JPH02192714A - Formation of resist pattern - Google Patents
Formation of resist patternInfo
- Publication number
- JPH02192714A JPH02192714A JP1209489A JP1209489A JPH02192714A JP H02192714 A JPH02192714 A JP H02192714A JP 1209489 A JP1209489 A JP 1209489A JP 1209489 A JP1209489 A JP 1209489A JP H02192714 A JPH02192714 A JP H02192714A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electron beam
- resist
- coated
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000015572 biosynthetic process Effects 0.000 title 1
- 238000010894 electron beam technology Methods 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000000206 photolithography Methods 0.000 claims description 2
- 239000010408 film Substances 0.000 abstract description 13
- 238000005530 etching Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 11
- 239000006096 absorbing agent Substances 0.000 abstract description 9
- 239000010409 thin film Substances 0.000 abstract description 6
- 230000001681 protective effect Effects 0.000 abstract description 4
- 229920003986 novolac Polymers 0.000 abstract description 3
- 230000002238 attenuated effect Effects 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 abstract description 2
- 239000004926 polymethyl methacrylate Substances 0.000 abstract description 2
- 238000000609 electron-beam lithography Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- -1 WSi Chemical class 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、l、 SI(Large 5cale In
tegration)、超LSI等の高密度集積回路の
回路パターンを電子ビーム描画により形成する際のレジ
ストパターン形成方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to l, SI (Large 5cal In
The present invention relates to a method for forming a resist pattern when forming a circuit pattern for a high-density integrated circuit such as a VLSI or a VLSI by electron beam writing.
近年、半導体集積回路の高性能化、高集積度化への要求
はますます増大しておりt そのために、従来の紫外線
を用いたフォトリソグラフィーに代わって、電子線を用
いるリソグラフィーにより超微細なパターンを形成する
加工技術の確立が要請されている。そして、特にフォト
マスクに関しては、既に電子線リソラグラフイー法によ
る製造が工業的に実用化されており、また、ウェハ基板
への電子線の直接描画も試みられている。In recent years, demands for higher performance and higher integration of semiconductor integrated circuits have been increasing. Therefore, instead of conventional photolithography using ultraviolet rays, lithography using electron beams has been used to create ultra-fine patterns. There is a need to establish processing technology to form . Particularly with respect to photomasks, production by electron beam lithography has already been put into practical use industrially, and attempts have also been made to directly write electron beams onto wafer substrates.
一方、超微細パターンを形成する電子線リソグラフィー
技術を可能とするためには、電子線露光装置に要求され
る描画精度も厳しくなり、使用されるレジスト材料も要
求される描画精度に対応した特性を存するものでなけれ
ばならず、また、レジストプロセスも非常に重要となっ
てくる。On the other hand, in order to enable electron beam lithography technology that forms ultra-fine patterns, the drawing precision required of electron beam exposure equipment has become stricter, and the resist materials used must also have characteristics that correspond to the required drawing precision. Furthermore, the resist process is also very important.
レジストプロセスの中で、電子線描画時に起こるパター
ン形状の描画精度低下の原因として、近接効果、レジス
トヒーティング効果、チャージアップ効果等の影響が知
られているが、特に、レジストパターンの線幅が設計値
からずれる原因としては、近接効果の影響が大きいと考
えられている。In the resist process, proximity effects, resist heating effects, charge-up effects, etc. are known to be causes of deterioration in pattern drawing accuracy that occurs during electron beam lithography. It is believed that the proximity effect is a major cause of the deviation from the design value.
近接効果の影響は、電子ビームの後方散乱に起因すると
考えられるため、従来は、基板と電子線レジストの間に
緩衝層を形成することにより、当該後方散乱した電子を
吸収減衰する方法が一般的に採用されていた。The influence of the proximity effect is thought to be caused by backscattering of the electron beam, so the conventional method is to absorb and attenuate the backscattered electrons by forming a buffer layer between the substrate and the electron beam resist. It was adopted by
しかしながら、基板が重原子もしくは密度の高い材料よ
り構成されている場合には、電子ビームの後方散乱が非
常に多くなるために、緩衝層を設けるだけでは後方散乱
した電子を十分に吸収減衰することが難しいという問題
があった。However, if the substrate is made of heavy atoms or a material with high density, the backscatter of the electron beam will be extremely large, so simply providing a buffer layer will not be sufficient to absorb and attenuate the backscattered electrons. The problem was that it was difficult.
本発明は、上記の課題を解決するものであって、レジス
トパターン形成工程において、基板上に重原子からなる
材料を塗布し、重原子もしくは密度の高い材料からなる
中間層を成膜し、さらに電子線レジストを塗布すること
により、電子ビーム描画時に重原子もしくは密度の高い
材料より構成される基板にて後方散乱された電子が重原
子もしくは密度の高い材料からなる中間層により散乱さ
れることにより、近接効果を低減させたレジストパター
ン形成を可能にすることを特徴とするものである。The present invention solves the above problems, and includes coating a material made of heavy atoms on a substrate in a resist pattern forming process, forming an intermediate layer made of heavy atoms or a material with high density, and further By applying an electron beam resist, electrons backscattered by a substrate made of heavy atoms or a high-density material during electron beam writing are scattered by an intermediate layer made of a heavy atom or a high-density material. , which is characterized by making it possible to form a resist pattern with reduced proximity effects.
なお、電子線レジストの膜厚は0.05〜3μm1
重原子もしくは密度の高い材料からなる中間層の材質と
してはN Au1 Ta1 W等の重金属、WNl
WSi等の化合物を用い、膜厚は0.01〜0.5μm
とし、基板上の重原子からなる塗布材料としては、ノボ
ラック系レジスト、ポリイミド等を用いて、0.3〜3
μmの膜厚とし、基板としては、Au1Tas wN
WN等で形成された、所定の薄膜を存するX線マス
ク基板またはGaASウェハ基板であることが望ましい
。The film thickness of the electron beam resist is 0.05 to 3 μm1.
Examples of the material of the intermediate layer made of heavy atoms or high-density materials include heavy metals such as N Au1 Ta1 W, WN1
Using a compound such as WSi, the film thickness is 0.01 to 0.5 μm
As a coating material made of heavy atoms on the substrate, a novolak resist, polyimide, etc.
The film thickness is μm, and the substrate is Au1Tas wN.
It is preferable to use an X-ray mask substrate or a GaAS wafer substrate on which a predetermined thin film is formed, such as WN.
本発明によれば、基板上に重原子からなる材料を塗布し
、重原子もしくは密度の高い材料からなる中間層を成膜
し、さらにその上に電子線レジストを塗布したので、近
接効果の影響を低減させることができるものである。According to the present invention, a material made of heavy atoms is coated on a substrate, an intermediate layer made of heavy atoms or a high-density material is formed, and an electron beam resist is further coated on top of the intermediate layer. It is possible to reduce the
以下、図面を参照しつつ本発明の1実施例について説明
するが、以下の実施例においては、重合属のX線吸収体
層を有するX線マスクの製造の例を取り上げる。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiment, an example of manufacturing an X-ray mask having a polymeric X-ray absorber layer will be taken up.
第1図(a)〜(f)は、本発明のレジストパターンの
形成方法を採用したX線マスクの製造工程におけるX線
マスクの断面図であり、図中、1はSiウェーハ基板、
2はX線透過性薄膜、3はエツチング保護膜、4はX線
吸収体層、5は電子線緩衝層、6は中間層、7は電子線
レジスト、8は電子線、9は窓を示す。FIGS. 1(a) to 1(f) are cross-sectional views of an X-ray mask in the manufacturing process of an X-ray mask employing the resist pattern forming method of the present invention, in which 1 is a Si wafer substrate;
2 is an X-ray transparent thin film, 3 is an etching protective film, 4 is an X-ray absorber layer, 5 is an electron beam buffer layer, 6 is an intermediate layer, 7 is an electron beam resist, 8 is an electron beam, and 9 is a window. .
まず、第1図(a)に示すように、鏡面研磨された厚さ
2曹喋のSiウェハ基板1の両面にCVD法により厚さ
1μmのSiN膜を形成し、その上面側にはX線透過性
薄膜2を、下面側にはエツチング保護膜3をそれぞれ形
成する。なお、当該エツチング保護膜3は、フォトレジ
ストパターンをマスクにして不要部をエツチング除去す
ることにより形成することができる。First, as shown in FIG. 1(a), a SiN film with a thickness of 1 μm is formed on both sides of a mirror-polished Si wafer substrate 1 with a thickness of 2 μm by the CVD method, and the upper surface side is coated with X-rays. A transparent thin film 2 and an etching protection film 3 are formed on the lower surface side. Note that the etching protection film 3 can be formed by etching away unnecessary portions using a photoresist pattern as a mask.
その後、上面側のX線透過性薄膜2の上に、Ta膜等か
らなる厚さ1μmのX線吸収体層4をスパッタリング法
により形成し、該X線吸収体層4の上にノボラック系フ
ォトレジスト、例えばヘキスト製AZ−1350、を1
μm塗布して電子線緩衝層5を形成し、更に該電子線緩
衝層5の上にTa膜からなる厚さ0.1μmの中間層6
をスパッタリング法により形成した後、該中間層6の上
に、ポリメチルメタアクリレートを主成分とする電子線
レジスト7、例えば東京応化製0EBR−1000、を
0.5μm厚に塗布する。Thereafter, an X-ray absorber layer 4 made of a Ta film or the like with a thickness of 1 μm is formed on the X-ray transparent thin film 2 on the upper surface side by sputtering, and a novolac-based photoreceptor layer 4 is formed on the X-ray absorber layer 4. 1 resist, such as Hoechst AZ-1350.
μm coating to form an electron beam buffer layer 5, and further on the electron beam buffer layer 5, an intermediate layer 6 made of Ta film with a thickness of 0.1 μm.
After forming by sputtering method, an electron beam resist 7 containing polymethyl methacrylate as a main component, such as 0EBR-1000 manufactured by Tokyo Ohka Co., Ltd., is applied to a thickness of 0.5 μm on the intermediate layer 6.
その後、加速電圧20kVで加速した電子線8により電
子線描画を行う。Thereafter, electron beam lithography is performed using the electron beam 8 accelerated at an acceleration voltage of 20 kV.
このときの電子の軌跡を第2図に示す。即ち、入射した
電子10は、X線吸収体層4の境界面で反射したり、ま
たX線吸収体層4に衝突して2次電子を生成するが、当
該反射電子、2次電子は走行過程でエネルギーが減衰さ
れ、中間層6で再び反射されるので、電子線レジスト7
まで到達することはない。このことで、電子の後方散乱
により引き起される近接効果の影響を低減することがで
きる。Figure 2 shows the trajectory of the electrons at this time. That is, the incident electrons 10 are reflected at the boundary surface of the X-ray absorber layer 4 or collide with the X-ray absorber layer 4 to generate secondary electrons, but the reflected electrons and secondary electrons do not travel. During the process, the energy is attenuated and reflected again by the intermediate layer 6, so that the electron beam resist 7
It will never reach that point. This makes it possible to reduce the influence of the proximity effect caused by backscattering of electrons.
次に、第1図(b)に示すように、電子線レジスドアを
現像後、レジストパターンをマスクにしてRI E (
Reactive fan Etchlng)装置を使
用し、CF4プラズマにより、中間層6をエツチング除
去した後、第1図(C)に示すように、中間層6からな
るパターンをマスクにしてRIE装置を使用し、02プ
ラズマにより電子線緩衝層5をエツチング除去すると共
に、中間層6上の電子線レジスト7をも除去する。Next, as shown in FIG. 1(b), after developing the electron beam resist door, RIE (
After removing the intermediate layer 6 by etching with CF4 plasma using a reactive fan etching (reactive fan etching) device, as shown in FIG. The electron beam buffer layer 5 is etched away using plasma, and the electron beam resist 7 on the intermediate layer 6 is also removed.
次に、第1図(d)に示すように、電子線緩衝層5から
なるパターンをマスクにしてRIE装置を使用し、CF
4プラズマによりX線吸収体層4をエツチング除去する
と共に、電子線緩衝層5の上の中間層6を除去した後、
第1図(e)に示すように、RIE装置を使用し、o2
プラズマにより電子線緩衝層5を灰化除去する。Next, as shown in FIG. 1(d), an RIE apparatus is used with the pattern of the electron beam buffer layer 5 as a mask, and the CF
4. After etching and removing the X-ray absorber layer 4 with plasma and removing the intermediate layer 6 on the electron beam buffer layer 5,
As shown in FIG. 1(e), using an RIE device, o2
The electron beam buffer layer 5 is ashed and removed by plasma.
最後に、第1図(f)に示すように、30%KOH水溶
液により裏面のエツチング保護膜3をマスクとしてNS
Iウェハ基板1を裏面からエツチングすることにより窓
9を形成すれば、所望のパターンを有するX線マスクを
製造することができる。Finally, as shown in FIG. 1(f), the NS is etched with a 30% KOH aqueous solution using the etching protective film 3 on the back side as a mask.
If the windows 9 are formed by etching the I-wafer substrate 1 from the back side, an X-ray mask having a desired pattern can be manufactured.
なお、以上の実施例においてはX線マスクの製造を例に
あげたが、本発明は上記実施例に限定されるものではな
く、G a A s基板等を電子ビーム描画により作成
する場合等、電子線フォ) IJソゲラフイーにより多
層製版する場合に一般的に適用することができるもので
あることは明かであろう。In the above embodiments, the production of an X-ray mask was taken as an example, but the present invention is not limited to the above embodiments, and may be applied to cases where a GaAs substrate or the like is produced by electron beam lithography, etc. It is clear that this method can be generally applied to multilayer plate making using IJ sogelafy.
以上の説明から明らかなように、本発明によれば電子線
の後方散乱の大きい基板上にレジスト・パターンを形成
する場合に、近接効果の影響を低減できるという利点を
仔するものである。As is clear from the above description, the present invention has the advantage that the influence of the proximity effect can be reduced when a resist pattern is formed on a substrate where electron beam backscattering is large.
第1図は本発明によるX線マスクの製造工程を示す図、
第2図は電子の軌跡を示す図である。
1・・・Siウェーハ基板、2・・・X線透過性薄膜、
3・・・エツチング保護膜、4・・・X線吸収体層、5
・・・電子線緩衝層、6・・・中間層、7・・・電子線
レジスト、8・・・電子線、9・・・窓、10・・・電
子軌跡。
出 願 人 大日本印刷株式会社FIG. 1 is a diagram showing the manufacturing process of an X-ray mask according to the present invention,
FIG. 2 is a diagram showing the trajectory of electrons. 1...Si wafer substrate, 2...X-ray transparent thin film,
3... Etching protective film, 4... X-ray absorber layer, 5
...Electron beam buffer layer, 6... Intermediate layer, 7... Electron beam resist, 8... Electron beam, 9... Window, 10... Electron trajectory. Applicant: Dai Nippon Printing Co., Ltd.
Claims (1)
パターンを形成する工程において、該基板上に軽原子か
らなる材料を塗布し、更にその上に重原子もしくは密度
の高い材料からなる中間層を成膜し、さらにその上に電
子線レジストを塗布することを特徴とするレジストパタ
ーンの形成方法。(1) In the process of forming a desired pattern on a substrate by electron beam photolithography, a material made of light atoms is applied onto the substrate, and an intermediate layer made of heavy atoms or a high-density material is further formed on top of the material. A method for forming a resist pattern, which further comprises applying an electron beam resist thereon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209489A JPH02192714A (en) | 1989-01-20 | 1989-01-20 | Formation of resist pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209489A JPH02192714A (en) | 1989-01-20 | 1989-01-20 | Formation of resist pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02192714A true JPH02192714A (en) | 1990-07-30 |
Family
ID=11795987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1209489A Pending JPH02192714A (en) | 1989-01-20 | 1989-01-20 | Formation of resist pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02192714A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7038204B2 (en) | 2004-05-26 | 2006-05-02 | International Business Machines Corporation | Method for reducing proximity effects in electron beam lithography |
JP2006310598A (en) * | 2005-04-28 | 2006-11-09 | Nippon Hoso Kyokai <Nhk> | Thin-film pattern forming method, thin-film laminate and tunnel magnetoresistive element |
JP2006310597A (en) * | 2005-04-28 | 2006-11-09 | Nippon Hoso Kyokai <Nhk> | Thin-film pattern forming method, coating material, thin-film laminate and tunnel magnetoresistive element |
CN106531722A (en) * | 2016-11-15 | 2017-03-22 | 中国科学院物理研究所 | Self-aligned double-layer pattern structure and method for manufacturing same |
-
1989
- 1989-01-20 JP JP1209489A patent/JPH02192714A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7038204B2 (en) | 2004-05-26 | 2006-05-02 | International Business Machines Corporation | Method for reducing proximity effects in electron beam lithography |
JP2006310598A (en) * | 2005-04-28 | 2006-11-09 | Nippon Hoso Kyokai <Nhk> | Thin-film pattern forming method, thin-film laminate and tunnel magnetoresistive element |
JP2006310597A (en) * | 2005-04-28 | 2006-11-09 | Nippon Hoso Kyokai <Nhk> | Thin-film pattern forming method, coating material, thin-film laminate and tunnel magnetoresistive element |
CN106531722A (en) * | 2016-11-15 | 2017-03-22 | 中国科学院物理研究所 | Self-aligned double-layer pattern structure and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5362591A (en) | Mask having a phase shifter and method of manufacturing same | |
US6645677B1 (en) | Dual layer reticle blank and manufacturing process | |
JP2004134553A (en) | Process for forming resist pattern and process for fabricating semiconductor device | |
EP0907105A2 (en) | Method for fabricating photomasks having a phase shift layer | |
JPS6339892B2 (en) | ||
US6100010A (en) | Photoresist film and method for forming pattern thereof | |
JPH02192714A (en) | Formation of resist pattern | |
US6383693B1 (en) | Method of forming a photomask utilizing electron beam dosage compensation method employing dummy pattern | |
JPH09218500A (en) | Manufacture of resist patterns | |
JPS623257A (en) | Formation of mask pattern and mask base used for it | |
JP3222531B2 (en) | Method for manufacturing photomask having phase shift layer | |
WO1983003485A1 (en) | Electron beam-optical hybrid lithographic resist process | |
JPH06110214A (en) | Formation of resist pattern | |
US20060040216A1 (en) | Method of patterning photoresist film | |
JP2002305135A (en) | Forming method for resist pattern | |
JPS6339893B2 (en) | ||
JP2752022B2 (en) | Fine pattern forming method | |
JP3161416B2 (en) | Pattern drawing method | |
JP2010153641A (en) | Method for processing substrate | |
JPS62241338A (en) | Pattern formation | |
JP2003167351A (en) | Resist pattern forming method | |
JPH10312994A (en) | Manufacture of semiconductor device | |
JP2607460B2 (en) | Exposure method | |
JP2783973B2 (en) | Method of manufacturing mask for X-ray lithography | |
JPH04258109A (en) | Device and method for x-ray exposure |