zoooC, preferably (Io.

〜tito℃程度の温度範囲で実施される。It is carried out in a temperature range of about 10 to 10°C.

しかしながら濃厚流動層での反応温度が上記のような温
度範囲、特にそのうちでも高めの温度領域にある場合に
は、濃厚流動層を流出する反応生成ガスの温度が高いの
で、希薄流動層中で反応生成ガスの無触媒酸化が有意の
速度で進行することとなる。
However, if the reaction temperature in the dense fluidized bed is in the above temperature range, especially in the higher temperature range, the reaction product gas flowing out of the dense fluidized bed will have a high temperature, so the reaction will not occur in the lean fluidized bed. Non-catalytic oxidation of the product gas will proceed at a significant rate.

本発明方法においては上記の無触媒酸化を抑制するため
に、希薄流動層内に設置された間接熱交換装置によって
反応生成ガスを冷却する。
In the method of the present invention, in order to suppress the above-mentioned non-catalytic oxidation, the reaction product gas is cooled by an indirect heat exchanger installed in the dilute fluidized bed.

この場合、希薄流動層中での無触媒酸化(自動酸化とも
いう)を可及的に抑制する一方でサイクロンを経由して
濃厚流動層に還流される触媒粒子の温度を濃厚流動層で
の触媒反応に影響を与えない範囲に保持するためには上
記冷却の温度範囲の設定に注意を要する。即ち無触媒酸
化の速度を充分低下させるために例えばio。
In this case, while suppressing non-catalytic oxidation (also called auto-oxidation) in the lean fluidized bed as much as possible, the temperature of the catalyst particles refluxed to the rich fluidized bed via the cyclone should be controlled to reduce the temperature of the catalyst particles in the rich fluidized bed. In order to maintain the temperature within a range that does not affect the reaction, care must be taken in setting the temperature range for cooling. io to sufficiently reduce the rate of non-catalytic oxidation.

℃以下にまで温度を下げることはできない。それはサイ
クロンで捕集されて濃厚流動層に循環される触媒粒子の
温度が低すぎる結果として濃厚流動層において正常な触
媒反応を進めるための温度が保持できず、系を不安定化
させることになるからである。特に触媒粒子の温度が低
いと過剰還元、炭素質付着物の沈着等にょシ活性の低下
、流動性の悪化等を誘発する恐れがあるのである。
The temperature cannot be lowered below ℃. This is because the temperature of the catalyst particles collected by the cyclone and circulated to the dense fluidized bed is too low, making it impossible to maintain the temperature necessary for normal catalytic reaction in the dense fluidized bed, which destabilizes the system. It is from. In particular, if the temperature of the catalyst particles is low, there is a risk of causing excessive reduction, deposition of carbonaceous deposits, etc., a decrease in activity, and deterioration of fluidity.

従って本発明においては反応生成ガスのサイクロン入口
での温度が330−’IrO℃の範囲となるように上記
の希薄流動層内での冷却を行なう。該温度範囲は好まし
くは330−’700℃であシ、よシ好ましくは3 !
 0− IIo 0 ’Cである。
Therefore, in the present invention, cooling in the dilute fluidized bed is performed so that the temperature of the reaction product gas at the cyclone inlet is in the range of 330-'IrO°C. The temperature range is preferably 330-'700°C, more preferably 3!
0-IIo 0'C.

本発明に従う流動床反応においては、供給する空気その
他の酸素含有ガスに対する原料炭化水素の濃度(モル濃
度)を、反応器出口ガスの組成がそこでの温度と圧力の
条件において爆発範囲となることを回避するように設定
すべきである。原料炭化水素がブタンの場合、触媒の性
能にもよるが、該濃度は通常、コ、a%以下または3.
5チ以上である。上記濃度が3.34以上の場合でも過
度に濃度が高いと酸素不足となって一回通過での有効変
換率が低下して有利でない。
In the fluidized bed reaction according to the present invention, the concentration (molar concentration) of the feedstock hydrocarbon relative to the supplied air or other oxygen-containing gas is determined so that the composition of the reactor outlet gas is in the explosive range under the temperature and pressure conditions. It should be set to avoid this. When the feedstock hydrocarbon is butane, the concentration is usually less than 1% or 3%, depending on the performance of the catalyst.
It is 5 inches or more. Even if the above concentration is 3.34 or more, if the concentration is too high, oxygen will be insufficient and the effective conversion rate in one pass will decrease, which is not advantageous.

通常、炭化水素濃度の上限はコ0チ、好適にはgチ以下
であシ、よシ好適には経済性も考慮して3.g〜6チ程
度の濃度範囲が選択される。なお、原料炭化水素がブテ
ン類、ブタジェンその他の炭素数ぐの脂肪族炭化水素の
場合もこれらの選択すべき濃3度範囲はほぼ同様である
Usually, the upper limit of the hydrocarbon concentration is less than 0, preferably less than 3, preferably less than 3, considering economic efficiency. A concentration range of approximately 6 g to 6 g is selected. In addition, when the raw material hydrocarbon is butenes, butadiene, or other aliphatic hydrocarbons having several carbon atoms, the concentration range to be selected is approximately the same.

また本発明方法においては上記原料炭化水素の供給を濃
厚流動層の下部領域であってガス分散板から上方に離れ
次位置で行なう。この場合、濃厚流動層の下部には原料
炭化水素が供給されず実質的に空気等の酸素含有ガスの
みで触媒が処理される領域が生じる。この領域において
は炭化水素の酸化反応に使用されて還元側に移行した触
媒の酸化が行なわれる。そこでこの領域を再酸化帯と呼
ぶことにする。再酸化帯の高さ、即ちガス分散板と炭化
水素供給位置との間の距離は触媒の性質、特に再酸化速
度、酸素濃度等を考慮して適当なものとすべきであるが
、通常0.3〜377B、好ましくは0.1〜/、j 
m程度である。
Further, in the method of the present invention, the feedstock hydrocarbon is supplied in the lower region of the dense fluidized bed at a position spaced upward from the gas distribution plate. In this case, there is a region in the lower part of the dense fluidized bed where no raw material hydrocarbon is supplied and the catalyst is treated substantially only with oxygen-containing gas such as air. In this region, the catalyst used in the oxidation reaction of hydrocarbons and transferred to the reduction side is oxidized. Therefore, this region will be called the reoxidation zone. The height of the reoxidation zone, that is, the distance between the gas distribution plate and the hydrocarbon supply position, should be set appropriately considering the properties of the catalyst, especially the reoxidation rate, oxygen concentration, etc., but is usually 0. .3-377B, preferably 0.1-/, j
It is about m.

本発明方法においては、上記のように濃厚流動層の下部
領域に再酸化帯を設けると共にサイクロンで回収された
触媒の実質的部分をこの再酸化帯に戻すことによって還
元された触媒の再酸化を促進する。なお、回収触媒の実
質的部分を再酸化帯に戻すための最も確実な方法はサイ
クロンのデイツプレッグの下端を再酸化帯の中に開口さ
せることであるが、デイツプレッグの下端が再酸化帯の
やや上方に開口している場合でも回収触媒の大部分は再
酸化帯内に落ち込むので同様の結果を得ることができる
In the method of the present invention, as described above, the reduced catalyst is reoxidized by providing a reoxidation zone in the lower region of the dense fluidized bed and returning a substantial portion of the catalyst recovered by the cyclone to this reoxidation zone. Facilitate. The most reliable way to return a substantial portion of the recovered catalyst to the reoxidation zone is to open the lower end of the date preg in the cyclone into the reoxidation zone, but the lower end of the date preg should be slightly above the reoxidation zone. Similar results can be obtained even if the opening is open, since most of the recovered catalyst falls into the reoxidation zone.

上記のようにサイクロン回収触媒を濃厚流動層の下部領
域に戻すことは流動床による気相酸化においてかなり一
般的な方法であるが、問題は無水マレイン酸の生成に有
効なバナジウム−リン系複合酸化物触媒の再酸化速度が
一般にやや低いということであシ、充分な再酸化をすす
めるにはある程度以上の温度である必要がある。
As mentioned above, returning the cyclone recovered catalyst to the lower region of the dense fluidized bed is a fairly common method in gas phase oxidation using a fluidized bed, but the problem is The reoxidation rate of the catalyst is generally rather low, and the temperature needs to be above a certain level to promote sufficient reoxidation.

濃厚流動層内の触媒の対流循環があるので、サイクロン
で捕集された還元側に移行した触媒の再酸化帯への循環
をする場合には濃厚流動層の反応温度よシ低温側であっ
てもある程度対応できるが、それにも限度があシ、循環
触媒の温度が余シに低温側であると前記のような不都合
が生ずる。本発明方法においては前記のように希薄流動
層中において制御された程度の冷却を行なうので、循環
触媒の温度を適当な範囲内に維持することができる。
Since there is convective circulation of the catalyst in the dense fluidized bed, when the catalyst that has been collected in the cyclone and transferred to the reduction side is circulated to the reoxidation zone, it must be at a temperature lower than the reaction temperature of the dense fluidized bed. Although this can be done to some extent, there is a limit to this, and if the temperature of the circulating catalyst is on the low side, the above-mentioned disadvantages will occur. In the method of the present invention, the temperature of the circulating catalyst can be maintained within an appropriate range since a controlled degree of cooling is performed in the dilute fluidized bed as described above.

〔作 用〕[For production]

本発明方法においては、濃厚流動層の下部領域に再酸化
帯を形成させ、そこにサイクロンからの回収触媒の実質
的部分を戻すことによって、特に還元度の高い回収触媒
の再酸化を促進している。また希薄流動層中で制御され
た程度の除熱を行なうことによって、反応生成ガスの無
触媒酸化を有効に抑制すると共にサイクロンから濃厚流
動層に戻される回収触媒が低温であることによって生じ
る不都合を回避している。
In the method of the present invention, the reoxidation of particularly highly reduced recovered catalyst is promoted by forming a reoxidation zone in the lower region of the dense fluidized bed and returning thereto a substantial portion of the recovered catalyst from the cyclone. There is. In addition, by performing a controlled degree of heat removal in the lean fluidized bed, it is possible to effectively suppress non-catalytic oxidation of the reaction product gas and to avoid the disadvantages caused by the low temperature of the recovered catalyst returned from the cyclone to the rich fluidized bed. It's evasive.

以下に参考例によって希薄流動層での冷却が反応生成ガ
ス及び触媒に及ぼす影響について示す。
The effects of cooling in a diluted fluidized bed on the reaction product gas and catalyst will be shown below using reference examples.

特開昭3?−9!933の実施例−の方法でインチの垂
直管型反応器を用い、tIoo−tith。
Tokukai Show 3? - Example 9!933 - using an inch vertical tube reactor, tIoo-tith.

℃で炭化水素を気相酸化し、触媒フィルターで出口ガス
中の触媒を分離して、系外に抜出し、随時容積/lの予
熱した爆発容器に導入した改名器を出たガスの温度はコ
SO〜3sθ℃であった)。この爆発容器では/ ! 
KV交流スパーク(0,07秒)で点火し、各器内の圧
力上昇によシ爆発の有無を判定した。出口ガスの組成及
び条件は反応、温度、原料及び入口酸素の濃度(空気及
び窒素全混合して調整)、接触時間、圧力等の変更によ
り変更した。
Hydrocarbons are oxidized in the gas phase at ℃, the catalyst in the outlet gas is separated using a catalyst filter, the gas is extracted from the system, and the temperature of the gas exiting the renamer, which is introduced into a preheated explosion container with a volume of 1. SO~3sθ°C). In this explosive container/!
Ignition was made with a KV alternating current spark (0.07 seconds), and the presence or absence of an explosion was determined based on the pressure rise inside each vessel. The composition and conditions of the outlet gas were changed by changing the reaction, temperature, concentration of raw materials and inlet oxygen (adjusted by completely mixing air and nitrogen), contact time, pressure, etc.

上記構成の装置によシブタン(99チ純度)の気相酸化
を実施し反応生成ガスの爆発に関する限界酸素濃度(=
爆発の起る酸素濃度の下限値)を測定した。反応時のブ
タン濃度は約グチ、ブタン変換率はgO〜qtr%、無
水マレイン酸収率は&g−j4%であった。爆発容器の
温度J !; 0−4 j 0℃の範囲で限界酸素濃度
の値は次の表−lに示す通シであった。
Gas-phase oxidation of shibutane (99% purity) was carried out using the apparatus with the above configuration, and the critical oxygen concentration (=
The lower limit of oxygen concentration at which an explosion occurs) was measured. The butane concentration during the reaction was about 100 ml, the butane conversion rate was gO to qtr%, and the maleic anhydride yield was &g-j4%. Explosive container temperature J! ; 0-4j The critical oxygen concentration values in the range of 0°C were as shown in Table 1 below.

表−7 相の可燃性物質の酸化によるものであシ、本装置での強
制着火による爆発テストとの直接の相関はないが、該テ
ストによシ無触媒下での酸化での反応温度tioo−q
t、o℃に対し、反応生成ガスの温度をeoo℃以下の
温度に下げることが、気相部での無触媒酸化や、それに
よって誘発される爆発に関し有利となることが明らかで
ある。
Table 7 This is due to the oxidation of combustible substances in the phase. Although there is no direct correlation with the explosion test using forced ignition using this device, this test shows that the reaction temperature for oxidation without a catalyst is −q
It is clear that lowering the temperature of the reaction product gas to a temperature below eoo°C with respect to t and o°C is advantageous with respect to non-catalytic oxidation in the gas phase and the explosion induced thereby.

参考例−一(触媒への影響) 濃厚流動層からの触媒溢流を内径1インチの外部配管を
用いて反応器底部に戻す構造の直径/、jインチの触媒
強制循環型小型流動床反応器を用いて、濃厚流動層底部
に戻す温度を種々に変更しつつブタンの気相酸化反応を
行なった。
Reference Example-1 (Influence on Catalyst) A small-sized fluidized bed reactor with forced circulation of catalyst with a diameter of /,j inch with a structure in which catalyst overflow from a dense fluidized bed is returned to the bottom of the reactor using an external piping with an inner diameter of 1 inch. A gas-phase oxidation reaction of butane was carried out using a gas-phase oxidation system, while varying the temperature at which it was returned to the bottom of the dense fluidized bed.

循環用配管内には34/f1rの流量の窒素を流した。Nitrogen was flowed into the circulation pipe at a flow rate of 34/f1r.

参考例−/と同じ触媒へs kyを充填し、反応温度す
20℃、常圧、LvlO副/Sでダチプタン/空気混合
ガスを用いた。再酸化帯は3!ranとし、ブタンはこ
の位置から下向きに供給して濃厚流動層内にて空気と混
合し゛た。
The same catalyst as in Reference Example-/ was filled with sky, and a daciptan/air mixed gas was used at a reaction temperature of 20° C., normal pressure, and LvlO/S. The reoxidation zone is 3! ran, and butane was supplied downward from this position and mixed with air in the dense fluidized bed.

再酸化帯の温度を4!コO℃、360 ℃、300℃と
変えた時の反応成績は初期は大差なかったが、コSO時
間経過後では、次の表−一のように温度の低下と共に活
性低下の傾向を示した。
The temperature of the reoxidation zone is 4! There was not much difference in the reaction results when changing the temperature to 0°C, 360°C, and 300°C at the initial stage, but after the time had elapsed, the activity showed a tendency to decrease as the temperature decreased, as shown in Table 1 below. .

〔発明の効果〕〔Effect of the invention〕

本発明方法に従って流動床反応を行なうことにより、希
薄流動層での無触媒酸化を有効に抑つフ 制し!濃厚流動層内の好適な反応条件を維持することが
できるので安全かつ経済的に無水マレイン酸を製造する
ことができる。
By carrying out the fluidized bed reaction according to the method of the present invention, it is possible to effectively suppress non-catalytic oxidation in a diluted fluidized bed! Since suitable reaction conditions within the dense fluidized bed can be maintained, maleic anhydride can be produced safely and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に使用される流動床反応器の内部構
成の一例を示す模式図である。 / 流動床反応器 λ ガス分散板 3 酸素含有ガス供給管 !、濃厚流動層 6 濃厚流動層除熱コイル 7 原料炭化水素供給管 IO希薄流動層 //  希薄流動層除熱コイル /コ、13:サイクロン /q:反応生成ガス抜出し管 is、/7 :ディップレッグ 第1図
FIG. 1 is a schematic diagram showing an example of the internal configuration of a fluidized bed reactor used in the method of the present invention. / Fluidized bed reactor λ Gas distribution plate 3 Oxygen-containing gas supply pipe! , Dense fluidized bed 6 Dense fluidized bed heat removal coil 7 Raw material hydrocarbon supply pipe IO Lean fluidized bed// Lean fluidized bed heat removal coil/Co, 13: Cyclone/q: Reaction product gas extraction pipe is, /7: Dip leg Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)バナジウム−リン系複合酸化物を活性成分とする
酸化触媒を収容した流動床反応器に、底部のガス分散板
の下方から酸素含有ガスを供給し、該触媒を流動化させ
てガス分散板の上方に該触媒の濃厚流動層を形成させ、
該濃厚流動層中に炭素数4以上の脂肪族炭化水素を供給
して気相酸化反応により無水マレイン酸を生成させ、該
触媒の少量を随伴しつつ該濃厚流動層から流出して該濃
厚流動層の上方に該触媒の希薄流動層を形成しつつ上昇
する反応生成ガスを頂部のサイクロンを経て流動床反応
器から抜き出し、次いで抜き出された反応生成ガスから
無水マレイン酸を回収することを含む方法において、 上記炭化水素の供給を上記濃厚流動層の下部領域であっ
て上記ガス分散板から上方に離れた位置で行なうこと、 上記サイクロンで回収された上記触媒の実質的部分を上
記濃厚流動層の下部領域に戻すこと、並びに、 上記反応生成ガスの上記サイクロン入口での温度が33
0〜450℃の範囲となるように、上記希薄流動層内に
設置された間接熱交換装置によって該ガスを冷却するこ
と、 を特徴とする無水マレイン酸の製造法。
(1) Oxygen-containing gas is supplied from below the gas distribution plate at the bottom to a fluidized bed reactor containing an oxidation catalyst containing a vanadium-phosphorus composite oxide as an active ingredient, and the catalyst is fluidized to disperse the gas. forming a dense fluidized bed of the catalyst above the plate;
An aliphatic hydrocarbon having a carbon number of 4 or more is fed into the dense fluidized bed, maleic anhydride is produced by a gas phase oxidation reaction, and it flows out of the dense fluidized bed while accompanying a small amount of the catalyst to form the dense fluidized bed. extracting the rising reaction product gas from the fluidized bed reactor through a cyclone at the top while forming a dilute fluidized bed of the catalyst above the bed, and then recovering maleic anhydride from the withdrawn reaction product gas. The method includes: supplying the hydrocarbons in a lower region of the dense fluidized bed at a location upwardly spaced from the gas distribution plate; and supplying a substantial portion of the catalyst recovered by the cyclone to the dense fluidized bed. and the temperature of the reaction product gas at the cyclone inlet is 33°C.
A method for producing maleic anhydride, comprising: cooling the gas using an indirect heat exchanger installed in the dilute fluidized bed so that the temperature ranges from 0 to 450°C.
JP63170227A 1988-07-08 1988-07-08 Method for producing maleic anhydride Expired - Fee Related JPH089606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170227A JPH089606B2 (en) 1988-07-08 1988-07-08 Method for producing maleic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170227A JPH089606B2 (en) 1988-07-08 1988-07-08 Method for producing maleic anhydride

Publications (2)

Publication Number Publication Date
JPH0219370A true JPH0219370A (en) 1990-01-23
JPH089606B2 JPH089606B2 (en) 1996-01-31

Family

ID=15901024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170227A Expired - Fee Related JPH089606B2 (en) 1988-07-08 1988-07-08 Method for producing maleic anhydride

Country Status (1)

Country Link
JP (1) JPH089606B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369436A (en) * 1992-01-31 1994-11-29 Sanyo Electric Co., Ltd. Automatic focusing apparatus for automatically matching focus in response to video signal based on extracted high frequency component of non-linear processed luminance signal
US5436656A (en) * 1992-09-14 1995-07-25 Fuji Photo Film Co., Ltd. Digital electronic still-video camera and method of controlling same
WO1995021692A1 (en) * 1994-02-08 1995-08-17 Mitsubishi Chemical Corporation Fluidized bed reactor and temperature control method for fluidized bed reactor
US5539459A (en) * 1995-05-18 1996-07-23 Polaroid Corporation Optimal tone scale mapping in electronic cameras
EP1034838A2 (en) * 1999-03-08 2000-09-13 Mitsubishi Chemical Corporation Fluidized bed reactor
US7442345B2 (en) * 2003-05-09 2008-10-28 Ineos Usa Llc Reactor apparatus
JP2010247053A (en) * 2009-04-14 2010-11-04 Asahi Kasei Chemicals Corp Gas phase reaction method and gas phase reactor
WO2013080615A1 (en) * 2011-12-01 2013-06-06 住友化学株式会社 Reaction device
US9809511B2 (en) 2012-10-17 2017-11-07 Asahi Kasei Chemicals Corporation Method for producing conjugated diolefin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235355A1 (en) * 2002-08-02 2004-02-19 Basf Ag Production of maleic anhydride, useful for the production of gamma-butyrolactone, by heterogeneous catalytic gas phase oxidation of hydrocarbons with oxygen-containing gas in a reaction zone cooled by a heat exchange medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639103A (en) * 1970-04-21 1972-02-01 Badger Co Fluid bed reactors
GB1278464A (en) * 1968-10-15 1972-06-21 Mitsubishi Chem Ind Process and apparatus for the preparation of maleic anhydride
US4435580A (en) * 1982-05-03 1984-03-06 The Badger Company, Inc. Process for the production of phthalic anhydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278464A (en) * 1968-10-15 1972-06-21 Mitsubishi Chem Ind Process and apparatus for the preparation of maleic anhydride
US3639103A (en) * 1970-04-21 1972-02-01 Badger Co Fluid bed reactors
US4435580A (en) * 1982-05-03 1984-03-06 The Badger Company, Inc. Process for the production of phthalic anhydride

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369436A (en) * 1992-01-31 1994-11-29 Sanyo Electric Co., Ltd. Automatic focusing apparatus for automatically matching focus in response to video signal based on extracted high frequency component of non-linear processed luminance signal
US5436656A (en) * 1992-09-14 1995-07-25 Fuji Photo Film Co., Ltd. Digital electronic still-video camera and method of controlling same
WO1995021692A1 (en) * 1994-02-08 1995-08-17 Mitsubishi Chemical Corporation Fluidized bed reactor and temperature control method for fluidized bed reactor
US5539459A (en) * 1995-05-18 1996-07-23 Polaroid Corporation Optimal tone scale mapping in electronic cameras
EP1034838A2 (en) * 1999-03-08 2000-09-13 Mitsubishi Chemical Corporation Fluidized bed reactor
EP1034838A3 (en) * 1999-03-08 2001-03-21 Mitsubishi Chemical Corporation Fluidized bed reactor
US7442345B2 (en) * 2003-05-09 2008-10-28 Ineos Usa Llc Reactor apparatus
JP2010247053A (en) * 2009-04-14 2010-11-04 Asahi Kasei Chemicals Corp Gas phase reaction method and gas phase reactor
WO2013080615A1 (en) * 2011-12-01 2013-06-06 住友化学株式会社 Reaction device
US9809511B2 (en) 2012-10-17 2017-11-07 Asahi Kasei Chemicals Corporation Method for producing conjugated diolefin
US10053402B2 (en) 2012-10-17 2018-08-21 Asahi Kasei Chemicals Corporation Method for producing conjugated diolefin

Also Published As

Publication number Publication date
JPH089606B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4959334A (en) Fluidized-bed catalyst regeneration
US2902432A (en) Catalytic conversion of hydrocarbons
US4197189A (en) Catalyst regeneration process
EP3740464B1 (en) Odh complex with on-line mixer unit and feed line cleaning
EP0189261B1 (en) Improved vapor phase catalytic oxidation of butane to maleic anhydride
KR20140147875A (en) Low emissions oxidative dehydrogenation process for producing butadiene
CA2278012A1 (en) Process for the production of acetic acid
JPH0637451B2 (en) Method for producing nitriles and anhydrides
JPH0219370A (en) Production of maleic anhydride
RU2094423C1 (en) Method of oxidation of ethane to acetic acid
US3843330A (en) Regeneration apparatus
JPH02223545A (en) Preparation of nitriles and oxides
JP2022125030A (en) Off-gas incinerator control
JPS5847219B2 (en) If you have any questions, please do not hesitate to contact us.
US6310240B1 (en) Vapor phase oxidation of acrolein to acrylic acid
JPS63211246A (en) Production of methanol or blended alcohol
US4943650A (en) Process for the production of nitriles
US4536380A (en) Process for conducting reactions using a circulating magnetically stabilized bed to control reaction temperature profile
US4152292A (en) Method of initiating essentially complete oxidation of co to co2 in a spent-catalyst regeneration zone
US4340566A (en) Catalyst regeneration apparatus
CN105073689B (en) The manufacture method of butadiene
US7345167B2 (en) Method for the production of maleic anhydride
EP0788406A2 (en) VAPOR PHASE CATALYTIC OXIDATION OF n-BUTANE TO MALEIC ANHYDRIDE INCORPORATING IN SITU CATALYST CALCINATION/ACTIVATION
JP3161809B2 (en) Two-stage butane maleic anhydride process
US20020183573A1 (en) Dehydrogenation of an alkyl aromatic compound and catalyst regeneration in a fluidized bed reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees