[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0219848B2 - - Google Patents

Info

Publication number
JPH0219848B2
JPH0219848B2 JP56140927A JP14092781A JPH0219848B2 JP H0219848 B2 JPH0219848 B2 JP H0219848B2 JP 56140927 A JP56140927 A JP 56140927A JP 14092781 A JP14092781 A JP 14092781A JP H0219848 B2 JPH0219848 B2 JP H0219848B2
Authority
JP
Japan
Prior art keywords
ion exchange
fluorine
membrane
group
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56140927A
Other languages
Japanese (ja)
Other versions
JPS5842626A (en
Inventor
Yoshio Oda
Takeshi Morimoto
Koji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56140927A priority Critical patent/JPS5842626A/en
Publication of JPS5842626A publication Critical patent/JPS5842626A/en
Publication of JPH0219848B2 publication Critical patent/JPH0219848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含フツ素イオン交換樹脂膜の製法に
関し、更に詳しく言えば特定の無機微細物を均一
混合して含フツ素イオン交換樹脂を製膜すること
からなる改良された含フツ素イオン交換樹脂膜の
製法に関する。 従来より、水、酸又はアルカリ水溶液、ハロゲ
ン化アルカリ又は炭酸アルカリ水溶液の如き水性
溶液などの電解方法が種々提案されている。かか
る水性溶液、なかでも塩化アルカリ水溶液を電解
して苛性アルカリと塩素とを得る方法は近年公害
防止の見地から水銀法に代り隔膜法が、そして更
に高純度、高濃度の苛性アルカリを高効率で得る
目的でイオン交換膜を用いる方法が実用化されて
いる。 一方、省エネルギーの観点からこの種の電解に
おいては、電解電圧を極力低くすることが要求さ
れ、そのための種々の手段が提案されている。例
えば、含フツ素イオン交換樹脂膜の一方の面にガ
ス及び液透過性の多孔質の陽極及び陰極をそれぞ
れ密接せしめて電解する所謂SPE(Solid
Polymer Electrolyte)型電解法(例えば特開昭
53−52297号公報、特開昭52−78788号公報などを
参照)が知られている。また、少なくとも片面が
粗面である含フツ素イオン交換樹脂膜を使用し、
該粗面を陰極側に向けて配置する方法(特開昭55
−110786号公報などを参照)も提案されている。
更に、電極として作用しないガス及び液透過性の
多孔質層を表面に形成した含フツ素イオン交換樹
脂膜を使用する方法が、特開昭56−75583号公報
などに提案されている。 本発明者は、含フツ素イオン交換樹脂に炭化ケ
イ素、酸化チタンの如き無機物微細粒子を特定割
合で均一混合して製膜することにより、意外なこ
とに次の事項を見出した。即ち、かかる無機微細
物を均一混合して得られるブレンド膜は、これを
使用した電解槽の槽電圧を低減し得るものであ
る。更に、かかるブレンド膜は膜表面の親水性が
増大するとともに膜の機械的強度が著しく向上す
るという利点がある。 かくして本発明は、イオン交換基を有する含フ
ツ素イオン交換樹脂を製膜することからなる含フ
ツ素イオン交換樹脂膜の製法において、周期律表
−B族または鉄族金属の元素の酸化物からなる
無機微細物を、前記含フツ素イオン交換樹脂100
重量部当たり0.5〜50重量部を均一混合して製膜 本発明においては、無機微細物を特定割合で含
フツ素イオン交換樹脂に均一混合して製膜するこ
とが重要である。無機微細物の混合割合は含フツ
素イオン交換樹脂100重量部当り0.5〜50重量部、
好ましくは5〜30重量部の範囲から選定される。
無機微細物の混合割合が余りに少なすぎる場合に
は、本発明における電解電圧低減などの前記効果
が僅少となり、また余りに多すぎる場合には含フ
ツ素イオン交換膜としての各種電解性能が損なわ
れる傾向が増大すると共に、電解電圧についても
逆に増加してしまうという難点が認められる。そ
して、無機微細物は均一混合されていることが重
要であり、かかる均一混合の観点から粒子径0.1
〜100ミクロン、好ましくは0.1〜50ミクロンの微
細粒子あるいは径0.1〜100ミクロン、好ましくは
0.1〜50ミクロン、長さ1ミクロン〜5mmの微細
繊維が採用される。 前記無機微細物については、これら微細粒子或
は微細繊維がブレンドされた含フツ素イオン交換
樹脂膜の使用目的や使用条件等に応じて選定さ
れ、なかでも耐食性の観点から、周期律表−B
族(好ましくは、チタン、ジルコニウム、ハフニ
ウム)又は鉄族金属(好ましくは鉄、コバルト、
ニツケル)の元素の酸化物が使用される。その具
体例としては、TiO2、ZrO2、Fe2O3、Fe3O4等が
挙げられる。 本発明において、含フツ素イオン交換樹脂とし
ては、カルボン酸基、スルホン酸基、リン酸基、
フエノール性水酸基などのイオン交換基を有する
含フツ素重合体からなる樹脂が好ましい。かかる
樹脂としては例えばテトラフルオロエチレン、ク
ロロトリフルオロエチレンなどのビニルモノマー
と、スルホン酸、カルボン酸、リン酸基などのイ
オン交換基含有フルオロビニルモノマーとの共重
合体構造をするものが好ましい。 特に以下の(イ),(ロ)の構造からなる重合体の使用
が好ましい。 ここでXはF,Cl,H又は−CF3であり、X′は
X又はCF3(CF2)−nであり、mは1〜5であり、
Yは次のものから選ばれる。 (−CF2)−xA、−O(−−CF2)−xA、
The present invention relates to a method for producing a fluorine-containing ion exchange resin membrane, and more specifically, an improved fluorine-containing ion exchange method that involves uniformly mixing specific inorganic fine substances to form a fluorine-containing ion exchange resin membrane. Concerning a method for manufacturing a resin film. Conventionally, various electrolysis methods have been proposed using water, an aqueous acid or alkali solution, an aqueous solution such as an alkali halide or an alkali carbonate solution, and the like. In recent years, from the viewpoint of pollution prevention, the diaphragm method has been used instead of the mercury method to obtain caustic alkali and chlorine by electrolyzing such aqueous solutions, especially aqueous alkaline chloride solutions. A method using an ion exchange membrane has been put into practical use for the purpose of obtaining this. On the other hand, from the viewpoint of energy saving, it is required in this type of electrolysis to lower the electrolysis voltage as much as possible, and various means for this purpose have been proposed. For example, so-called SPE (Solid Solid
Polymer Electrolyte) type electrolysis method (for example, JP-A-Sho
53-52297, JP-A-52-78788, etc.) are known. In addition, a fluorine-containing ion exchange resin membrane with at least one rough surface is used,
A method of arranging the rough surface toward the cathode side (Japanese Patent Application Laid-open No. 1983
-Refer to Publication No. 110786, etc.) have also been proposed.
Further, a method of using a fluorine-containing ion exchange resin membrane having a gas- and liquid-permeable porous layer formed on its surface that does not function as an electrode has been proposed in Japanese Patent Application Laid-open No. 75583/1983. The present inventor unexpectedly discovered the following by forming a film by uniformly mixing inorganic fine particles such as silicon carbide and titanium oxide with a fluorine-containing ion exchange resin in a specific ratio. That is, a blend film obtained by uniformly mixing such inorganic fine substances can reduce the cell voltage of an electrolytic cell using the blend film. Furthermore, such a blend membrane has the advantage that the hydrophilicity of the membrane surface is increased and the mechanical strength of the membrane is significantly improved. Thus, the present invention provides a method for producing a fluorine-containing ion-exchange resin membrane, which comprises forming a film of a fluorine-containing ion-exchange resin having an ion-exchange group, from an oxide of a group B or iron group metal in the periodic table. The inorganic fine particles are added to the fluorine-containing ion exchange resin 100.
Forming a film by uniformly mixing 0.5 to 50 parts by weight per part by weight In the present invention, it is important to form a film by uniformly mixing inorganic fines in a specific ratio with a fluorine-containing ion exchange resin. The mixing ratio of inorganic fines is 0.5 to 50 parts by weight per 100 parts by weight of fluorine-containing ion exchange resin.
It is preferably selected from a range of 5 to 30 parts by weight.
If the mixing ratio of the inorganic fine particles is too small, the above-mentioned effects such as reducing the electrolytic voltage in the present invention will be slight, and if it is too large, the various electrolytic performances of the fluorine-containing ion exchange membrane will tend to be impaired. There is a problem in that as the voltage increases, the electrolytic voltage also increases. It is important that the inorganic fine particles are mixed uniformly, and from the viewpoint of such uniform mixing, the particle size is 0.1
Fine particles of ~100 microns, preferably 0.1-50 microns or diameters of 0.1-100 microns, preferably
Fine fibers of 0.1 to 50 microns and lengths of 1 micron to 5 mm are used. The above-mentioned inorganic fine particles are selected depending on the purpose and conditions of use of the fluorine-containing ion exchange resin membrane blended with these fine particles or fine fibers.
(preferably titanium, zirconium, hafnium) or iron group metals (preferably iron, cobalt,
Oxides of the elements (nickel) are used. Specific examples include TiO 2 , ZrO 2 , Fe 2 O 3 , Fe 3 O 4 and the like. In the present invention, the fluorine-containing ion exchange resin includes carboxylic acid groups, sulfonic acid groups, phosphoric acid groups,
A resin made of a fluorine-containing polymer having an ion exchange group such as a phenolic hydroxyl group is preferred. Such a resin preferably has a copolymer structure of a vinyl monomer such as tetrafluoroethylene or chlorotrifluoroethylene and a fluorovinyl monomer containing an ion exchange group such as a sulfonic acid, carboxylic acid, or phosphoric acid group. In particular, it is preferable to use polymers having the following structures (a) and (b). where X is F, Cl, H or -CF3 , X' is X or CF3 ( CF2 ) -n , m is 1 to 5,
Y is selected from the following: ( -CF2 ) -x A, -O(-- CF2 ) -x A,

【式】−CF2−O(−−CF2)−xA、[Formula] −CF 2 −O(−−CF 2 ) − x A,

【式】【formula】

x,y,zは、ともに0〜10であり、Z,Rf
は−F又は炭素数1〜10のパーフルオロアルキル
基から選ばれる。また、Aは−SO3M,−COOM
又は加水分解によりこれらの基に転化しうる−
SO2F,−CN,−COOF又は−COORであり、Mは
水素又はアルカリ金属、Rは炭素数1〜10のアル
キル基を示す。 本発明における含フツ素イオン交換樹脂膜はイ
オン交換容量が好ましくは0.5〜4.0ミリ当量/グ
ラム乾燥樹脂、特には0.8〜2.0ミリ当量/グラム
乾燥樹脂であるのが好ましい。かかるイオン交換
容量を与えるため、上記(イ)及び(ロ)の重合単位から
なる共重合体からなるイオン交換樹脂膜の場合、
好ましくは(ロ)の重合単位が好ましくは1〜40モル
%、特には3〜25モル%であるのが適当である。 本発明で使用される含フツ素イオン交換樹脂膜
は、必ずしも一種の重合体から形成する必要はな
く、また一種類のイオン交換基だけを有する必要
はない。例えば、イオン交換容量として二種類の
重合体を併用しても良く、カルボン酸基などの弱
酸性交換基とスルホン酸基などの強酸性交換基と
を併用したイオン樹脂膜であつても良い。 前記無機微細物と含フツ素イオン交換樹脂と
は、均一混合され製膜される。製膜は従来より公
知乃至周知の種々の方法にて行なわれ得る。ま
た、かかる特定ブレンド膜は必要により好ましく
はポリテトラフルオロエチレンなどの含フツ素重
合体からなる布、網などの織物、不織布、又は金
属製のメツシユ、多孔体などで補強することがで
きる。そして、本発明の特定ブレンド膜の厚みは
通常は20〜500μ、好ましくは50〜400μにせしめ
られる。 本発明において、無機微細物と含フツ素イオン
交換樹脂との均一混合、製膜は前記の如く各種手
段にて行なわれる。例えば、含フツ素イオン交換
樹脂の水性デイスパージヨンや有機溶液、デイス
パージヨンなどを使用して無機微細物との均一混
合を湿式で行なつたり、無機微細物が混合された
かかる有機溶液、デイスパージヨンなどからキヤ
スト法などで製膜することなども可能である。勿
論、ドライブレンド方式の採用やブレンド物を加
熱熔融成形により製膜することもできる。後者の
加熱熔融成形による製膜の際に、含フツ素イオン
交換樹脂はその有するイオン交換基の分解を招か
ないような適宜のイオン交換基の形態、例えばカ
ルボン酸基のときは酸又はエステル型で行なうの
が好ましく、またスルホン酸基のときは−SO2F
型で行なうのが好ましい。さらには、ブレンド物
を予め加熱熔融成形してペレツト化しそれを押出
し成形やプレス成形により製膜することもでき
る。 特定ブレンド膜は、各種の電解において広範囲
に使用されるが、かかる際には、いずれの形式の
電極も使用される。例えば、多孔板、網又はエキ
スパンデツドメタルなどの空〓性電極が使用され
る。空〓性電極としては長径1.0〜10mm、短径0.5
〜10mm、線径0.1〜1.3mm、開孔率30〜90%のエキ
スパンデツドメタルが例示される。また、複数の
板状電極も使用することもできるが空隙度の違う
複数板の電極を使用して空隙度の小さいものを膜
に近い側に使用するのが好ましい。 陽極材質としては、通常白金族金属、その導電
性酸化物又はその導電性還元酸化物等が使用さ
れ、一方陰極としては白金族金属、その導電性酸
化物又は鉄族金属等が使用される。なお、白金族
金属としては白金、ロジウム、ルテニウム、パラ
ジウム、リジウムが例示され、また鉄族金属とし
ては、鉄、コバルト、ニツケル、ラネーニツケ
ル、安定化ラネーニツケル、ステンレス、アルカ
リエツチングステンレス(特公昭54−19229号公
報)、ラネーニツケルメツキ陰極(特開昭54−
112785号公報)、ロダンニツケルメツキ陰極(特
開昭53−115676号公報等)が例示される。 空隙性の金属を使用する場合は、該電極は上記
陽極又は陰極を形成する物質それ自体からこれを
形成することができる。しかし、白金族金属又は
その導電性酸化物等を使用するときには通常チタ
ンやタンタルなどの弁金属のエキスパンデツドメ
タルの表面にこれらの物質を被覆せしめて形成す
るのが好ましい。 本発明において電極を配置する場合、電極は特
定ブレンド膜に接触して配置しても、また適宜の
間隔をおいて配置してもよい。金属はむしろイオ
ン交換膜面に強固に押圧するよりも、電極はイオ
ン交換膜面に例えば0〜2.0Kg/cm2にて好ましくは
緩かに押接される。 本発明のブレンド膜を使用した電解槽は、単極
型でも複極型でもよい。また電解槽を構成する材
料は、例えば塩化アルカリ水溶液の電解の場合に
は陽極室の場合には、塩化アルカリ水溶液及び塩
素に耐性があるもの例えば弁金属、チタンが使用
され、陰極室の場合には水酸化アルカリ及び水素
に耐性がある鉄、ステンレス又はニツケルなど使
用される。 本発明のブレンド膜を使用して塩化アルカリ水
溶液の電解を行なうプロセス条件としては、既知
の条件が採用できる。例えば陽極室には好ましく
は2.5〜5.0規定(N)の塩化アルカリ水溶液を供
給し、陰極室には水又は稀釈水酸化アルカリを供
給し、好ましくは80℃〜120℃、電流密度10〜100
A/dm2で電解される。かかる場合、塩化アルカリ
水溶液中のカルシウム及びマグネシウムなどの重
金属イオンは、イオン交換膜の劣化を招くので、
可及的に小さくせしめるのが好ましい。また陽極
における酸素の発生を極力防止するために塩酸な
どの酸を塩化アルカリ水溶液に添加することがで
きる。 以上は、主に塩化アルカリ水溶液の電解の例に
ついて本発明の特定ブレンド膜の使用を説明した
が、水、ハロゲン膜(塩酸、臭化水素酸)、炭酸
アルカリの電解に対しても同様に適用できること
はもちろんである。また、イオン交換膜を使用す
る有機化合物の各種電解合成反応での隔膜として
も適用され得る。 次に、本発明の実施例について更に具体的に説
明するが、かかる説明によつて本発明が何ら限定
されるものでないことは勿論である。尚、実施例
中の部は、特に明示しない限り重量部である。 実施例 1 粒径25μ以下の酸化鉄粉末1部、テトラフルオ
ロエチレンとCF2=CFO(CF23COOCH3との共
重合体からなるイオン交換容量が1.43meq/g乾
燥樹脂であるイオン交換樹脂粉末9部、およびメ
タノール50部を自動乳鉢を用いて1時間混合した
後、乾燥させて酸化鉄粉末とイオン交換樹脂粉末
からなる混合粉末を得た。 該混合粉末をプレス成型機を用いて温度220℃
で製膜し、厚さ300μを有するイオン交換膜を得
た。 該イオン交換膜を90℃、25重量%の苛性ソーダ
水溶液中に16時間浸漬して前記イオン膜を加水分
解した。 その後、イオン交換膜の陽極側にチタンのエキ
スパンデツドメタル(短径2.5mm、長径5mm)に
酸化ルテニウム、酸化イリジウム、酸化チタンの
固溶体を被覆した低い塩素過電圧を有する陽極
を、またイオン交換膜の陰極側にSUS−304エキ
スパンデツドメタル(短径2.5mm、長径5mm)を
52%の苛性ソーダ水溶液中、150℃で52時間エツ
チング処理し低い水素過電圧を有するようにした
陰極を加圧接触させ、陽極室に5N−NaCl水溶液
を陰極室に水を供給しつつ陽極室の塩化ナトリウ
ム濃度を4規定に、また陰極液の苛性ソーダ濃度
を35重量%に保ちつつ90℃で電解を行ない以下の
結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.84 40 3.23 60 3.60 また、電流密度40A/dm2における苛性ソーダ生
成の電流効率は92%であつた。さらに、電流密度
40A/dm2で1ケ月電解を続けたところ槽電圧はほ
ぼ一定であつた。 比較例 実施例1において、酸化鉄粉末をブレンドする
ことなくイオン交換樹脂粉末からのみ製膜した厚
さ300μのイオン交換膜を用いた以外は実施例1
と同様にして電解槽を組み立て、且つ食塩水溶液
の電解を行なつて以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 3.07 40 3.50 60 3.90 また、電流密度40A/dm2における苛性ソーダ生
成の電流効率は94%であつた。 実施例 2 実施例1において、酸化鉄粉末0.5部およびイ
オン交換樹脂粉末9.5部を用いた以外は実施例1
と同様な方法で製膜し、且つ同様な条件で電解し
以下の結果を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.95 40 3.37 60 3.72 また、電流密度40A/dm2における苛性ソーダ生
成の電流効率は92.5%であつた。 実施例 3 実施例1において酸化鉄粉末のかわりに、粒径
25μ以下の酸化ジルコニウムを用いた以外は、実
施例1と同様な方法及び条件で電解し以下の結果
を得た。 電流密度(A/dm2) 槽電圧(V) 20 2.92 40 3.30 60 3.64 また、電流密度40A/dm2における苛性ソーダ生
成の電流効率は92%であつた。 実施例 4 実施例1において、酸化鉄粉末のかわりに平均
フアイバーの長さ1.6mm、径3ミクロンの酸化ジ
ルコニウムフアイバーを用いた以外は実施例1と
同様な方法及び条件で電解し、以下の結果を得
た。 電流密度(A/dm2) 槽電圧(V) 20 2.96 40 3.40 60 3.84 また、電流密度40A/dm2における苛性ソーダ生
成の電流効率は92.5%であつた。
x, y, z are all 0 to 10, and Z, R f
is selected from -F or a perfluoroalkyl group having 1 to 10 carbon atoms. Also, A is −SO 3 M, −COOM
or can be converted into these groups by hydrolysis -
SO 2 F, -CN, -COOF or -COOR, M represents hydrogen or an alkali metal, and R represents an alkyl group having 1 to 10 carbon atoms. The fluorine-containing ion exchange resin membrane of the present invention preferably has an ion exchange capacity of 0.5 to 4.0 meq/g dry resin, particularly preferably 0.8 to 2.0 meq/g dry resin. In order to provide such an ion exchange capacity, in the case of an ion exchange resin membrane made of a copolymer consisting of the polymerized units of (a) and (b) above,
Preferably, the amount of polymerized units (b) is preferably 1 to 40 mol%, particularly 3 to 25 mol%. The fluorine-containing ion exchange resin membrane used in the present invention does not necessarily need to be formed from one type of polymer, nor does it need to have only one type of ion exchange group. For example, two types of polymers may be used in combination for the ion exchange capacity, or an ionic resin membrane may be used in combination with a weakly acidic exchange group such as a carboxylic acid group and a strongly acidic exchange group such as a sulfonic acid group. The inorganic fine particles and the fluorine-containing ion exchange resin are uniformly mixed to form a film. Film formation can be performed by various conventionally known methods. Further, the specific blend membrane can be reinforced, if necessary, with a cloth, a woven fabric such as a net, a nonwoven fabric, a metal mesh, a porous body, etc., preferably made of a fluorine-containing polymer such as polytetrafluoroethylene. The thickness of the specific blend film of the present invention is usually 20 to 500μ, preferably 50 to 400μ. In the present invention, uniform mixing of the inorganic fine particles and the fluorine-containing ion exchange resin and film formation are carried out by various means as described above. For example, using an aqueous dispersion, an organic solution, a dispersion, etc. of a fluorine-containing ion exchange resin, homogeneous mixing with inorganic fines is carried out in a wet manner, or such an organic solution mixed with inorganic fines, It is also possible to form a film from a dispersion or the like by a casting method. Of course, it is also possible to form a film by employing a dry blending method or by heat-melting a blended product. In the latter case, when forming a film by hot melt molding, the fluorine-containing ion exchange resin has an appropriate form of ion exchange group that does not cause decomposition of the ion exchange group it has, for example, an acid or ester type in the case of a carboxylic acid group. In the case of a sulfonic acid group, −SO 2 F
It is preferable to do this in a mold. Furthermore, the blend may be heated and melt-molded to form pellets, and the pellets may be formed into a film by extrusion molding or press molding. Special blend membranes are used extensively in various electrolysis applications, in which either type of electrode may be used. For example, a hollow electrode such as a perforated plate, mesh or expanded metal is used. As a hollow electrode, the major axis is 1.0 to 10 mm, and the minor axis is 0.5 mm.
An example is expanded metal with a wire diameter of ~10 mm, a wire diameter of 0.1 to 1.3 mm, and a porosity of 30 to 90%. Although a plurality of plate-shaped electrodes may be used, it is preferable to use a plurality of plate electrodes with different porosity, with the one with the smaller porosity being used on the side closer to the membrane. As the anode material, a platinum group metal, its conductive oxide, or its conductive reduced oxide, etc. are usually used, while as the cathode, a platinum group metal, its conductive oxide, or an iron group metal, etc. are used. Examples of platinum group metals include platinum, rhodium, ruthenium, palladium, and rhidium, and examples of iron group metals include iron, cobalt, nickel, Raney nickel, stabilized Raney nickel, stainless steel, and alkali-etched stainless steel (Special Publication No. 54-19229). (Japanese Patent Application Laid-Open No. 1983-1999)
112785) and a Rodan-Nickelmecki cathode (Japanese Patent Application Laid-Open No. 115676/1983). If a porous metal is used, the electrode may be formed from the material itself forming the anode or cathode. However, when platinum group metals or conductive oxides thereof are used, it is preferable to coat the surface of an expanded valve metal such as titanium or tantalum with these substances. In the case of arranging electrodes in the present invention, the electrodes may be arranged in contact with the specific blend film, or may be arranged at appropriate intervals. Rather than firmly pressing the metal against the ion exchange membrane surface, the electrode is preferably gently pressed against the ion exchange membrane surface at, for example, 0 to 2.0 kg/cm 2 . The electrolytic cell using the blend membrane of the present invention may be of a monopolar type or a bipolar type. In addition, in the case of electrolysis of an aqueous alkali chloride solution, for example, materials resistant to aqueous alkali chloride and chlorine are used for the anode chamber, such as valve metal and titanium, and for the cathode chamber. Iron, stainless steel, or nickel, which are resistant to alkali hydroxide and hydrogen, are used. Known conditions can be employed as process conditions for electrolyzing an aqueous alkali chloride solution using the blend membrane of the present invention. For example, an aqueous alkali chloride solution of 2.5 to 5.0 normal (N) is preferably supplied to the anode chamber, and water or diluted alkali hydroxide is supplied to the cathode chamber, preferably at a temperature of 80°C to 120°C and a current density of 10 to 100°C.
Electrolyzed at A/dm 2 . In such cases, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane;
It is preferable to make it as small as possible. Further, in order to prevent the generation of oxygen at the anode as much as possible, an acid such as hydrochloric acid can be added to the aqueous alkali chloride solution. The above describes the use of the specific blend membrane of the present invention mainly for the example of electrolysis of an aqueous alkali chloride solution, but it is equally applicable to the electrolysis of water, halogen membranes (hydrochloric acid, hydrobromic acid), and alkali carbonate. Of course it is possible. It can also be applied as a diaphragm in various electrolytic synthesis reactions of organic compounds using ion exchange membranes. Next, examples of the present invention will be described in more detail, but it goes without saying that the present invention is not limited by such explanations. Incidentally, parts in the examples are parts by weight unless otherwise specified. Example 1 Ion exchange consisting of 1 part of iron oxide powder with a particle size of 25μ or less, a copolymer of tetrafluoroethylene and CF 2 = CFO (CF 2 ) 3 COOCH 3 with an ion exchange capacity of 1.43 meq/g dry resin 9 parts of resin powder and 50 parts of methanol were mixed for 1 hour using an automatic mortar and then dried to obtain a mixed powder consisting of iron oxide powder and ion exchange resin powder. The mixed powder is heated to 220℃ using a press molding machine.
An ion exchange membrane having a thickness of 300μ was obtained. The ion exchange membrane was immersed in a 25% by weight aqueous sodium hydroxide solution at 90° C. for 16 hours to hydrolyze the ion exchange membrane. Then, on the anode side of the ion exchange membrane, an anode with a low chlorine overvoltage made of expanded titanium metal (2.5 mm short axis, 5 mm long axis) coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide was installed on the anode side of the ion exchange membrane. SUS-304 expanded metal (short diameter 2.5 mm, long diameter 5 mm) is placed on the cathode side of the
The cathode, which has been etched at 150°C for 52 hours in a 52% caustic soda aqueous solution to have a low hydrogen overvoltage, is brought into contact with pressure, and the anode chamber is chlorinated while supplying a 5N-NaCl aqueous solution to the anode chamber and water to the cathode chamber. Electrolysis was carried out at 90°C while maintaining the sodium concentration at 4N and the caustic soda concentration in the catholyte at 35% by weight, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.84 40 3.23 60 3.60 Furthermore, the current efficiency of caustic soda generation at a current density of 40 A/dm 2 was 92%. Furthermore, the current density
When electrolysis was continued for one month at 40 A/dm 2 , the cell voltage remained almost constant. Comparative Example Example 1 except that a 300μ thick ion exchange membrane formed only from ion exchange resin powder without blending iron oxide powder was used in Example 1.
An electrolytic cell was assembled in the same manner as above, and a saline solution was electrolyzed to obtain the following results. Current density (A/dm 2 ) Cell voltage (V) 20 3.07 40 3.50 60 3.90 Furthermore, the current efficiency of caustic soda generation at a current density of 40 A/dm 2 was 94%. Example 2 Example 1 except that 0.5 parts of iron oxide powder and 9.5 parts of ion exchange resin powder were used in Example 1.
A film was formed in the same manner as above and electrolyzed under the same conditions, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.95 40 3.37 60 3.72 Furthermore, the current efficiency for caustic soda generation at a current density of 40 A/dm 2 was 92.5%. Example 3 In Example 1, instead of iron oxide powder, particle size
Electrolysis was carried out in the same manner and under the same conditions as in Example 1, except that zirconium oxide of 25μ or less was used, and the following results were obtained. Current density (A/dm 2 ) Cell voltage (V) 20 2.92 40 3.30 60 3.64 Furthermore, the current efficiency of caustic soda generation at a current density of 40 A/dm 2 was 92%. Example 4 Electrolysis was carried out in the same manner and under the same conditions as in Example 1, except that zirconium oxide fibers with an average fiber length of 1.6 mm and a diameter of 3 microns were used instead of iron oxide powder, and the following results were obtained. I got it. Current density (A/dm 2 ) Cell voltage (V) 20 2.96 40 3.40 60 3.84 Furthermore, the current efficiency of caustic soda production at a current density of 40 A/dm 2 was 92.5%.

Claims (1)

【特許請求の範囲】 1 イオン交換基を有する含フツ素イオン交換樹
脂を製膜することからなる含フツ素イオン交換樹
脂膜の製法において、周期律表−B族または鉄
族金属の元素の酸化物からなる無機微細物を、前
記含フツ素イオン交換樹脂100重量部当り0.5〜50
重量部を均一混合して製膜することを特徴とする
含フツ素イオン交換樹脂膜の製法。 2 無機微細物が0.1〜100ミクロンの粒子径を有
する微細粒子である特許請求の範囲第1項記載の
製法。 3 無機微細物が0.1〜100ミクロン、長さ1ミク
ロン〜5mmの微細粒子である特許請求の範囲第1
項記載の製法。 4 イオン交換基がカルボン酸型、スルホン酸
型、又はリン酸型のイオン交換基である特許請求
の範囲第1項記載の製法。
[Scope of Claims] 1. A method for producing a fluorine-containing ion-exchange resin membrane comprising forming a fluorine-containing ion-exchange resin having an ion-exchange group, the oxidation of a group B or iron group metal in the periodic table. 0.5 to 50 parts by weight of inorganic fine matter consisting of
A method for producing a fluorine-containing ion exchange resin membrane, which is characterized in that the membrane is formed by uniformly mixing parts by weight. 2. The manufacturing method according to claim 1, wherein the inorganic fine particles are fine particles having a particle size of 0.1 to 100 microns. 3. Claim 1 in which the inorganic fine particles are fine particles of 0.1 to 100 microns and 1 micron to 5 mm in length.
Manufacturing method described in section. 4. The production method according to claim 1, wherein the ion exchange group is a carboxylic acid type, sulfonic acid type, or phosphoric acid type ion exchange group.
JP56140927A 1981-09-09 1981-09-09 Production of fluorine-containing ion exchange resin membrane Granted JPS5842626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140927A JPS5842626A (en) 1981-09-09 1981-09-09 Production of fluorine-containing ion exchange resin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140927A JPS5842626A (en) 1981-09-09 1981-09-09 Production of fluorine-containing ion exchange resin membrane

Publications (2)

Publication Number Publication Date
JPS5842626A JPS5842626A (en) 1983-03-12
JPH0219848B2 true JPH0219848B2 (en) 1990-05-07

Family

ID=15280046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140927A Granted JPS5842626A (en) 1981-09-09 1981-09-09 Production of fluorine-containing ion exchange resin membrane

Country Status (1)

Country Link
JP (1) JPS5842626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045044B2 (en) 2000-09-27 2006-05-16 Asahi Kasei Chemicals Corporation Dispersion composition containing perfluorocarbon-based copolymer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135434A (en) * 1983-12-23 1985-07-18 Agency Of Ind Science & Technol Ion exchange membrane-metal composite membrane, its production and use
EP0192143B1 (en) * 1985-02-09 1996-01-10 Asahi Kasei Kogyo Kabushiki Kaisha Permeable polymer membrane for desiccation of gas
JP3827018B2 (en) * 1995-03-20 2006-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Membrane containing inorganic filler and membrane-electrode assembly and electrochemical cell using the same
JP5119046B2 (en) * 2008-05-27 2013-01-16 トヨタ自動車株式会社 POLYMER ELECTROLYTE MEMBRANE MANUFACTURING METHOD AND SOLID POLYMER TYPE FUEL CELL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045044B2 (en) 2000-09-27 2006-05-16 Asahi Kasei Chemicals Corporation Dispersion composition containing perfluorocarbon-based copolymer

Also Published As

Publication number Publication date
JPS5842626A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
EP0029751B1 (en) Ion exchange membrane cell and electrolytic process using thereof
EP0045603B2 (en) Ion exchange membrane cell and electrolytic process using the same
NL8005092A (en) ELECTROLYSIS CELL AND METHOD FOR ELECTROLYZING ALKALINE METAL CHLORIDE SOLUTIONS.
EP0165466B1 (en) Cation exchange fluoropolymer membrane
EP0166166B1 (en) Process for producing potassium hydroxide
US4604323A (en) Multilayer cation exchange membrane
JPH0219848B2 (en)
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
EP0139133A1 (en) Electrolytic cell for the electrolysis of an alkali metal chloride
JPH01242794A (en) Production of sodium hydroxide
JPS6317913B2 (en)
JPS60243292A (en) Manufacture of caustic soda of high concentration
US4610764A (en) Electrolytic cation exchange membrane
JP3112039B2 (en) How to restart the electrolytic cell
JPH0668033B2 (en) Improved cation exchange membrane for electrolysis
JPS58157825A (en) Preparation of fluorine-containing ion exchange membrane
JPS6341989B2 (en)
JPS6125787B2 (en)
JPS61235587A (en) Electrolyzing method
EP0189056A1 (en) Method for restoring the current efficiency
JPS6044333B2 (en) Method for manufacturing fluorine-containing ion exchange resin membrane
JPS6343474B2 (en)
JPS6123876B2 (en)
JPS6259186B2 (en)