[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02193050A - Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus - Google Patents

Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus

Info

Publication number
JPH02193050A
JPH02193050A JP1268743A JP26874389A JPH02193050A JP H02193050 A JPH02193050 A JP H02193050A JP 1268743 A JP1268743 A JP 1268743A JP 26874389 A JP26874389 A JP 26874389A JP H02193050 A JPH02193050 A JP H02193050A
Authority
JP
Japan
Prior art keywords
thin film
temperature
light
irradiated
irradiation part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1268743A
Other languages
Japanese (ja)
Inventor
Koji Matsuzaki
松崎 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1268743A priority Critical patent/JPH02193050A/en
Publication of JPH02193050A publication Critical patent/JPH02193050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable evaluation of a position of a defect quickly and easily by irradiating a light irradiation part of a thin film with a light energy of a fixed amplitude intermittently to determine a distribution of an AC temperature at non-irradiation part with an AC temperature of the light irradiation part as reference. CONSTITUTION:A masking member 2 is shielded so that a part of one side of a thin film 1 is not irradiated with light energy to make a light irradiation part and a non- irradiation part. When light energy of a light source 4 is made irradiate the thin film 1 intermittently with the rotation of a chopper 3, the light irradiation part of the thin film 1 is heated to raise the temperature thereof while the temperature of the non-irradiation part of the thin film 1 does not rise. Hence, there is a temperature gradient caused between the light irradiation part and the non-irradiation part and a periodical heat wave travels in both directions of the thin film 1, which allows measurement of an AC temperature using thermocouples 6A and 6B. Thus, an AC temperature distribution of the non-irradiation part is determined with an AC temperature of the light irradiation part as reference to detect a position of a defect from a change in gradient of the AC temperature distribution thereby enabling the evaluation of the position of a defect quickly and easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は薄膜の面内欠陥評価方法および赤外分光分析
方法並びに装置に係り、特に薄膜面内の異物1粒界1配
向状態、亀裂、ボイド、厚さムラ凹凸などの迅速簡便な
評価方法およびyIIl、薄葉材料の迅速簡便な赤外分
光分析方法並びに装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for evaluating in-plane defects in a thin film, an infrared spectroscopic analysis method, and an apparatus, and particularly relates to an in-plane defect evaluation method and an infrared spectroscopic analysis method and apparatus for thin films. The present invention relates to a quick and easy evaluation method for voids, thickness unevenness, etc., and a quick and easy infrared spectroscopy method and apparatus for thin-sheet materials.

〔従来の技術〕[Conventional technology]

面内欠陥を評価する方法には従来赤外線式厚さ針を用い
る方法、超音波W4微鏡による方法やX線写真法などが
知られている。また赤外吸収スペクトルの測定には分散
型赤外分光分析方法やFT−IR法などが知られている
Conventionally known methods for evaluating in-plane defects include a method using an infrared thickness needle, a method using an ultrasonic W4 microscope, and an X-ray photograph method. Furthermore, methods such as a dispersive infrared spectroscopy method and an FT-IR method are known for measuring infrared absorption spectra.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら赤外線式厚さ計による厚さムラの管理1研
究現場における超音波顕微鏡による異物。
However, controlling thickness unevenness using an infrared thickness gauge 1. Foreign matter detected using an ultrasonic microscope at a research site.

亀裂、ボイドの評価などが行われているが、これらの方
法は異物1粒界、配向伏態、亀裂、ボイド厚さムラ、凹
凸などの広範な種類の面内欠陥の全てを検出することが
できないため適用範囲が狭く、適用可能な材質の1lf
iも限られているうえ、試料の前処理や測定に多くの手
間と時間を要し、多品種、多数試料のスクリーニングテ
ストや薄膜の製造プロセスにおける大面積試料の迅速測
定ができないという問題があった。
Evaluations of cracks and voids are being carried out, but these methods cannot detect all types of in-plane defects such as foreign particles, single grain boundaries, orientation failure, cracks, void thickness unevenness, and unevenness. Because it cannot be applied, the applicable range is narrow, and the applicable material is 1lf.
In addition, sample pretreatment and measurement require a lot of effort and time, and there are problems in that screening tests of many types and large numbers of samples and rapid measurement of large area samples in thin film manufacturing processes are not possible. Ta.

また分散型の赤外分光分析方法やFT−IR法では試料
の厚さが1−未満や数lO−以上の場合に測定が困難で
あり、また小面積や針状、不定形薄葉状の場合にも測定
がむつかしくなるうえ一般に高価な装置を必要とするな
どの問題があった。
In addition, with the dispersive infrared spectroscopy method and FT-IR method, it is difficult to measure when the thickness of the sample is less than 1-10-10-10-10-20-10-200-2000-2000-2000-10000000-000000000-0000000000000000000000000 or more, or more than 1000000000000000000000000000 or more or more of a sample thickness of less than 100000000000000000000000000000000000 or more. However, there are problems in that measurement is difficult and generally requires expensive equipment.

この発明は上述の点に鑑みてなされ、その目的は薄膜の
熱吸収や熱拡散を利用することにより、種々の欠陥、材
料、形状に係る薄膜に一般的に適用できる迅速簡便な薄
膜の面内欠陥評価方法および赤外分光分析方法並びにこ
れら方法を適用した構造簡易で安価な面内欠陥評価用の
装置および赤外分光分析用の装置を提供することにある
This invention has been made in view of the above points, and its purpose is to provide a quick and easy in-plane method of thin films that can be generally applied to thin films with various defects, materials, and shapes by utilizing heat absorption and thermal diffusion of thin films. It is an object of the present invention to provide a defect evaluation method, an infrared spectroscopic analysis method, and an apparatus for in-plane defect evaluation and an infrared spectroscopic analysis that are simple in structure and inexpensive, to which these methods are applied.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば 1)薄膜の面内欠陥評価方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に一定振巾の光エネルギを断続的に照射し、光
照射部と非照射部の交流温度を測定し、光照射部の交流
温度を基準とする非照射部の交71L温度の分布を求め
、この温度分布の勾配の変化から欠陥位置を検知するこ
と、 2)薄膜の面内欠陥を評価する装置において、薄膜を光
照射する光源4と、該光源からの光を任意の周期で断続
するチョッパ3と、薄膜に照射される光の一部分を遮蔽
して薄膜に直線状境界部を有する光照射部と非照射部と
を形成させるマスク部材2と、光路中に設置され該照射
光の断続周期を検知する光センサ7と、薄膜の前記光照
射部と非照射部の温度を検知するとともに光照射部と非
照射部の温度出力の極性を相互に逆に接続した温度セン
サ6と、該温度センサの出力から前記光センサの検知し
た断続周期と同一周波数の交流温度成分を分離しかつ増
幅するロックインアンプ8と、薄膜につき光照射部と非
照射部の前記直線状境界部を移動させる境界部走査手段
5と、y薄膜の前記光照射部の交流温度を基準として前
記非照射部の交流温度を測定しかつ交流温度分布を求め
る温度センサ走査手段13とを備えること、 3)薄膜の赤外分光分析方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に分光された一定振巾でかつ所定波長の赤外線
を断続的に照射し、前記非照射部における所定位置の交
流温度をロックインアンプで増幅して交流温度スペクト
ルを求めること、4)薄膜の赤外分光分析を行う装置に
おいて、薄膜を光照射する光源4と、この光源からの光
を分光して所定波長の赤外線を薄膜に送る分光器9と、
この赤外線を任意の周期で断続するチョッパ3と、薄膜
に照射される赤外線の一部分を遮蔽して薄膜に直線状境
界部を有する光照射部と非照射部とを形成させるマスク
部材2と、光路中に設置され照射される赤外線の断続周
期を検知する光センサ7と、yi膜の前記非照射部にお
ける所定位置の交流温度を検知する温度センサ6と、こ
の温度センサの出力から前記光センサの検知した断続周
期と同一周波数の交流温度成分を分離しかつ増幅するロ
ックインアンプ8と、薄膜につき光照射部と非照射部の
前記直線状境界部を移動させる境界部走査手段5とを備
えることおよび 5)薄膜の赤外分光分析方法において、特定層を含む多
層薄膜の交流温度スペクトルと特定層を含まない多層薄
膜の交流温度スペクトルの差から特定層の交流温度スペ
クトルを求めること、により達成される。
According to the present invention, the above-mentioned objects are as follows: 1) In a method for evaluating in-plane defects in a thin film, a light beam of a constant amplitude is applied to a light-irradiated area of a thin film that is partitioned into a light-irradiated area and a non-irradiated area by a scannable linear boundary. Energy is irradiated intermittently, the AC temperature of the light irradiated part and the non-irradiated part is measured, the distribution of the cross 71L temperature of the non-irradiated part is determined based on the AC temperature of the light irradiated part, and the gradient of this temperature distribution is calculated. 2) In an apparatus for evaluating in-plane defects in a thin film, a light source 4 that irradiates the thin film with light, a chopper 3 that cuts off light from the light source at an arbitrary period, and a chopper 3 that irradiates the thin film with light. a mask member 2 that blocks a portion of the light that is emitted to form a light irradiation part and a non-irradiation part that have linear boundaries in the thin film; and an optical sensor 7 that is installed in the optical path and detects the intermittent cycle of the irradiation light. and a temperature sensor 6 which detects the temperature of the light irradiated part and the non-irradiated part of the thin film, and in which the polarities of the temperature outputs of the light irradiated part and the non-irradiated part are connected to each other in reverse; a lock-in amplifier 8 that separates and amplifies an AC temperature component having the same frequency as the intermittent cycle detected by the sensor; a boundary scanning means 5 that moves the linear boundary between the light irradiation part and the non-irradiation part of the thin film; 3) A method for infrared spectroscopic analysis of a thin film, further comprising a temperature sensor scanning means 13 for measuring the AC temperature of the non-irradiated part of the y-thin film with reference to the AC temperature of the light-irradiated part and determining the AC temperature distribution. The light irradiation part of the thin film, which is divided into a light irradiation part and a non-irradiation part by a scannable linear boundary part, is intermittently irradiated with infrared rays of a predetermined wavelength and a constant amplitude, and a predetermined wavelength in the non-irradiation part is irradiated. 4) In an apparatus for infrared spectroscopic analysis of a thin film, a light source 4 that irradiates the thin film with light and a light source 4 that spectrally spectra the light from this light source are used. a spectrometer 9 that sends infrared rays of a predetermined wavelength to the thin film;
A chopper 3 that cuts off the infrared rays at an arbitrary period; a mask member 2 that blocks a portion of the infrared rays irradiated onto the thin film to form a light irradiated part and a non-irradiated part having linear boundaries on the thin film; and an optical path. An optical sensor 7 is installed inside and detects the intermittent cycle of the irradiated infrared rays, a temperature sensor 6 detects the alternating current temperature at a predetermined position in the non-irradiated part of the yi film, and the output of the optical sensor is determined from the output of this temperature sensor. A lock-in amplifier 8 that separates and amplifies an AC temperature component having the same frequency as the detected intermittent cycle, and a boundary scanning means 5 that moves the linear boundary between the light irradiated part and the non-irradiated part of the thin film. and 5) In the method of infrared spectroscopic analysis of thin films, this is achieved by determining the AC temperature spectrum of a specific layer from the difference between the AC temperature spectrum of a multilayer thin film containing a specific layer and the AC temperature spectrum of a multilayer thin film that does not include a specific layer. Ru.

〔作用〕[Effect]

面内欠陥は熱伝播に関して熱拡散率に変化を生じさせる
ので、光照射部から非照射部への交流温度の勾配の変化
が欠陥の面内位置に対応する。また交流温度の分布を求
めるので欠陥位置の決定は迅速かつ容易に行われる。
Since an in-plane defect causes a change in thermal diffusivity regarding heat propagation, a change in the gradient of AC temperature from a light-irradiated area to a non-irradiated area corresponds to the in-plane position of the defect. Furthermore, since the AC temperature distribution is determined, the defect location can be determined quickly and easily.

赤外吸収を示す波長においては、光照射部の温度が上昇
し、非照射部へ熱が拡散する。非照射部の交流温度はI
薄膜の赤外吸収に対応したものになる。交流熱エネルギ
の伝播はいかなる材料中でもおこるので交流温度分布の
測定は一般の薄膜に適用できる。
At wavelengths that exhibit infrared absorption, the temperature of the light irradiated area increases and heat diffuses to the non-irradiated area. The AC temperature of the non-irradiated area is I
This corresponds to the infrared absorption of thin films. Since propagation of AC thermal energy occurs in any material, measurement of AC temperature distribution can be applied to general thin films.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に蟇いて説明する。 Next, embodiments of the invention will be described with reference to the drawings.

第1図および第2図は薄膜の面内欠陥評価方法を示す要
部配置図である。この方法は特開昭60−155950
号公報に開示された断続加熱法によるi!in!の厚さ
と直角な面方向に対する熱拡散率の測定方法に基礎を置
く、同図において1は面内欠陥測定用試料の薄膜であり
、幅4龍、長さ10m程度で厚さ0.1乃至0.5鶴で
ある。2は薄膜1の片面の一部を覆うマスク部材でマイ
クロメータ5により薄膜10面に沿って一方向に移動自
在である。マスク部材2は薄膜10片面の一部を光エネ
ルギが照射されないよう遮蔽し光照射部と非照射部を作
る。
FIGS. 1 and 2 are layout diagrams of main parts showing a method for evaluating in-plane defects in a thin film. This method is disclosed in Japanese Patent Application Laid-Open No. 60-155950.
i! by the intermittent heating method disclosed in the publication. In! In the figure, 1 is a thin film of a sample for in-plane defect measurement, which is based on the method of measuring thermal diffusivity in the plane direction perpendicular to the thickness of . It is 0.5 crane. Reference numeral 2 denotes a mask member that covers a part of one side of the thin film 1, and is movable in one direction along the surface of the thin film 10 using a micrometer 5. The mask member 2 shields a part of one side of the thin film 10 from being irradiated with light energy, thereby creating a light irradiated area and a non-irradiated area.

3はマスク部材2の上部に設けられたチョッパで回転自
在に軸支され、図示されないモータにより所定の回転数
で回転する半円形板よりなる。4はタングステンランプ
のような光源で前記チョッパ3に付設され、薄膜1の光
照射部を光エネルギで加熱する。5は前記マスク部材2
と連結されたマイクロメータで薄膜1の光照射部と非照
射部の直線状境界部を移動させる境界部走査手段である
3 is a semicircular plate that is rotatably supported by a chopper provided on the upper part of the mask member 2 and rotated at a predetermined number of rotations by a motor (not shown). Reference numeral 4 denotes a light source such as a tungsten lamp, which is attached to the chopper 3 and heats the light irradiated portion of the thin film 1 with light energy. 5 is the mask member 2
This is a boundary scanning means that moves the linear boundary between the light irradiated part and the non-irradiated part of the thin film 1 using a micrometer connected to the .

6A、 6Bは薄膜1の光照射部と非照射部にそれぞれ
点接触する熱電対であり、極性は逆向きに接続される。
Thermocouples 6A and 6B are in point contact with the light irradiated part and the non-irradiated part of the thin film 1, respectively, and are connected with opposite polarities.

熱電対6A、 6Bの距離は第3図、第4図で図示され
る温度センサ走査手段13によって任意に可変である。
The distance between the thermocouples 6A and 6B can be arbitrarily varied by the temperature sensor scanning means 13 shown in FIGS. 3 and 4.

8はフォトトランジスタのような光センサ7の出力を参
照信号として熱電対6^、 6Bの交流出力を増幅する
ロックインアンプである。
8 is a lock-in amplifier that amplifies the AC output of the thermocouples 6^ and 6B using the output of the optical sensor 7 such as a phototransistor as a reference signal.

このような要部配置においてチョッパ3を回転して、断
続的に光エネルギを薄膜1に照射すると、II薄膜1の
光エネルギの照射される部分は加熱されて温度が上昇す
るのに対し、薄膜1の非照射部は温度が上昇しないので
光照射部と非照射部との間に温度勾配を生じ、周期的な
熱波が薄膜の面方向に進行するので、熱電対6A、 6
Bを用いて熱電対の点接触された点の交流温度を測定す
ることができる。この交流温度は薄膜の熱的性質である
熱拡散率を反映したものとなる。いま熱電対6A、 6
B間の距離を!、このときの熱電対6Bにおける交流温
度をT、光エネルギ断続の周波数をf、¥iJ膜の吸収
した熱量をQ、薄膜の単位体積あたりの熱容量をC1試
料厚さをdとすると、薄膜の熱拡散率aは次式の関係を
満足する。
When the chopper 3 is rotated in such a main part arrangement and the thin film 1 is intermittently irradiated with light energy, the portion of the II thin film 1 that is irradiated with the light energy is heated and its temperature rises, whereas the thin film Since the temperature of the non-irradiated part 1 does not rise, a temperature gradient is created between the light irradiated part and the non-irradiated part, and periodic heat waves advance in the surface direction of the thin film.
B can be used to measure the AC temperature at a point where the thermocouple is in point contact. This AC temperature reflects the thermal diffusivity, which is the thermal property of the thin film. Now thermocouple 6A, 6
The distance between B! , the AC temperature at the thermocouple 6B at this time is T, the frequency of intermittent light energy is f, the amount of heat absorbed by the \iJ film is Q, the heat capacity per unit volume of the thin film is C1, the sample thickness is d, then the thickness of the thin film is The thermal diffusivity a satisfies the following relationship.

n T 、’y ” I n(Q/ 4 n f Cd
 ) JT  (億) j!−−−fl)(1)式を!
で微分すると d l n T / d j −−FG慴=−−−−−
−−(2)(2)式の右辺は熱拡散率aが一定である限
り交流温度の対数の勾配(以下これを温度分布の勾配と
称する)は一定となる。しかし面内に欠陥があると、そ
の点の熱拡散率aが変化するので温度分布の勾配が変化
する。従って薄膜の非照射部の交流温度分布を求め、こ
の交流温度分布の勾配の変化から欠陥位置を定めること
が可能となる。
n T ,'y ”I n(Q/ 4 n f Cd
) JT (billion) j! ---fl) Expression (1)!
Differentiating with d l n T / d j −−FG 慴=−−−−−
--(2) The right side of equation (2) indicates that as long as the thermal diffusivity a is constant, the slope of the logarithm of the AC temperature (hereinafter referred to as the slope of the temperature distribution) is constant. However, if there is a defect within the plane, the thermal diffusivity a at that point changes, so the gradient of the temperature distribution changes. Therefore, it is possible to obtain the AC temperature distribution of the non-irradiated portion of the thin film and determine the defect position from the change in the gradient of this AC temperature distribution.

第3図に温度センサ走査手段13が示される。6A6B
の2つの熱電対の距離Eがこの走査手段により任意に変
えられる。温度センサ走査手段13はXYステージ10
とマイクロメータ105よりなる。熱電対6^は薄膜1
の光照射部21の交流温度を測定する。マイクロメータ
105は熱電対6BをX方向に移動させる。X−Yステ
ージ10はX方向とX方向の移動により熱電対6Aの位
置を決める。x−yステージ10はマスク部材2と連動
させることができる。
The temperature sensor scanning means 13 is shown in FIG. 6A6B
The distance E between the two thermocouples can be arbitrarily changed by this scanning means. The temperature sensor scanning means 13 is an XY stage 10
and a micrometer 105. Thermocouple 6^ is thin film 1
The AC temperature of the light irradiation section 21 is measured. Micrometer 105 moves thermocouple 6B in the X direction. The X-Y stage 10 determines the position of the thermocouple 6A by moving in the X direction and the X direction. The xy stage 10 can be coupled with the mask member 2.

熱電対6A、 6Bは極性を逆にして接続され交流温度
の差の信号がロックインアンプ8に入力される。
The thermocouples 6A and 6B are connected with their polarities reversed, and a signal representing the difference in AC temperature is input to the lock-in amplifier 8.

ロックインアンプ8は光センサ7からの断続信号の周波
数を参照信号としてこれと同一周波数の交流温度信号を
分離しかつ増幅する。薄Il!■の光照射部21と非照
射部22との間には交流温度の勾配を生じており、熱電
対6A、 6Bにより光照射部と非照射部の交流温度差
を測定することができる。光照射部と非照射部の直線状
境界部は上述のようにマイクロメータ5のような境界部
走査手段を用いるほか、薄膜1を移動させることによっ
ても行うことができる。
Lock-in amplifier 8 uses the frequency of the intermittent signal from optical sensor 7 as a reference signal, and separates and amplifies an AC temperature signal having the same frequency. Thin Il! There is an alternating current temperature gradient between the light irradiation section 21 and the non-irradiation section 22, and the AC temperature difference between the light irradiation section and the non-irradiation section can be measured using the thermocouples 6A and 6B. The linear boundary between the light irradiated area and the non-irradiated area can be detected not only by using a boundary scanning means such as the micrometer 5 as described above, but also by moving the thin film 1.

第4図に他の実施例に係る温度センサ走査手段13であ
るXステージ110とマイクロメータ105が示される
。また温度センサの他の実施例も示される。この温度セ
ンサはロンドレンズ11とスリット12を備えたフォト
ダイオードアレイ106からなる。
FIG. 4 shows an X stage 110 and a micrometer 105 which are temperature sensor scanning means 13 according to another embodiment. Other embodiments of temperature sensors are also shown. This temperature sensor consists of a photodiode array 106 equipped with a Rondo lens 11 and a slit 12.

この温度センサの場合はX方向はアレイを電気的に走査
すれば足りるので、機械的な移動はX方向のみでよく、
駆動機構が簡単で迅速測定がより好適に行える0本発明
により測定した薄膜の面内欠陥測定結果が第5図に示さ
れる。試料として厚さ100 nのアルミナ焼結基板を
用いた。10fl×10fiの大きさに切断して試験片
とし、X方向、X方向とも約500−づつ移動させて交
流温度差ΔTacを測定し、X−Y座標に対応させて三
次元のメツシュ表示したものが第5図(11)であり、
陰影処理を行ったものが第5図(blである。また、二
次元の等高線表示を行うと第5図(C)のようになった
、これらの図より、10mm角の試験片の内部に3ケ所
の面内欠陥があることが明瞭に分かる。それぞれの部位
に対応して切断し、断面を電子l!J微鏡観察および組
成分析したところ、不純物の析出による粒界と円盤状の
ボイドであることが明らかとなり、この結果から製法改
良の重要な知見が得られた。
In the case of this temperature sensor, it is sufficient to electrically scan the array in the X direction, so mechanical movement is only required in the X direction.
FIG. 5 shows the results of in-plane defect measurement of a thin film measured by the present invention, which has a simple drive mechanism and allows rapid measurement to be performed more suitably. An alumina sintered substrate with a thickness of 100 nm was used as a sample. A test piece was cut into a size of 10 fl x 10 fi, and the AC temperature difference ΔTac was measured by moving it approximately 500 mm in both the X and X directions, and it was displayed as a three-dimensional mesh in correspondence with the X-Y coordinates. is shown in Figure 5 (11),
Figure 5 (bl) is the one after shading processing. Also, when two-dimensional contour lines are displayed, it becomes as shown in Figure 5 (C). It is clearly seen that there are in-plane defects in three locations.When each section was cut and the cross section was observed with an electron l!J microscope and composition analyzed, it was found that there were grain boundaries and disk-shaped voids due to the precipitation of impurities. It became clear that this was the case, and this result provided important knowledge for improving the manufacturing method.

なお、薄膜材料としては、非晶質1単結晶1徽結晶のい
ずれでも良く、さらに高分子膜、複合材料、多層材料な
どに対してもこの発明の方法および装置を一般的に適用
することができる。
Note that the thin film material may be either amorphous, single crystal, or crystal, and the method and apparatus of the present invention can also be generally applied to polymer films, composite materials, multilayer materials, etc. can.

第6図、第7図は薄膜の赤外分光分析方法を示す要部配
置図である。第1図、第2図とは、分光器9が付加され
ている点と、熱電対6が非照射部にのみ設けられている
点が異なる0分光器9は光源4からの光を所定の波長の
赤外線に順次分光して薄膜1を照射する。熱電対は光照
射部に設けることができない、i3過光を吸収するから
である。
FIGS. 6 and 7 are layout diagrams of main parts showing a method for infrared spectroscopic analysis of thin films. 1 and 2 are different from each other in that a spectroscope 9 is added and that a thermocouple 6 is provided only in the non-irradiated area.The spectrometer 9 allows the light from the light source 4 to be The thin film 1 is irradiated with infrared rays of different wavelengths in sequence. A thermocouple cannot be provided in the light irradiation part because it absorbs i3 excess light.

薄Mlは所定波長の赤外線が順次照射される。赤外吸収
を示す波長の赤外線が照射されると光照射部の交流温度
が急上昇する。このとき前記(2)式の関係によりdl
nT/djは一定であるから、非照射部の交′fL温度
も急上昇する。このようにして非照射部の所定位置の交
流温度を測定すると、光照射部における赤外吸収の有無
がわかる。マイクロメータ5のような境界部走査手段を
用いて、lの値を可及的に小さくし、その検出感度を高
めることができる。赤外線の波長を走査すると赤外線の
吸収に対応して交流温度スペクトルが得られる。
The thin Ml is sequentially irradiated with infrared rays of a predetermined wavelength. When irradiated with infrared rays having a wavelength that exhibits infrared absorption, the AC temperature of the light irradiation section rises rapidly. At this time, due to the relationship of equation (2) above, dl
Since nT/dj is constant, the cross'fL temperature of the non-irradiated area also rises rapidly. By measuring the AC temperature at a predetermined position in the non-irradiated area in this manner, it can be determined whether or not there is infrared absorption in the light-irradiated area. By using a boundary scanning means such as a micrometer 5, the value of l can be made as small as possible and its detection sensitivity can be increased. By scanning the wavelength of infrared rays, an AC temperature spectrum is obtained corresponding to the absorption of infrared rays.

第8図はこの発明の実施例に係るポリカーボネ−ト薄膜
の交流温度スペクトルを示す線図である。
FIG. 8 is a diagram showing an AC temperature spectrum of a polycarbonate thin film according to an embodiment of the present invention.

不規則多角形の試料薄膜(3μ厚)のほぼ中央部に熱電
対を接着して交流温度を測定した。赤外吸収があると温
度上昇がおこるのでピークは上向きに出る。第10図は
透過法によるポリカーボネート薄膜の赤外吸収標準スペ
クトルである0両者のスペクトルの波数(波長の逆数)
はよく一致している。
A thermocouple was attached to approximately the center of an irregular polygonal sample thin film (3 μm thick) to measure the alternating current temperature. When there is infrared absorption, the temperature rises, so the peak appears upward. Figure 10 shows the infrared absorption standard spectrum of a polycarbonate thin film measured by the transmission method.The wave number (reciprocal of the wavelength) of both spectra is shown in Figure 10.
are in good agreement.

第9図は非晶質シリコン膜の交流温度スペクトルを示す
線図である。波数630(cll−’)に5i−Hのロ
ッキングによる赤外吸収に対応する交流温度が、波数2
080(am−’)に5i−Hのストレッチングによる
赤外吸収に対応する交流温度が示される。この赤外吸収
による交流温度は非晶質シリコン膜をシリコンウェハ 
(厚さ300 Pa)上に0.5μ厚に積層して赤外吸
収による交流温度を測定し、次に同一ロットのシリコン
ウェハのみの赤外吸収による交流温度を測定し、両スペ
クトルの差から非晶質シリコン膜の交流温度スペクトル
のみを検出することによって得ることができる。非晶質
シリコン膜の交流温度スペクトルにより、非晶質シリコ
ン膜の製造条件についての知見を得ることができる。
FIG. 9 is a diagram showing an AC temperature spectrum of an amorphous silicon film. The AC temperature corresponding to infrared absorption due to the locking of 5i-H at wave number 630 (cll-') is
The AC temperature corresponding to the infrared absorption due to stretching of 5i-H is shown at 080 (am-'). The alternating current temperature caused by this infrared absorption causes the amorphous silicon film to melt into a silicon wafer.
(thickness: 300 Pa) to measure the AC temperature due to infrared absorption, and then measure the AC temperature due to infrared absorption of only silicon wafers from the same lot, and from the difference between the two spectra. It can be obtained by detecting only the AC temperature spectrum of the amorphous silicon film. The AC temperature spectrum of the amorphous silicon film provides knowledge about the manufacturing conditions of the amorphous silicon film.

波数の走査は常法により波数カムやコセカントバー機構
によって行うことができる0分光器としては回折格子が
用いられる。
Scanning of the wave number can be performed by a conventional method using a wave number cam or a cosecant bar mechanism. A diffraction grating is used as the zero spectrometer.

測定可能な薄膜の厚さは従来の赤外分光分析においては
数−〜敗10nの範囲に制限されるが本発明の方法によ
る場合は最大5鶴位迄の試料について適用可能となる。
In conventional infrared spectroscopy, the measurable thickness of a thin film is limited to a range of several to ten nanometers, but the method of the present invention can be applied to samples of up to five nanometers.

〔発明の効果〕〔Effect of the invention〕

この発明によれば 1)薄膜の面内欠陥評価方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に一定振巾の光エネルギを断続的に照射し、光
照射部と非照射部の交流温度を測定し、光照射部の交2
it温度を基準とする非照射部の交流温度の分布を求め
、この温度分布の勾配の変化から欠陥位置を検知し 2)薄膜の面内欠陥を評価する装置において、薄膜を光
照射する光源と、該光源からの光を任意の周期で断続す
るチ四ンパと、薄膜に照射される光の一部分を遮蔽して
薄膜に直線状境界部を有する光照射部と非照射部とを形
成させるマスク部材と、光路中に設置され該照射光の断
続周期を検知する光センサと、薄膜の前記光照射部と非
照射部の温度を検知するとともに光照射部と非照射部の
温度出力の極性を相互に逆に接続した温度センサと、該
温度センサの出力から前記光センサの検知した断続周期
と同一周波数の交流温度成分を分離しかつ増幅するロッ
クインアンプと、薄膜につき光照射部と非照射部の前記
直線状境界部を移動させる境界部走査手段と、薄膜の前
記光照射部の交流温度を基準として前記非照射部の交流
温度を測定しかつ交流温度分布を求める温度センサ走査
手段とを備え、 3)薄膜の赤外分光分析方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に分光された一定i幅でかつ所定波長の赤外線
を断続的に照射し、前記非照射部における所定位置の交
流温度をロックインアンプで増幅して交流温度スペクト
ルを求め、4)薄膜の赤外分光分析を行う装置において
、薄膜を光照射する光源と、この光源からの光を分光し
て所定波長の赤外線を薄膜に送る分光器と、この赤外線
を任意の周期で断続するチッッパと、薄膜に照射される
赤外線の一部分を遮蔽して薄膜に直線状境界部を有する
光照射部と非照射部とを形成させるマスク部材と、光路
中に設置され照射される赤外線の断続周期を検知する光
センサと、薄膜の前記非照射部における所定位置の交流
温度を検知する温度センサと、この温度センサの出力か
ら前記光センサの検知した断続周期と同一周波数の交流
温度成分を分離しかつ増幅するロックインアンプと、薄
膜につき光照射部と非照射部の前記直線状境界部を移動
させる境界部走査手段とを備え、5)薄膜の赤外分光分
析方法において、特定層を含む多層f1膜の交流温度ス
ペクトルと特定層を含まない多層¥iIMの交流温度ス
ペクトルの差から特定層の交流温度スペクトルを求める
、ので温度分布の勾配の変化は熱拡散率の変化に対応し
、熱拡散率の変化は広範な種類の欠陥によってひきおこ
されさらに温度分布の測定は容易に行われるから、温度
分布の勾配ア蔭化によって種々のタイプの欠陥を含む)
II!*一般につきその面内欠陥を迅速に評価すること
が可能となる。また温度センサ走査手段によって交流温
度分布の測定が極めて容易となり、本装置によって面内
欠陥の評価が一層迅速化される。
According to the present invention, 1) In a method for evaluating in-plane defects in a thin film, light energy of a constant amplitude is intermittently applied to a light irradiation area of a thin film that is partitioned into a light irradiation area and a non-irradiation area by a scannable linear boundary. The AC temperature of the light irradiated part and the non-irradiated part was measured.
2) In an apparatus for evaluating in-plane defects in a thin film, a light source that irradiates the thin film with light is used. , a mask that cuts off the light from the light source at an arbitrary period, and a mask that blocks a portion of the light irradiated onto the thin film to form a light irradiated part and a non-irradiated part having linear boundaries in the thin film. a member, an optical sensor installed in the optical path to detect the intermittent cycle of the irradiated light, and a light sensor that detects the temperature of the light irradiated part and the non-irradiated part of the thin film and determines the polarity of the temperature output of the light irradiated part and the non-irradiated part. temperature sensors connected in reverse to each other, a lock-in amplifier that separates and amplifies an AC temperature component having the same frequency as the intermittent cycle detected by the optical sensor from the output of the temperature sensor, and a light irradiated part and a non-irradiated part of the thin film. boundary part scanning means for moving the linear boundary part of the thin film; and temperature sensor scanning means for measuring the AC temperature of the non-irradiated part and determining the AC temperature distribution based on the AC temperature of the light irradiation part of the thin film. 3) In a thin film infrared spectroscopic analysis method, infrared rays of a predetermined wavelength and a constant i width are dispersed into a light irradiated part of a thin film that is partitioned into a light irradiated part and a non-irradiated part by a scannable linear boundary part. 4) A light source that irradiates the thin film with light in an apparatus that performs infrared spectroscopic analysis of the thin film; , a spectrometer that splits the light from this light source and sends infrared rays of a predetermined wavelength to the thin film, a chipper that cuts off the infrared rays at an arbitrary cycle, and a chipper that intercepts a portion of the infrared rays that are irradiated to the thin film and directs the infrared rays to the thin film in a straight line. a mask member that forms a light irradiation part and a non-irradiation part having a shaped boundary part; an optical sensor installed in an optical path to detect the intermittent cycle of the irradiated infrared rays; and an alternating current at a predetermined position in the non-irradiation part of the thin film. A temperature sensor that detects temperature, a lock-in amplifier that separates and amplifies an AC temperature component having the same frequency as the intermittent cycle detected by the optical sensor from the output of this temperature sensor, and a thin film that separates the light irradiated part and the non-irradiated part. 5) a method for infrared spectroscopic analysis of a thin film, the AC temperature spectrum of the multilayer f1 film including the specific layer and the AC temperature of the multilayer iIM not including the specific layer; The AC temperature spectrum of a specific layer is determined from the difference in spectra, so changes in the slope of temperature distribution correspond to changes in thermal diffusivity, and changes in thermal diffusivity are caused by a wide variety of defects, and further measurements of temperature distribution (including various types of defects due to gradient ablation of temperature distribution, which is easily done)
II! *In general, it is possible to quickly evaluate in-plane defects. Furthermore, the temperature sensor scanning means makes it extremely easy to measure the AC temperature distribution, and the present device further speeds up the evaluation of in-plane defects.

また非照射部における交流温度は光照射部における赤外
吸収量に比例するので非照射部の交流温度スペクトルを
測定することにより薄膜の赤外吸収分光分析を行うこと
ができる。この際交流温度の測定は薄膜−触に適用でき
かつ容易に行えるから、交流温度スペクトルを測定する
ことによって薄膜一般につき形状、材料の制約を受ける
ことなく、迅速かつ容易に赤外分光分析を行うことが可
能となる。厚さの制約が少ないという効果も得られる。
Furthermore, since the AC temperature in the non-irradiated area is proportional to the amount of infrared absorption in the light-irradiated area, infrared absorption spectroscopic analysis of the thin film can be performed by measuring the AC temperature spectrum of the non-irradiated area. In this case, measurement of AC temperature can be applied to thin films and can be easily performed, so by measuring AC temperature spectrum, infrared spectroscopy can be performed quickly and easily without being constrained by the shape or material of thin films in general. becomes possible. The effect of having fewer restrictions on thickness can also be obtained.

交流温度スペクトルを測定する装置は従来のような精密
光学部品や高感度の検出器を必要とせず装置の低価格化
が図れる。
The device that measures AC temperature spectra does not require precision optical components or highly sensitive detectors as in the past, making it possible to reduce the cost of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る面内欠陥評価方法を説
明する要部側面配置図、第2図はこの発明の実施例に係
る面内欠陥評価方法を説明する要部平面配置図、第3図
はこの発明の実施例に係る面内欠陥を評価する装置の要
部破断斜視図、第4図はこの発明の他の実施例に係る面
内欠陥を評価する装置の要部破断斜視図、第5図はこの
発明の実施例の交流温度分布を示し、第5図1b+はメ
ソシュ線図、第5図1b+は陰影図、第5図1cIは等
高線図、第6図はこの発明の実施例に係る赤外分光分析
方法を示す要部側面配置図、第7図はこの発明の実施例
に係る赤外分光分析方法を示す要部平面配置図、第8図
はこの発明の実施例に係るポリカーボネート*Wiの交
流温度スペクトルを示す線図、第9図はこの発明の実施
例に係る非晶質シリコン薄膜の交流温度スペクトルを示
す線図、第10図はポリカーボネート薄膜につき従来の
赤外線吸収スペクトルを示す線図である。 tzi膜、2:マスク部材、3:チッソパ、4:光源、
5:マイクロメータ、6.6A、 6Bj熱電対、7:
光センサ、8;ロックインアンプ、9:分光器、to:
x−yステージ、11:ロンドレンズ、12ニスリツト
、105:マイクロメータ、106:フォトダイオード
アレイ、110 7 Xステージ、13:温度センサ走
査手段。 第1図 第2図 第 図 第 図 第 図 第 図 第10図 欠′P心
FIG. 1 is a side view of the main parts explaining the in-plane defect evaluation method according to the embodiment of the present invention, FIG. 2 is a plan view of the main parts explaining the in-plane defect evaluation method according to the embodiment of the invention, FIG. 3 is a cutaway perspective view of a main part of an apparatus for evaluating in-plane defects according to an embodiment of the present invention, and FIG. 4 is a cutaway perspective view of a main part of an apparatus for evaluating in-plane defects according to another embodiment of the present invention. Figure 5 shows the AC temperature distribution of the embodiment of this invention, Figure 5 1b+ is a Mesosch diagram, Figure 5 1b+ is a shading diagram, Figure 5 1cI is a contour diagram, and Figure 6 is a diagram of this invention. FIG. 7 is a side layout diagram of essential parts showing an infrared spectroscopic analysis method according to an embodiment of the invention, FIG. 7 is a plan layout diagram of essential parts showing an infrared spectroscopy method according to an embodiment of the present invention, and FIG. FIG. 9 is a diagram showing the AC temperature spectrum of the amorphous silicon thin film according to the embodiment of the present invention, and FIG. 10 is a diagram showing the AC temperature spectrum of the polycarbonate thin film according to the present invention. It is a diagram showing a spectrum. tzi film, 2: mask member, 3: tzisopa, 4: light source,
5: Micrometer, 6.6A, 6Bj thermocouple, 7:
Optical sensor, 8; Lock-in amplifier, 9: Spectrometer, to:
xy stage, 11: Rondo lens, 12 Nislit, 105: micrometer, 106: photodiode array, 1107 X stage, 13: temperature sensor scanning means. Fig. 1 Fig. 2 Fig. 2 Fig. Fig. Fig. 10 (not shown)

Claims (1)

【特許請求の範囲】 1)薄膜の面内欠陥評価方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に一定振巾の光エネルギを断続的に照射し、光
照射部と非照射部の交流温度を測定し、光照射部の交流
温度を基準とする非照射部の交流温度の分布を求め、こ
の温度分布の勾配の変化から欠陥位置を検知することを
特徴とする薄膜の面内欠陥評価方法。 2)薄膜の面内欠陥を評価する装置において、薄膜を光
照射する光源と、該光源からの光を任意の周期で断続す
るチョッパと、薄膜に照射される光の一部分を遮蔽して
薄膜に直線状境界部を有する光照射部と非照射部とを形
成させるマスク部材と、光路中に設置され該照射光の断
続周期を検知する光センサと、薄膜の前記光照射部と非
照射部の温度を検知するとともに光照射部と非照射部の
温度出力の極性を相互に逆に接続した温度センサと、該
温度センサの出力から前記光センサの検知した断続周期
と同一周波数の交流温度成分を分離しかつ増幅するロッ
クインアンプと、薄膜につき光照射部と非照射部の前記
直線状境界部を移動させる境界部走査手段と、薄膜の前
記光照射部の交流温度を基準として前記非照射部の交流
温度を測定しかつ交流温度分布を求める温度センサ走査
手段とを備えることを特徴とする薄膜の面内欠陥を評価
する装置。 3)薄膜の赤外分光分析方法において、走査可能な直線
状境界部により光照射部と非照射部に仕切られた薄膜の
光照射部に分光された一定振巾でかつ所定波長の赤外線
を断続的に照射し、前記非照射部における所定位置の交
流温度をロックインアンプで増幅して交流温度スペクト
ルを求めることを特徴とする薄膜の赤外分光分析方法。 4)薄膜の赤外分光分析を行う装置において、薄膜を光
照射する光源と、この光源からの光を分光して所定波長
の赤外線を薄膜に送る分光器と、この赤外線を任意の周
期で断続するチョッパと、薄膜に照射される赤外線の一
部分を遮蔽して薄膜に直線状境界部を有する光照射部と
非照射部とを形成させるマスク部材と、光路中に設置さ
れ照射される赤外線の断続周期を検知する光センサと、
薄膜の前記非照射部における所定位置の交流温度を検知
する温度センサと、この温度センサの出力から前記光セ
ンサの検知した断続周期と同一周波数の交流温度成分を
分離しかつ増幅するロックインアンプと、薄膜につき光
照射部と非照射部の前記直線状境界部を移動させる境界
部走査手段とを備えることを特徴とする薄膜の赤外分光
分析を行う装置。 5)薄膜の赤外分光分析方法において、特定層を含む多
層薄膜の交流温度スペクトルと特定層を含まない多層薄
膜の交流温度スペクトルの差から特定層の交流温度スペ
クトルを求めることを特徴とする請求項3記載の薄膜の
赤外分光分析方法。
[Claims] 1) In a method for evaluating in-plane defects in a thin film, light energy of a constant amplitude is applied intermittently to a light irradiated area of a thin film that is partitioned into a light irradiated area and a non-irradiated area by a scannable linear boundary. The AC temperature of the light irradiated area and the non-irradiated area is measured, the AC temperature distribution of the non-irradiated area is calculated based on the AC temperature of the light irradiated area, and the defect location is determined from the change in the gradient of this temperature distribution. A method for evaluating in-plane defects in thin films characterized by detecting. 2) In an apparatus for evaluating in-plane defects in a thin film, there is a light source that irradiates the thin film with light, a chopper that cuts off the light from the light source at an arbitrary period, and a chopper that cuts off a part of the light that is irradiated to the thin film. A mask member that forms a light irradiation part and a non-irradiation part having a linear boundary part, an optical sensor installed in an optical path and detecting the intermittent cycle of the irradiation light, and a thin film between the light irradiation part and the non-irradiation part. A temperature sensor that detects temperature and connects the polarity of the temperature output of a light irradiation part and a non-irradiation part with each other in reverse, and an AC temperature component having the same frequency as the intermittent cycle detected by the light sensor from the output of the temperature sensor. a lock-in amplifier for separating and amplifying; a boundary scanning means for moving the linear boundary between the light irradiated part and the non-irradiated part of the thin film; 1. A device for evaluating in-plane defects in a thin film, comprising: a temperature sensor scanning means for measuring an AC temperature of a substrate and determining an AC temperature distribution. 3) In an infrared spectroscopic analysis method for a thin film, infrared rays of a constant amplitude and a predetermined wavelength are intermittently applied to the light irradiated part of the thin film, which is divided into a light irradiated part and a non-irradiated part by a scannable linear boundary part. A method for infrared spectroscopic analysis of a thin film, characterized in that the AC temperature at a predetermined position in the non-irradiated area is amplified by a lock-in amplifier to obtain an AC temperature spectrum. 4) In an apparatus that performs infrared spectroscopic analysis of thin films, there is a light source that irradiates the thin film, a spectrometer that spectrally specifies the light from this light source and sends infrared rays of a predetermined wavelength to the thin film, and this infrared ray is intermittent at an arbitrary period. a chopper that shields a portion of the infrared rays irradiated to the thin film to form a light irradiated part and a non-irradiated part having linear boundaries in the thin film, and a mask member that is installed in the optical path and interrupts the irradiated infrared rays. An optical sensor that detects the cycle,
a temperature sensor that detects the AC temperature at a predetermined position in the non-irradiated portion of the thin film; and a lock-in amplifier that separates and amplifies an AC temperature component having the same frequency as the intermittent cycle detected by the optical sensor from the output of the temperature sensor. An apparatus for performing infrared spectroscopic analysis of a thin film, comprising a boundary scanning means for moving the linear boundary between the light irradiated part and the non-irradiated part of the thin film. 5) A method for infrared spectroscopic analysis of a thin film, characterized in that the AC temperature spectrum of a specific layer is determined from the difference between the AC temperature spectrum of a multilayer thin film containing the specific layer and the AC temperature spectrum of a multilayer thin film that does not include the specific layer. Item 3. The method for infrared spectroscopic analysis of a thin film according to item 3.
JP1268743A 1988-10-27 1989-10-16 Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus Pending JPH02193050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1268743A JPH02193050A (en) 1988-10-27 1989-10-16 Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27166788 1988-10-27
JP63-271667 1988-10-27
JP1268743A JPH02193050A (en) 1988-10-27 1989-10-16 Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus

Publications (1)

Publication Number Publication Date
JPH02193050A true JPH02193050A (en) 1990-07-30

Family

ID=26548458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1268743A Pending JPH02193050A (en) 1988-10-27 1989-10-16 Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPH02193050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880436A (en) * 2015-04-30 2015-09-02 华侨大学 Film high-temperature photoelectric physical property testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880436A (en) * 2015-04-30 2015-09-02 华侨大学 Film high-temperature photoelectric physical property testing device

Similar Documents

Publication Publication Date Title
JP5980822B2 (en) How to do surface inspection
US6376852B2 (en) Surface inspection using the ratio of intensities of s—and p-polarized light components of a laser beam reflected a rough surface
JPH0684942B2 (en) A device for determining both thickness and composition variables of thin layer samples.
US9080944B2 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
US4149805A (en) Method and apparatus for measuring kerogen content of oil shale
US4682897A (en) Light scattering measuring apparatus
JPH02193050A (en) Evaluation of defect within surface of thin film and infrared spectral analysis method and apparatus
JP2777147B2 (en) Surface analyzer
JPH06118009A (en) Foreign matter inspecting device and method therefor
US20210164906A1 (en) Raman spectroscopy based measurement system
JP5576135B2 (en) Pattern inspection method and apparatus
JP2850856B2 (en) Interface analysis method
JPS61137047A (en) Apparatus for measuring scattering of light
JPS61137048A (en) Apparatus for measuring scattering of light
KR101234603B1 (en) Apparatus for testing test-sample surface defect using raman scattering and method for testing test-sample surface defect using raman scattering
JPS61173171A (en) Method for measuring resistivity of semiconductor wafer
JPS61137045A (en) Apparatus for measuring light scattering
JP3840503B2 (en) X-ray analysis method and apparatus
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPH04172207A (en) Apparatus of light interference type for measuring film thickness
Minato et al. Infrared absorption measurement using the photothermal deflection effect of thallium bromide iodide (KRS-5): Examination of basic characteristics
JPH02107952A (en) X-ray diffraction measurement for powder
JPH04329347A (en) Thin film sample x-ray diffracting device
JPH09304309A (en) Method and device for analyzing substrate surface
JPS61137044A (en) Apparatus for measuring light scattering