JPH021935A - Manufacture of bipolar semiconductor device - Google Patents
Manufacture of bipolar semiconductor deviceInfo
- Publication number
- JPH021935A JPH021935A JP14415788A JP14415788A JPH021935A JP H021935 A JPH021935 A JP H021935A JP 14415788 A JP14415788 A JP 14415788A JP 14415788 A JP14415788 A JP 14415788A JP H021935 A JPH021935 A JP H021935A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon film
- polycrystalline silicon
- layer
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 74
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 32
- 238000000605 extraction Methods 0.000 claims abstract description 22
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 9
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 20
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 6
- 229910052785 arsenic Inorganic materials 0.000 abstract description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- -1 boron ions Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
[概要]
単結晶シリコン層と多結晶シリコン層とを同時に成長す
る技術を利用したベース引出し電極形バイポーラ半導体
装置の製造方法に関し、再拡散層を発生させずにベース
層を浅く形成し、しかも、ベース引出し電極の抵抗を低
下させることを目的とし、
−i電型半導体基板面のベース形成領域を開口した第1
の絶縁膜上に5PEG技術を利用してドープドシリコン
膜を成長し、異種導電型単結晶シリコン膜からなるベー
ス層を形成し、且つ、前記第1の絶縁膜上には第1の異
種導電型多結晶シリコン膜を形成する工程、次いで、形
成されたペース層上を選択的に第2の絶縁膜で被覆し、
その第2の絶縁膜を挟んで第1の異種導電型多結晶シリ
コン膜上に第2の異種導電型多結晶シリコン膜を積層す
る工程、
次いで、第2のドープド多結晶シリコン膜を開口し、開
口部を含む全面に第3の絶縁膜を形成し、その第2の絶
縁膜を窓開けしてエミッタ層形成領域を開口する工程、
次いで、エミッタ層形成領域の前記異種導電型単結晶シ
リコン層からなるベース層に一導電型エミフタ層を形成
する工程が含まれることを特徴とする。[Detailed Description of the Invention] [Summary] A method of manufacturing a base lead-out electrode type bipolar semiconductor device using a technique of simultaneously growing a single crystal silicon layer and a polycrystalline silicon layer, the base layer can be grown without generating a re-diffusion layer. The first electrode is formed with an opening in the base formation region on the surface of the -i type semiconductor substrate.
A doped silicon film is grown on the insulating film using 5PEG technology to form a base layer made of a single crystal silicon film of a different conductivity type, and a first different conductivity type monocrystalline silicon film is grown on the first insulating film. forming a type polycrystalline silicon film, then selectively covering the formed paste layer with a second insulating film;
a step of stacking a second different conductivity type polycrystalline silicon film on the first different conductivity type polycrystalline silicon film with the second insulating film sandwiched therebetween; then, opening the second doped polycrystalline silicon film; forming a third insulating film on the entire surface including the opening, and opening the second insulating film to open an emitter layer formation region;
Next, the method includes a step of forming an emitter layer of one conductivity type on the base layer made of the single crystal silicon layer of different conductivity types in the emitter layer formation region.
[産業上の利用分野]
本発明は半導体装置の製造方法に係り、特に、単結晶シ
リコン層と多結晶シリコン層とを同時に成長するS P
E G (Selective Po1y−and
Epitaxial−silicon Growth)
技術を用いたベース引出し電極形バイポーラ半導体装置
の製造方法に関する。[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device, in particular, a method for manufacturing a semiconductor device, in which a single crystal silicon layer and a polycrystalline silicon layer are grown simultaneously.
E G (Selective Poly-and
Epitaxial-silicon Growth)
The present invention relates to a method of manufacturing a base extraction electrode type bipolar semiconductor device using technology.
最近、IC,LSIなどの半導体装置は微細化して高速
化する方向に技術開発が進められており、バイポーラ半
導体装置においてもベース引出し電極形構造などが開発
されて、微細化、高密度化が図られている。しかし、そ
の製造方法は一層の性能向上のための検討が必要である
。Recently, technology development has been progressing in the direction of miniaturizing and increasing the speed of semiconductor devices such as ICs and LSIs.Bipolar semiconductor devices have also developed base lead-out electrode structures, and miniaturization and higher density are progressing. It is being However, the manufacturing method requires further study to improve performance.
[従来の技術]
第2図は通常のバイポーラ半導体装置の断面図を示して
おり、1はp型シリコン基板、2はn++埋没層、3は
n型コレクタ層、4はSigh (酸化シリコン)膜
からなるフィールド絶縁膜、5はp型ベース層、6はn
++エミッタ層、7はコレクタコンタクト電極、8はベ
ース電極、9はエミッタ電極である。[Prior Art] Figure 2 shows a cross-sectional view of a normal bipolar semiconductor device, in which 1 is a p-type silicon substrate, 2 is an n++ buried layer, 3 is an n-type collector layer, and 4 is a S (silicon oxide) film. 5 is a p-type base layer, 6 is an n-type field insulating film, and 5 is a p-type base layer.
++ emitter layer, 7 is a collector contact electrode, 8 is a base electrode, and 9 is an emitter electrode.
また、第3図は従来のベース引出し電極形バイポーラ半
導体装置の構造断面図を示しており、本例は数種類ある
ベース引出し電極形バイポーラ半導体装置のうち、単結
晶シリコン層と多結晶シリコン層とを同時に成長する5
PEG技術を用いたベース引出し電極形バイポーラ半導
体装置の構造断面図である。図中の11はp型シリコン
基板、12はn++埋没層、13はn型コレクタ層、1
4はp型ベース層、15はドープド多結晶シリコン膜か
らなるベース引出し電極、16はn++エミッタ層、1
7はコレクタコンタクト電極、18はベース電極、19
はエミッタ電極、20はその他の5i02膜である。Moreover, FIG. 3 shows a structural cross-sectional view of a conventional base extraction electrode type bipolar semiconductor device, and this example shows a structure of a single crystal silicon layer and a polycrystalline silicon layer among several types of base extraction electrode type bipolar semiconductor devices. Growing at the same time 5
1 is a structural cross-sectional view of a base extraction electrode type bipolar semiconductor device using PEG technology. In the figure, 11 is a p-type silicon substrate, 12 is an n++ buried layer, 13 is an n-type collector layer, 1
4 is a p-type base layer, 15 is a base extraction electrode made of a doped polycrystalline silicon film, 16 is an n++ emitter layer, 1
7 is a collector contact electrode, 18 is a base electrode, 19
is an emitter electrode, and 20 is another 5i02 film.
このような5PEG技術を利用した製造方法による構造
は第2図に示す通常の構造に比べて浅いベース層を形成
して高速化する点で非常に有効なものである。The structure produced by the manufacturing method using such 5PEG technology is very effective in forming a shallow base layer and increasing the speed compared to the normal structure shown in FIG.
第4図(al〜(elはその5PEG技術を用いたベー
ス引出し電極形バイポーラ半導体装置の従来の製造方法
の工程順断面図を示しており、その概要を順を追って説
明する。なお、本例はベース層を浅く形成すると共に、
ベース引出し電極を低抵抗化するための改善した製造方
法に関している。FIG. 4 (al to (el) shows a step-by-step cross-sectional view of a conventional manufacturing method of a base-extended electrode type bipolar semiconductor device using the 5PEG technology, and its outline will be explained step by step. forms a shallow base layer, and
This invention relates to an improved manufacturing method for reducing the resistance of base extraction electrodes.
第4図+al参照;p型シリコン基板ll上にn+型型
埋面層12介してn型コレクタ層13をエピタキシャル
成長し、そのn型コレクタ層13上に熱酸化して5i0
2膜21(膜厚300nm)を生成し、更に、その上に
硼素(B)を含有させたBドープド多結晶シリコン膜1
5′(膜厚300nm、硼素濃度10 /cIIl)
を積層し、その後、リソグラフィ技術を用いて5i02
膜21.Bドープド多結晶シリコン膜15°のベース層
形成領域を開口する。なお、12’はn十型コレクタコ
ンタクト領域で、この領域は5i02膜21の生成直前
の工程で形成される。Refer to FIG. 4+al; An n-type collector layer 13 is epitaxially grown on a p-type silicon substrate 11 via an n+ type buried layer 12, and thermally oxidized on the n-type collector layer 13 to form a 5i0
A B-doped polycrystalline silicon film 1 containing boron (B) is formed on the film 21 (thickness: 300 nm).
5' (film thickness 300 nm, boron concentration 10/cIIl)
Then, using lithography technology, 5i02
Membrane 21. An opening is made in the base layer formation region of the B-doped polycrystalline silicon film at 15°. Note that 12' is an n+ type collector contact region, and this region is formed in a step immediately before the formation of the 5i02 film 21.
第4図(b)参照;次いで、水素雰囲気中で930°C
915分の熱処理をおこなって、開口したベース層形成
領域表面の自然酸化膜を除去し、引続いて、その開口を
含むBドープド多結晶シリコン膜15′の上に硼素を含
有させたドープドシリコン膜(膜厚50〜100 nm
、不純物濃度101g/cI+りを成長する。See Figure 4(b); then at 930°C in a hydrogen atmosphere.
A heat treatment was performed for 915 minutes to remove the natural oxide film on the surface of the base layer formation region with the opening, and then a boron-containing doped silicon film was formed on the B-doped polycrystalline silicon film 15' including the opening. Film (film thickness 50-100 nm
, an impurity concentration of 101 g/cI+ is grown.
そうすると、Bドープド多結晶シリコン膜151の上に
はドープド多結晶シリコン膜15が成長し、開口部には
ドープド単結晶シリコン膜14が成長する。Then, a doped polycrystalline silicon film 15 grows on the B-doped polycrystalline silicon film 151, and a doped single-crystalline silicon film 14 grows in the opening.
第4図(C)参照;次いで、ドープドシリコン膜をリソ
グラフィ技術を用いてパターンニングし、p型ベース層
となるドープド単結晶シリコン膜14およびベース引出
し電極となるドープド多結晶シリコン膜15°+15部
分を残存させて、その他の部分のドープド多結晶シリコ
ン膜をエツチング除去し、更に、上面に化学気相成長(
CV D)法によって5i02膜22(膜厚300nm
)を被着する。そうすると、ベース引出し電極となるド
ープド多結晶シリコン膜15’+15は膜厚350〜4
00 nm程度と厚くなって、その抵抗を低下させるこ
とができる。Refer to FIG. 4(C); Next, the doped silicon film is patterned using lithography technology to form a doped single crystal silicon film 14 that will become a p-type base layer and a doped polycrystalline silicon film 15°+15 that will become a base extraction electrode. The doped polycrystalline silicon film in other parts is removed by etching, leaving a portion of the doped polycrystalline silicon film remaining, and then chemical vapor deposition (chemical vapor deposition) is performed on the top surface.
5i02 film 22 (thickness: 300 nm) by CVD) method.
). Then, the doped polycrystalline silicon film 15'+15 which becomes the base extraction electrode has a film thickness of 350 to 4
It is possible to increase the thickness to about 0.00 nm and reduce its resistance.
第4図(d)参照;次いで、5i02膜22のエミッタ
形成領域およびコレクタコンタクト形成領域を開口して
、CVD法によって多結晶シリコン膜を被着し、その多
結晶シリコン膜に砒素(As)イオンを注入してAsド
ープド多多結晶シリコ成膜23し、これをパターンニン
グして開口部のエミッタ形成領域およびコレクタコンタ
クト電極形成領域にのみへSドープド多結晶シリコン膜
23を残存させ、更に、温度850°Cで熱処理してn
+型エミフタ層16を画定する。なお、このエミッタ層
の形成にはh などの特性をチエツクしながら熱処理す
る方法が採られる。Refer to FIG. 4(d); Next, the emitter formation region and the collector contact formation region of the 5i02 film 22 are opened, a polycrystalline silicon film is deposited by the CVD method, and arsenic (As) ions are deposited on the polycrystalline silicon film. was implanted to form an As-doped polycrystalline silicon film 23, patterned to leave the S-doped polycrystalline silicon film 23 only in the emitter formation region of the opening and the collector contact electrode formation region, and further heated to a temperature of 850°C. Heat treated at °C
A + type emifter layer 16 is defined. Note that for forming this emitter layer, a method of heat treatment is adopted while checking characteristics such as h.
第4図tel参照:次いで、CVD法によってPSG(
燐珪酸ガラス膜)、5i02膜などの絶縁膜24を被着
し、これを開口してへSドープド多結晶シリコン膜23
の上にエミッタ電極19.コレクタコンタクト電極17
を形成し、且つ、ベース引出し電極15の上にベース電
極18を形成して完成する。Refer to Figure 4 (tel): Next, PSG (
An insulating film 24 such as a phosphosilicate glass film or a 5i02 film is deposited, and an S-doped polycrystalline silicon film 23 is formed by opening this.
Emitter electrode 19. Collector contact electrode 17
, and a base electrode 18 is formed on the base extraction electrode 15 to complete the process.
以上が5PEG技術を適用し、しかも、ベース抵抗を低
下させるためベース引出し電極を17<シたベース引出
し電極形バイポーラ半導体装置の形成方法の概要である
。The above is an outline of the method for forming a base extraction electrode type bipolar semiconductor device to which the 5PEG technology is applied and in which the base extraction electrode is reduced by 17< to lower the base resistance.
し発明が解決しようとする課題]
ところで、上記の形成方法では、高速動作させるために
膜厚50〜100 nm程度の薄いベース層を成長し、
且つ、ベース引出し電極となるドープド多結晶シリコン
膜を厚くし、その不純物濃度を高くして、その抵抗を低
下させているが、第4図(blに説明した工程において
、開口したペース層形成領域面の自然酸化膜を除去する
処理のために、水素雰囲気中で930℃、15分の熱処
理をおこなえば、その加熱によって高濃度に硼素を含有
させたBドープド多結晶シリコン膜15’から硼素が放
出され、続いて、硼素を含有させたドープドシリコン膜
(膜厚50〜100 nm)を成長して、ベース層14
およびドープド多結晶シリコン膜15を形成すると、ベ
ース層形成領域面のコレクタ層13に再拡散層が発生し
、甚だしい場合には、その膜厚が400nmにも達する
。第5図(alはその従来の問題点を示す図で、同図は
ベース層部分のみ拡大して図示しているが、図中の14
′が再拡散層である。そうなれば、浅いベース層を形成
すると云うベース引出し電極形構造の本来の高速化の目
的が損なわれる問題が起こる。[Problems to be Solved by the Invention] By the way, in the above formation method, a thin base layer with a thickness of about 50 to 100 nm is grown in order to operate at high speed.
In addition, the doped polycrystalline silicon film that becomes the base extraction electrode is made thicker and its impurity concentration is increased to lower its resistance. In order to remove the natural oxide film on the surface, heat treatment is performed at 930°C for 15 minutes in a hydrogen atmosphere, and the heating causes boron to be removed from the B-doped polycrystalline silicon film 15' containing a high concentration of boron. Then, a doped silicon film (50 to 100 nm thick) containing boron is grown to form the base layer 14.
When the doped polycrystalline silicon film 15 is formed, a re-diffusion layer is generated in the collector layer 13 on the surface of the base layer forming region, and in severe cases, the film thickness reaches as much as 400 nm. Figure 5 (Al is a diagram showing the problems of the conventional method, and the figure shows only the base layer part enlarged, but 14 in the figure
′ is the re-diffusion layer. If this happens, a problem arises in that the original purpose of increasing the speed of the base lead-out electrode type structure, which is to form a shallow base layer, is lost.
一方、このような問題点を低減させるために、第5図(
b)に示すように、前記第4図fa)に説明した工程に
おいて、Bドープド多結晶シリコン膜15“の上に絶縁
膜25を被覆し、リソグラフィ技術を用いて絶縁膜25
.Bドープド多結晶シリコン膜15“絶縁膜25からな
る3層膜にベース層形成領域を開口した後、ドープドシ
リコン膜を成長して、ベース層14およびドープド多結
晶シリコン膜15を形成する方法が考えられる。しかし
、この方法は段差が大きくなる欠点があり、また、Bド
ープド多結晶シリコン膜15′の側面からの再拡散は防
止できない。On the other hand, in order to reduce such problems, Fig. 5 (
As shown in b), in the step explained in FIG.
.. A method of forming a base layer 14 and a doped polycrystalline silicon film 15 by opening a base layer forming region in a three-layer film consisting of a B-doped polycrystalline silicon film 15 and an insulating film 25, and then growing a doped silicon film. However, this method has the disadvantage that the step becomes large, and furthermore, re-diffusion from the side surfaces of the B-doped polycrystalline silicon film 15' cannot be prevented.
従って、本発明はこのような問題点を解消させて、再拡
散層を発生させずにベース層を浅く形成し、しかも、ベ
ース引出し電極の抵抗を低下させることを目的とした半
導体装置の製造方法を提案するものである。Therefore, the present invention provides a method for manufacturing a semiconductor device, which aims to solve these problems, form a shallow base layer without generating a re-diffusion layer, and reduce the resistance of the base lead-out electrode. This is what we propose.
[課題を解決するための手段]
その課題は、−導電型半導体基板上に第1の絶縁膜を形
成し、該第1の絶縁膜を選択的に除去してベース層形成
領域を開口する工程、次いで、前記ベース層形成領域を
含む全面に異種導電型シリコン膜を成長して、前記ベー
ス層形成領域には異種導電型単結晶シリコン膜からなる
ベース層を形成し、且つ、前記第1の絶縁膜上には第1
の異種導電型多結晶シリコン膜を形成する工程、次いで
、前記ベース層上に選択的に第2の絶縁膜を被覆し、該
第2の絶縁膜および前記第1の異種導電型多結晶シリコ
ン膜上に第2の異種導電型多結晶シリコン膜を積層して
、前記第1の異種導電型多結晶シリコン膜と第2の異種
導電型多結晶シリコン膜とからなるベース引出し電極膜
を形成する工程、
次いで、前記第2の絶縁膜上の第2の異種導電型多結晶
シリコン膜を開口し、該開口部を含む全面に第3の絶縁
膜を形成し、更に、前記第2の絶縁膜を窓開けしてエミ
ッタ層形成領域を開口する工程、次いで、エミッタ層形
成領域の前記異種導電型単結晶シリコン層からなるベー
ス層に一導電型エミッタ層を形成する工程が含まれる製
造方法によって解決される。[Means for Solving the Problems] The problems are - a step of forming a first insulating film on a conductivity type semiconductor substrate and selectively removing the first insulating film to open a base layer forming region; Next, a silicon film of a different conductivity type is grown on the entire surface including the base layer formation region, and a base layer made of a single crystal silicon film of a different conductivity type is formed in the base layer formation region, and There is a first layer on the insulating film.
forming a polycrystalline silicon film of a different conductivity type, then selectively covering the base layer with a second insulating film, and forming a polycrystalline silicon film of a different conductivity type and the second insulating film and the first polycrystalline silicon film of a different conductivity type. a step of laminating a second polycrystalline silicon film of different conductivity type thereon to form a base extraction electrode film consisting of the first polycrystalline silicon film of different conductivity type and the second polycrystalline silicon film of different conductivity type; Next, an opening is formed in the second different conductivity type polycrystalline silicon film on the second insulating film, a third insulating film is formed on the entire surface including the opening, and further, the second insulating film is The problem is solved by a manufacturing method that includes a step of opening an emitter layer formation region by opening a window, and then a step of forming an emitter layer of one conductivity type on the base layer made of the different conductivity type single crystal silicon layer in the emitter layer formation region. Ru.
[作用]
即ち、本発明は、最初に、ベース形成領域を開口した絶
縁膜(第1の絶縁膜)上に5PEG技術を利用してドー
プドシリコン膜(膜厚50〜100 nm)を成長し、
ベース層と第1のドープド多結晶シリコンを形成する。[Function] That is, in the present invention, first, a doped silicon film (50 to 100 nm thick) is grown using 5PEG technology on an insulating film (first insulating film) with an opening in the base formation region. ,
A base layer and a first doped polycrystalline silicon are formed.
次に、形成されたベース層上を第2の絶縁膜で被覆し、
その第2の絶縁膜を挟んで第1のドープド多結晶シリコ
ン膜上に第2のドープド多結晶シリコン膜を積層する。Next, the formed base layer is covered with a second insulating film,
A second doped polycrystalline silicon film is laminated on the first doped polycrystalline silicon film with the second insulating film in between.
その後に、第2のドープド多結晶シリコン膜、第2の絶
縁膜を開口して、ベース層にエミッタ層を形成する。Thereafter, the second doped polycrystalline silicon film and the second insulating film are opened to form an emitter layer in the base layer.
そうすれば、高濃度に不純物を含有した多結晶シリコン
膜(第2のドープド多結晶シリコン膜)からの再拡散(
out diffusion)が防止できて、ベース層
を薄(形成でき、且つ、ベース引出し電極の膜厚も厚く
なってその抵抗が低下し、その結果、動作を高速化する
ことができる。By doing so, re-diffusion (
Out diffusion) can be prevented, the base layer can be formed thin, and the thickness of the base lead-out electrode can also be increased, reducing its resistance, and as a result, the operation speed can be increased.
[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.
第1図fa)〜(glは本発明にかかる製造方法の工程
順断面図を示しており、順を追って説明する。FIGS. 1fa) to 1gl show step-by-step sectional views of the manufacturing method according to the present invention, which will be explained in order.
第1図(al参照;従来と同様に、p型シリコン基板1
1上にn+型型埋面層12介してn型コレクタ層13(
比抵抗lΩcm程度)をエピタキシャル成長し、そのn
型コレクタ層13面を熱酸化して5i02膜21(膜厚
300nm ;第1の絶縁膜)を生成する。熱酸化はウ
ェット酸素中において1000℃に加熱して行う方法を
用いる。次いで、その5i02膜2工をリソグラフィ技
術を用いてパターンニングし、ベース層形成領域を開口
する。このベース層形成領域の開口には弗素系ガスを用
いて5i02膜をエツチングするりアクティブイオンエ
ツチング法を用いる。FIG. 1 (see al; as in the conventional case, a p-type silicon substrate 1
1, an n-type collector layer 13 (
(specific resistance of about 1Ωcm) is epitaxially grown, and its n
The surface of the mold collector layer 13 is thermally oxidized to produce a 5i02 film 21 (thickness: 300 nm; first insulating film). Thermal oxidation is performed by heating to 1000° C. in wet oxygen. Next, the two 5i02 films are patterned using lithography technology to open the base layer formation region. The opening in the base layer formation region is made by etching the 5i02 film using a fluorine gas or by active ion etching.
なお、121はn++コレクタコンタクト領域である。Note that 121 is an n++ collector contact region.
第1図(bl参照;次いで、開口したベース層形成領域
を含む5i02膜21の上にドープドシリコン膜(膜厚
50〜100 nm、不純物濃度10 ’シー)を成長
する。そうすると、5i02膜21上にはベース引出し
電極となるドープド多結晶シリコン膜15(第1の異種
導電型多結晶シリコン膜)が成長し、開口部にはベース
層となるドープド単結晶シリコン膜14が成長する。こ
のエピタキシャル成長法は、例えば、ジボラン(B2
H6)を含ませたジシラン(Si2H6)を光分解させ
る低温度分解法(基板加熱温度540〜600℃)を用
いるが、これは光分解法が再拡散が少なく、ベース層を
浅くできるからである。FIG. 1 (see BL; next, a doped silicon film (film thickness 50 to 100 nm, impurity concentration 10') is grown on the 5i02 film 21 including the open base layer formation region. Then, the 5i02 film 21 A doped polycrystalline silicon film 15 (first polycrystalline silicon film of a different conductivity type) that will become a base extraction electrode is grown on top, and a doped single-crystalline silicon film 14 that will be a base layer is grown in the opening.This epitaxial growth For example, diborane (B2
A low-temperature decomposition method (substrate heating temperature of 540 to 600°C) is used to photodecompose disilane (Si2H6) containing H6), because the photodecomposition method causes less re-diffusion and allows the base layer to be made shallower. .
第1図(C1参照;次いで、その上面にSi3N4 (
窒化シリコン)膜31(膜厚300nm程度;第2の絶
縁膜)をCVD法で被着し、これをエッチハックして凹
部のベース層14上のみにSi3N4膜31を残存させ
る。このエッチバックとは、Si3N4膜上にレジスト
膜を塗布して表面を平坦化し、これをSi3 N4膜と
レジスト膜とのエツチング比に差のない反応ガス(例え
ば、CF4ガス)を用いて平坦に一様にエツチングする
方法である。Figure 1 (see C1; next, Si3N4 (
A silicon nitride film 31 (about 300 nm thick; second insulating film) is deposited by the CVD method, and is etched and hacked to leave the Si3N4 film 31 only on the base layer 14 in the recess. This etchback involves applying a resist film on the Si3N4 film to planarize the surface, and then flattening the surface using a reactive gas (for example, CF4 gas) that has no difference in the etching ratio between the Si3N4 film and the resist film. This is a method of etching uniformly.
第1図(d)参照;次いで、減圧CVD法にてモノシラ
ン(SiH4)を反応ガスとして約600°Cで分解さ
せて多結晶シリコン膜(膜厚300nm)を堆積し、そ
の多結晶シリコン膜に硼素イオンを注入して濃度102
1/cn程度のBドープド多結晶シリコン膜15“ (
第2の異種導電型多結晶シリコン膜)を形成する。イオ
ン注入条件はドーズM1.5XIO’/ct加速エネル
ギー50 Keν程度である。なお、Bドープド多結晶
シリコン膜15“はイオン注入の代わりに、最初からB
ドープド多結晶シリコン膜を減圧CVD法によって被着
させても良い。See Figure 1(d); Next, a polycrystalline silicon film (thickness: 300 nm) is deposited by decomposing monosilane (SiH4) as a reaction gas at approximately 600°C using a low pressure CVD method. Implant boron ions to a concentration of 102
A B-doped polycrystalline silicon film 15" of about 1/cn (
A second polycrystalline silicon film of different conductivity type is formed. The ion implantation conditions are a dose of M1.5XIO'/ct acceleration energy of about 50 Keν. Note that the B-doped polycrystalline silicon film 15'' is made from B-doped from the beginning instead of being ion-implanted.
A doped polycrystalline silicon film may be deposited by low pressure CVD.
第1図(Q)参照;次いで、Bドープド多結晶シリコン
膜15゛をリソグラフィ技術を用いてパターンニングし
て、エミッタ形成領域を開口し、且つ、ベース引出し電
極となるドープド多結晶シリコン膜15’+15部分を
残存させて、その他の部分のドープド多結晶シリコン膜
15’、15を一部エッチングし、次に、エミッタ形成
領域の開口部を含むBドープド多結晶シリコン膜15°
およびドープド多結晶シリコン膜150表面を温度80
0°Cで高圧酸化して5i02膜22(膜厚300nm
;第3の絶縁膜)を生成する。そうすると、ベース引
出し電極以外の部分に残存したBドープド多結晶シリコ
ン膜は全部5i02膜22に変成し、エミッタ形成領域
の開口部周縁も5i02膜22が生成される。なお、温
度800℃では再拡散は殆ど起こらず、また、この5i
02膜22の生成によって微細なエミッタ形成領域の開
口広さを自己整合的に形成することができる。Refer to FIG. 1(Q); Next, the B-doped polycrystalline silicon film 15' is patterned using lithography technology to open an emitter formation region and form a doped polycrystalline silicon film 15' that will become a base extraction electrode. Leaving the +15 portion, the other portions of the doped polycrystalline silicon film 15', 15 are partially etched, and then the B-doped polycrystalline silicon film 15° including the opening of the emitter formation region is etched.
and the surface of the doped polycrystalline silicon film 150 at a temperature of 80°C.
A 5i02 film 22 (300 nm thick) was formed by high-pressure oxidation at 0°C.
; third insulating film). Then, all of the B-doped polycrystalline silicon film remaining in the portions other than the base extraction electrode is transformed into the 5i02 film 22, and the 5i02 film 22 is also formed at the periphery of the opening in the emitter formation region. Furthermore, at a temperature of 800°C, almost no re-diffusion occurs, and this 5i
By forming the 02 film 22, the opening width of the fine emitter formation region can be formed in a self-aligned manner.
第1図(fl参照;次いで、エミッタ形成領域の露出し
たSi3 N4膜31を除去してベース層14を開口し
、次に従来と同様の方法で、CVD法によって多結晶シ
リコン膜を被着し、その多結晶シリコン膜に砒素(As
) イオンを注入してAsドープド多多結晶シリコ成膜
23し、これをパターンニングして開口部のエミッタ形
成領域およびコレクタコンタクト電極形成領域にのみA
sドープド多多結晶シリコ成膜23残存させ、更に、温
度850°Cで熱処理してn1型工ミツタ層16を画定
する。なお、前記の硼素イオンを注入したBドープド多
結晶シリコン膜15゛はこのエミッタ層の活性化熱処理
によって同時に活性化される。FIG. 1 (see fl; next, the exposed Si3N4 film 31 in the emitter formation region is removed to open the base layer 14, and then a polycrystalline silicon film is deposited by CVD in the same manner as in the conventional method. , arsenic (As) is added to the polycrystalline silicon film.
) Ions are implanted to form an As-doped polycrystalline silicon film 23, and this is patterned to form an As-doped polycrystalline silicon film 23 only in the emitter formation region of the opening and the collector contact electrode formation region.
The s-doped polycrystalline silicon film 23 remains and is further heat-treated at a temperature of 850° C. to define the n1 type crystal layer 16. Incidentally, the B-doped polycrystalline silicon film 15' into which the boron ions have been implanted is simultaneously activated by the activation heat treatment of the emitter layer.
第1図tg+参照;次いで、CVD法によって絶縁膜2
4を被着し、これを開口してAsドープド多多結晶シリ
コ成膜23上にエミッタ電Fm 19 、 コレクタ
コンタクト電極17を形成し、ベース引出し電極15の
上にベース電極18を形成して完成する。Refer to FIG. 1 tg+; Next, the insulating film 2 is
4 is deposited, this is opened, an emitter electrode Fm 19 and a collector contact electrode 17 are formed on the As-doped polycrystalline silicon film 23, and a base electrode 18 is formed on the base extraction electrode 15 to complete the process. .
上記が本発明にかかる製造方法である。このような製造
方法によれば、高濃度に不純物を含有させたBドープド
多結晶シリコン膜15′(第2の異種導電型多結晶シリ
コン膜)からの再拡散が防止でき、また、エッチバンク
法によって平坦化されるため微細加工に適しており、且
つ、ドープドシリコン膜の膜厚制御によってベース層を
薄く形成でき、更に、ベース引出し電極の膜厚を厚く、
しかも、高濃度に形成できて、その抵抗を低下させるこ
とができる。従って、本製造方法は周波数特性を改善し
て、高速動作させることができる。The above is the manufacturing method according to the present invention. According to such a manufacturing method, re-diffusion from the B-doped polycrystalline silicon film 15' (second polycrystalline silicon film of different conductivity type) containing impurities at a high concentration can be prevented, and the etch bank method It is suitable for microfabrication because it is flattened by the doped silicon film, and the base layer can be formed thinly by controlling the thickness of the doped silicon film.
Moreover, it can be formed at a high concentration and its resistance can be lowered. Therefore, this manufacturing method can improve frequency characteristics and operate at high speed.
[発明の効果]
以上の実施例の説明から明らかなように、本発明にかか
る製造方法によれば、ベース引出し電極形半導体装置の
ベース抵抗を低下させ、周波数特性を改善して高速動作
させることができ、その性能向上に大きく役立つもので
ある。[Effects of the Invention] As is clear from the description of the embodiments above, according to the manufacturing method of the present invention, the base resistance of the base lead-out electrode type semiconductor device can be lowered, the frequency characteristics can be improved, and the device can operate at high speed. This will greatly help improve its performance.
第1図(a)〜fg+は本発明にかかる製造方法の工程
順断面図、
第2図は通常のバイポーラ半導体装置の断面図、第3図
はベース引出し電極形半導体装置の断面図、第4図(a
)〜(e)は従来の製造方法の工程順断面図、第5図f
at、 fb)は従来の問題点を示す図である。
図において、
11はp型シリコン基板、
12はn+型埋没層、
13はn型コレクタ層、
14はp型ベース層、
15はドープド多結晶シリコン膜からなるベース引出し
電極(第1の異種導電型多結晶シリコン膜)、
15゛はBドープド多結晶シリコン膜からなるベース引
出し電極(第2の異種導電型多結晶シリコン膜)、
l6はn+型エミッタ層、
17はコレクタコンタクトmA、
18はベース電極、
19はエミッタ電極、
21は5i02膜(第1の絶縁膜)、
22は5i02膜(第3の絶縁膜)、
23はAsドープド多結晶シリコン膜、24は絶縁膜、
31はSi3N4膜(第2の絶縁膜)
を示している。
矛畜呵l;か四裂渣方亮の工零¥硬所旬国第1図(乏め
2)
4号で明l:かかp区之方)五め工社禮メ什勾m第1図
(Jt?l)
ゑ宇。パ・イ4広・−ラ+17下421!11狛m第2
図
べ°−スヲI±4.詞C角バイ不・−フ半a 颯t /
1〜図第3図1(a) to fg+ are cross-sectional views in the order of steps of the manufacturing method according to the present invention; FIG. 2 is a cross-sectional view of a normal bipolar semiconductor device; FIG. 3 is a cross-sectional view of a base lead-out electrode type semiconductor device; Figure (a
) to (e) are step-by-step sectional views of the conventional manufacturing method, and Fig. 5f
at, fb) are diagrams showing conventional problems. In the figure, 11 is a p-type silicon substrate, 12 is an n+ type buried layer, 13 is an n-type collector layer, 14 is a p-type base layer, and 15 is a base extraction electrode (first different conductivity type) made of a doped polycrystalline silicon film. 15 is a base extraction electrode made of B-doped polycrystalline silicon film (second polycrystalline silicon film of different conductivity type), 16 is an n+ type emitter layer, 17 is a collector contact mA, 18 is a base electrode , 19 is an emitter electrode, 21 is a 5i02 film (first insulating film), 22 is a 5i02 film (third insulating film), 23 is an As-doped polycrystalline silicon film, 24 is an insulating film, and 31 is a Si3N4 film (first insulating film). 2) is shown. 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 1st edition of the 4th edition. Figure 1 (Jt?l) Eu. P・I 4 wide・−ra +17 lower 421! 11 komam 2nd
Figurebe°-Suwo I±4. Words C corner by fu・-fuhana sate /
1~Figure 3
Claims (1)
の絶縁膜を選択的に除去してベース層形成領域を開口す
る工程、 次いで、前記ベース層形成領域を含む全面に異種導電型
シリコン膜を成長して、前記ベース層形成領域には異種
導電型単結晶シリコン膜からなるベース層を形成し、且
つ、前記第1の絶縁膜上には第1の異種導電型多結晶シ
リコン膜を形成する工程、 次いで、前記ベース層上に選択的に第2の絶縁膜を被覆
し、該第2の絶縁膜および前記第1の異種導電型多結晶
シリコン膜上に第2の異種導電型多結晶シリコン膜を積
層して、前記第1の異種導電型多結晶シリコン膜と第2
の異種導電型多結晶シリコン膜とからなるベース引出し
電極膜を形成する工程、 次いで、前記第2の絶縁膜上の第2の異種導電型多結晶
シリコン膜を開口し、該開口部を含む全面に第3の絶縁
膜を形成し、更に、前記第2の絶縁膜を窓開けしてエミ
ッタ層形成領域を開口する工程、 次いで、エミッタ層形成領域の前記異種導電型単結晶シ
リコン層からなるベース層に一導電型エミッタ層を形成
する工程が含まれてなることを特徴とするバイポーラ半
導体装置の製造方法。[Claims] A first insulating film is formed on a semiconductor substrate of one conductivity type;
selectively removing an insulating film to open a base layer formation region; then, growing a silicon film of a different conductivity type on the entire surface including the base layer formation region; forming a base layer made of a single crystal silicon film, and forming a first polycrystalline silicon film of a different conductivity type on the first insulating film; then, selectively forming a second polycrystalline silicon film on the base layer; a second polycrystalline silicon film of different conductivity type is laminated on the second insulating film and the first polycrystalline silicon film of different conductivity type, and crystalline silicon film and second
forming a base extraction electrode film consisting of a polycrystalline silicon film of a different conductivity type, and then opening the second polycrystalline silicon film of a different conductivity type on the second insulating film, and covering the entire surface including the opening. forming a third insulating film, and further opening a window in the second insulating film to open an emitter layer forming region; 1. A method of manufacturing a bipolar semiconductor device, comprising the step of forming an emitter layer of one conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14415788A JPH021935A (en) | 1988-06-10 | 1988-06-10 | Manufacture of bipolar semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14415788A JPH021935A (en) | 1988-06-10 | 1988-06-10 | Manufacture of bipolar semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH021935A true JPH021935A (en) | 1990-01-08 |
Family
ID=15355527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14415788A Pending JPH021935A (en) | 1988-06-10 | 1988-06-10 | Manufacture of bipolar semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH021935A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0683817U (en) * | 1993-05-17 | 1994-12-02 | 株式会社渡邊藤吉本店 | Fitting cap type metal tile roof |
-
1988
- 1988-06-10 JP JP14415788A patent/JPH021935A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0683817U (en) * | 1993-05-17 | 1994-12-02 | 株式会社渡邊藤吉本店 | Fitting cap type metal tile roof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000031156A (en) | Vertical bipolar transistor having extrinsic base of suppressed roughness and fabrication thereof | |
EP0199497A2 (en) | Process for fabricating a self-aligned bipolar transistor | |
JPH021935A (en) | Manufacture of bipolar semiconductor device | |
JPH021936A (en) | Manufacture of bipolar semiconductor device | |
JPH021934A (en) | Manufacture of bipolar semiconductor device | |
JPS6289357A (en) | Manufacture of low resistivity region with low defect density in bipolar integrated circuit | |
JP3173048B2 (en) | Semiconductor device | |
JPS63117420A (en) | Manufacture of silicide layer | |
TW432673B (en) | Using single polysilicon process to fabricate low junction capacitance bipolar junction transistor | |
JPS62117340A (en) | Manufacture of semiconductor device | |
JPH0330293B2 (en) | ||
JPH0778833A (en) | Bipolar transistor and its manufacture | |
KR100227834B1 (en) | Manufacturing method of semiconductor device | |
JPS61240680A (en) | Manufacture of bipolar transistor | |
JPH06252158A (en) | Semiconductor device | |
JPS6018935A (en) | Manufacture of semiconductor device | |
JPH08236542A (en) | Manufacture of insulated-gate type thyristor | |
JPH05175209A (en) | Semiconductor device and its manufacture | |
JPH04147627A (en) | Semiconductor device and manufacture thereof | |
JPH01111372A (en) | Manufacture of semiconductor device | |
JPH0233932A (en) | Manufacture of semiconductor device | |
JPH0227813B2 (en) | HANDOTAISOCHINOSEIZOHOHO | |
JPH07114208B2 (en) | Transistor manufacturing method | |
JPH01251736A (en) | Manufacture of semiconductor device | |
JPH01291424A (en) | Semiconductor device and manufacture thereof |