[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02197816A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH02197816A
JPH02197816A JP1016163A JP1616389A JPH02197816A JP H02197816 A JPH02197816 A JP H02197816A JP 1016163 A JP1016163 A JP 1016163A JP 1616389 A JP1616389 A JP 1616389A JP H02197816 A JPH02197816 A JP H02197816A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
display
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1016163A
Other languages
Japanese (ja)
Other versions
JP2555176B2 (en
Inventor
Junichi Hirakata
純一 平方
Shinichi Komura
真一 小村
Kazuyuki Funahata
一行 舟幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1016163A priority Critical patent/JP2555176B2/en
Publication of JPH02197816A publication Critical patent/JPH02197816A/en
Application granted granted Critical
Publication of JP2555176B2 publication Critical patent/JP2555176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form background and display parts which are colorless and to allow black and white and color displays as well as to improve a high contrast ratio and the dependency of a display characteristic on a visual angle by approximately equaling the dependency on wavelengths of the phase difference between a liquid crystal element and a double refractive film. CONSTITUTION:A twisted nematic liquid crystal having a twisted structure is disposed between an upper substrate 5 and lower substrate 8 consisting of light transparent glass plates. Polarizing plates 1, 10 are disposed on the outside surfaces of the upper substrate 5 and the lower substrate 8 and the double refractive film 3 is disposed between the upper substrate 5 and the upper polarizing plate 1. Further, an external light source 12 is disposed on the outside surface of the lower polarizing plate 10, by which the liquid crystal display element is constituted. Phase correction is executed in the entire wavelength region by using the double refractive film 3 which has the dependency on wavelengths approximately equal to the dependency of liquid crystal molecules on wavelengths and realizes the black and white display. Since the phase correction is executed in the entire wavelength region, the colors of the background and display parts are made colorless and, therefore, the black and white and color displays are enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置に係り、特に優れた時分割駆動特
性を有し、かつ白黒及びカラー表示が可能な電界効果型
の液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal display device, and particularly relates to a field-effect liquid crystal display device that has excellent time-division driving characteristics and is capable of black-and-white and color display. .

〔従来の技術〕[Conventional technology]

従来、時分割駆動特性を有する液晶表示装置は、背景あ
るいは表示の少なくとも一方が着色し、白黒表示ができ
なかった。
Conventionally, in liquid crystal display devices having time-division driving characteristics, at least one of the background and the display is colored, and black and white display cannot be performed.

しかし近年、液晶表示装置の画質の改善と表示情報量の
増大に対する要求が厳しくなっており、要求仕様は白黒
表示、さらにはカラー表示へと移行している。このため
第2図において示す素子構造のように、液晶素子を二層
構造とし、二つの素子間で液晶層の厚みd(μm)と液
晶の屈折率の異方性Δnの積Δn−dを等しくし、液晶
分子のねじれを表わすツイスト角を等しくし、しかもね
じり方向を逆とした。これにより、第3図に液晶素子の
偏光状態を示すように9.液晶素子に入射した直線偏光
は1位相差を生じ楕円偏光となるが、逆ねじりの液晶素
子を配置することにより、位相補正が成され再び直線偏
光となり、白黒表示が可能となる(奥付、永田、和田:
テレビジョン学会技術報告、11.p79.1987年
)。
However, in recent years, demands for improving the image quality and increasing the amount of display information of liquid crystal display devices have become stricter, and the required specifications are shifting from black-and-white display to color display. For this reason, as in the device structure shown in Fig. 2, the liquid crystal device has a two-layer structure, and the product Δn-d of the thickness d (μm) of the liquid crystal layer and the anisotropy Δn of the refractive index of the liquid crystal is calculated between the two devices. The twist angles representing the twist of the liquid crystal molecules were made equal, and the twist directions were reversed. As a result, the polarization state of the liquid crystal element is shown in FIG. 9 as shown in FIG. Linearly polarized light incident on a liquid crystal element produces a one phase difference and becomes elliptically polarized light, but by arranging a liquid crystal element with an opposite twist, the phase is corrected and becomes linearly polarized light again, making black and white display possible (colophon, Nagata ,Wada:
Television Society Technical Report, 11. p79.1987).

一方、複屈折性フィルムを用いて、位相補正を行い白黒
表示を実現する方法も提案されている(長江、平方、小
村:テレビジョン学会技術報告。
On the other hand, a method has also been proposed that uses a birefringent film to perform phase correction and achieve black-and-white display (Nagae, Hirata, and Komura: Technical Report of the Television Society of Japan).

12、 p29〜34.1988年)。12, p29-34.1988).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、液晶表示装置として、液晶素子を二枚
用いる必要があり、量産性が低かった。
The above conventional technology requires the use of two liquid crystal elements as a liquid crystal display device, and has low mass productivity.

また、液晶素子を斜めから見た場合、背景部と表示部の
輝度の比であるコントラスト比が大きく変化し、視角特
性が劣る。第4図に液晶素子の左右方向コントラスト比
の視角特性を、第5図に上下方向の視角特性を示す、視
角が大きくなるにつれ、コントラスト比は低下し、視角
が40度以上では。
Furthermore, when the liquid crystal element is viewed from an oblique direction, the contrast ratio, which is the ratio of the brightness of the background part to the display part, changes greatly, resulting in poor viewing angle characteristics. FIG. 4 shows the viewing angle characteristics of the horizontal contrast ratio of the liquid crystal element, and FIG. 5 shows the viewing angle characteristics in the vertical direction. As the viewing angle increases, the contrast ratio decreases, and when the viewing angle is 40 degrees or more, the contrast ratio decreases.

コントラスト比が1以下になり、白黒反転現像が生じる
The contrast ratio becomes 1 or less, and black and white reversal development occurs.

また、複屈折性プラスチックフィルムを用いた場合にお
いては、位相差の波長依存性が考慮されておらず、第6
図に透過光の波長依存性を示すように5位相補正が完全
に成されず、コントラスト比が低いという問題があった
In addition, when a birefringent plastic film is used, the wavelength dependence of the retardation is not taken into account, and the sixth
As shown in the figure, which shows the wavelength dependence of transmitted light, there was a problem in that the five-phase correction was not completed completely and the contrast ratio was low.

本発明の目的は、背景と表示部の色を無彩色にし、白黒
及びカラー表示を可能にするとともに、高コントラスト
比及び1表示特性の視角依存性を改善することにある。
An object of the present invention is to make the background and the display part achromatic to enable black-and-white and color display, and to improve the high contrast ratio and viewing angle dependence of one display characteristic.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の第1の特徴は液晶素
子と複屈折性フィルムの位相差の波長依存性を概略等し
くしたものである。
A first feature of the present invention to achieve the above object is to make the wavelength dependence of the retardation of the liquid crystal element and the birefringent film approximately equal.

さらに、視角特性の一層の改善のための本発明の第2の
特徴は光学的二軸性結晶を用いたものである。
Furthermore, a second feature of the present invention for further improving viewing angle characteristics is the use of an optically biaxial crystal.

〔作用〕[Effect]

優れた時分割駆動特性を有するツィステッドネマチック
タイプと言われる液晶素子は、背景または表示部の少な
くとも一方に色がつく、これに対し、逆ねじりの液晶素
子を積層し、液晶素子を二層構造とすることにより、位
相補正を行い白黒表示が可能となるが、液晶素子を斜め
から見た場合コントラスト比が大きく変化し、表示特性
の視角依存性に問題があった。また、複屈折性フィルム
を用いた場合、位相差の波長依存性が考慮されていない
ため、コントラスト比が低かった。
Twisted nematic type liquid crystal elements, which have excellent time-division driving characteristics, have a color on at least one of the background or the display area.In contrast, reverse-twisted liquid crystal elements are stacked to create a two-layer liquid crystal element. By doing so, it is possible to perform black and white display by performing phase correction, but when the liquid crystal element is viewed from an oblique direction, the contrast ratio changes greatly and there is a problem in the viewing angle dependence of the display characteristics. Furthermore, when a birefringent film was used, the contrast ratio was low because the wavelength dependence of the retardation was not taken into consideration.

液晶素子と複屈折性フィルムの波長依存性を概略等しく
することにより、コントラスト比及び視角特性が改善さ
れた。
By making the wavelength dependencies of the liquid crystal element and the birefringent film approximately equal, the contrast ratio and viewing angle characteristics were improved.

より一層の視角特性の向上のためには、複屈折性フィル
ムとして光学的二軸性結晶を用いればよい。これは、視
角による位相差の変化が少ないためである。
In order to further improve the viewing angle characteristics, an optically biaxial crystal may be used as the birefringent film. This is because the change in phase difference due to viewing angle is small.

〔実施例〕〔Example〕

以下、本発明を実施するに好適な液晶表示素子について
、図面を用いて詳細に説明する。
Hereinafter, a liquid crystal display element suitable for carrying out the present invention will be described in detail using the drawings.

(実施例1) 第1図は本発明になる液晶表示素子の素子構造の斜視図
である。
(Example 1) FIG. 1 is a perspective view of the element structure of a liquid crystal display element according to the present invention.

同図において、透光性ガラス板よりなる上基板5、下基
板8間には、ねじられた構造のツィステッドネマチック
液晶が配置されている。また、上基板5.下基板8の外
面には偏光板1,10が配置され、かつ、上基板5と上
側偏光板1の間には複屈折性フィルム3が配置されてい
る。さらに下側偏光板10の外面には、外部光源12が
配置されて、液晶表示素子が構成されている。
In the figure, a twisted nematic liquid crystal having a twisted structure is arranged between an upper substrate 5 and a lower substrate 8 made of transparent glass plates. Also, the upper substrate 5. Polarizing plates 1 and 10 are arranged on the outer surface of the lower substrate 8, and a birefringent film 3 is arranged between the upper substrate 5 and the upper polarizing plate 1. Further, an external light source 12 is disposed on the outer surface of the lower polarizing plate 10, and a liquid crystal display element is configured.

液晶はビフェニル系液晶とエステルシクロヘキサン系液
晶を主成分とするネマチック液晶で、旋光性物質として
(メルク社の3811)を0.5重量%添加したものを
用い、Δn=0.118゜液晶層の厚さdは6.5μm
とし、Δn−d=0.77 μmになるように設定した
The liquid crystal is a nematic liquid crystal whose main components are biphenyl liquid crystal and ester cyclohexane liquid crystal, with 0.5% by weight of an optically active substance (Merck & Co., Ltd. 3811) added, and Δn=0.118° of the liquid crystal layer. Thickness d is 6.5μm
It was set so that Δn−d=0.77 μm.

液晶分子7のねじれ方向とねじれ角αは、上側電極基板
5のラビング方向6と下側電極基板8のラビング方向9
、及び添加される旋光性物質によって規定され1本実施
例では240度とした。
The twist direction and twist angle α of the liquid crystal molecules 7 are determined by the rubbing direction 6 of the upper electrode substrate 5 and the rubbing direction 9 of the lower electrode substrate 8.
, and the added optically active substance, and in this example, it was set to 240 degrees.

複屈折性フィルム3には、ポリカーボネートフィルムを
用い、Δn−d=0.56μmとした。
A polycarbonate film was used as the birefringent film 3, and Δn-d was set to 0.56 μm.

またポリカーボネートフィルムの延伸軸4と上側ラビン
グ軸6のなす角は90度である。
Further, the angle formed between the stretching axis 4 of the polycarbonate film and the upper rubbing axis 6 is 90 degrees.

偏光板1,10には偏光率99.9%の日東電工製G1
229DVを用い、下側偏光板10の吸収軸(あるいは
偏光軸)11と下側ラビング軸9のなす角は45度とし
、上側偏光板1の吸収軸(あるいは偏光軸)2とポリカ
ーボネートフィルムの延伸軸4のなす角は75度とした
Polarizing plates 1 and 10 are Nitto Denko G1 with a polarization rate of 99.9%.
229DV, the angle between the absorption axis (or polarization axis) 11 of the lower polarizing plate 10 and the lower rubbing axis 9 is 45 degrees, and the absorption axis (or polarization axis) 2 of the upper polarizing plate 1 and the stretching of the polycarbonate film. The angle formed by the axis 4 was 75 degrees.

また、光源12には冷陰極管を用いたが、熱陰極管やエ
レクトロルミネッセントあるいは、光源を用いずに反射
板を用いた外光利用型でもよい。
Further, although a cold cathode tube is used as the light source 12, a hot cathode tube, an electroluminescent tube, or an external light utilizing type using a reflector without using a light source may be used.

第7図は本実施例における背景及び表示部の色をCIE
色度座標に示した。同図に示すように、背景色及び表示
色ともにC光源に近く、概略白黒表示を実現している。
Figure 7 shows the CIE color of the background and display area in this example.
Shown in chromaticity coordinates. As shown in the figure, both the background color and the display color are close to those of the C light source, achieving a roughly black and white display.

また、この時のコントラスト比は15対1である。Further, the contrast ratio at this time is 15:1.

液晶素子と複屈折性フィルムの位相差の関係式はジョー
ンズマトリクスを用いて、導くことが可能であり、液晶
素子のツイスト角を01.光路差を(Δn−d)1、複
屈折性フィルムの光路差をπ+θL”)−2rrzcλ
2(θ工2+(Δn−d)x”/なる関係式で示される
The relational expression for the phase difference between the liquid crystal element and the birefringent film can be derived using a Jones matrix, and the twist angle of the liquid crystal element is set to 01. The optical path difference is (Δn-d)1, and the optical path difference of the birefringent film is π+θL")-2rrzcλ
It is expressed by the following relational expression: 2(θ-d)x”/

λ=450 nmから650nmの範囲において、上式
が満たされる時、位相補正が完全に成され、完全な白ま
たは黒表示となる。
When the above equation is satisfied in the range of λ=450 nm to 650 nm, phase correction is completed and a complete white or black display is obtained.

一般1こ液晶分子の屈折率の波長依存性は、Δn(λ)
=A+B/(λ2−λ02)なる力関係式で表わされ、
本実施例ではA=0.0764.B=4443.8 (
μm”) 、λo=263.5 (nm)とする、第8
図に液晶分子のΔn−dの波長依存性と、上式より導い
た白黒表示を実現する複屈折性フィルムのΔn−dの波
長依存性を示す、第8図に示す波長依存性に概略近いフ
ィルムを用いることにより全波長域で位相補正が成され
る。ただし、上式の整数mの値によって位相差は変化す
る。
General 1 The wavelength dependence of the refractive index of liquid crystal molecules is Δn(λ)
It is expressed by the force relational expression =A+B/(λ2-λ02),
In this example, A=0.0764. B=4443.8 (
μm”), λo=263.5 (nm), the eighth
The figure shows the wavelength dependence of Δn-d of liquid crystal molecules and the wavelength dependence of Δn-d of a birefringent film that realizes black-and-white display derived from the above formula, which is roughly similar to the wavelength dependence shown in Figure 8. By using the film, phase correction is achieved over the entire wavelength range. However, the phase difference changes depending on the value of the integer m in the above equation.

第17図に液晶素子と複屈折性フィルムの位相差の波長
依存性を示す。m=1の時フィルムと液晶素子の位相差
の波長依存性は概略一致し、より位相補正が完全になり
白黒表示が実現され、その時のコントラスト比は二層液
晶方式と同等の30対1が得られる。
FIG. 17 shows the wavelength dependence of the retardation between the liquid crystal element and the birefringent film. When m = 1, the wavelength dependence of the phase difference between the film and the liquid crystal element is approximately the same, phase correction is more complete, and black and white display is achieved, and the contrast ratio is 30:1, which is equivalent to the two-layer liquid crystal system. can get.

第8図においてm=1の波長依存性を持つ、複屈折性フ
ィルムを得るためには、長波長側で屈折率が大きくなる
、いわゆる異常分散を持つ材料を用いればよい、屈折率
の異常分散については、例えば、「光学」、石黒浩三著
、(共立全書)、p260にて詳しく述べられている。
In order to obtain a birefringent film with wavelength dependence of m=1 in Figure 8, it is sufficient to use a material with so-called anomalous dispersion, in which the refractive index increases on the long wavelength side. This is described in detail in, for example, "Optics", written by Kozo Ishiguro, (Kyoritsu Zensho), p.260.

第18図において、任意の波長に吸収ピークが生じた時
、屈折率の分散曲線に発散現象が生じ、吸収ピークが近
赤外にある時、可視光領域では長波長側で屈折率が大き
くなる。
In Figure 18, when an absorption peak occurs at a given wavelength, a divergence phenomenon occurs in the refractive index dispersion curve, and when the absorption peak is in the near infrared, the refractive index becomes larger on the longer wavelength side in the visible light region. .

例えば第19図に示すポリスチレンフィルムを用いたり
、あるいは近赤外に吸収ピークを持つ、ナフタロシアニ
ン、ツクシン等の色素をフィルムに添加することにより
、上記の異常分散を持つことが可能である。
For example, it is possible to have the above-mentioned anomalous dispersion by using the polystyrene film shown in FIG. 19, or by adding to the film a dye such as naphthalocyanine or tsuksin that has an absorption peak in the near-infrared region.

また、第8図に示す波長依存性を得る別の手段として、
波長依存性の異なるフィルムを積層することによっても
可能である。
Furthermore, as another means of obtaining the wavelength dependence shown in FIG.
This is also possible by laminating films with different wavelength dependencies.

第9図は左右方向のコントラスト比の視角特性を示す、
コントラスト比が2対1以上の範囲は、40度であり、
従来の二層液晶方式の場合、30度に比べて広くなって
いる。また、第10図は上下方向のコントラスト比の視
角特性を示すが、コントラスト比が1以下になる白黒反
転現象はおこらず、二層液晶方式に比べて、視角特性が
優れている。
Figure 9 shows the viewing angle characteristics of the contrast ratio in the left and right directions.
The range where the contrast ratio is 2:1 or more is 40 degrees,
In the case of the conventional two-layer liquid crystal system, the angle is wider than 30 degrees. Further, FIG. 10 shows the viewing angle characteristics of the contrast ratio in the vertical direction, and the black and white reversal phenomenon in which the contrast ratio becomes less than 1 does not occur, and the viewing angle characteristics are superior to those of the two-layer liquid crystal system.

液晶分子は第11図に示す、偏光顕微鏡においてコンデ
ンサレンズをそう人し、直交ニコル下でIt察した。コ
ノスコープ像より光学的−軸性結晶であるのに対し、ポ
リカーボネートフィルムは第12図に示すコノスコープ
像より光学的二軸性結晶である。第13図は偏光板を直
交ニコルとした時、平行配向液晶素子とポリカーボネー
トフィルム単体をそう入した時の、透過率の視角依存性
を示す、垂直方向の透過率を1とした時、45度方向で
は、液晶は0.4であるのに対し、ポリカーボネートフ
ィルムは0.6 である、すなわち光学的二軸結晶は、
視角による位相差の変化が少なく、コントラスト比等の
表示特性の視角特性が優れている。
The liquid crystal molecules were observed under crossed Nicols using a polarizing microscope shown in FIG. 11 using a condenser lens. The polycarbonate film is an optically biaxial crystal as shown in the conoscopic image, whereas the polycarbonate film is an optically biaxial crystal as shown in the conoscopic image shown in FIG. Figure 13 shows the viewing angle dependence of the transmittance when the polarizing plates are crossed nicols and a parallel alignment liquid crystal element and a single polycarbonate film are inserted.When the transmittance in the vertical direction is 1, it is 45 degrees. In the direction, the liquid crystal is 0.4, while the polycarbonate film is 0.6, i.e. the optically biaxial crystal is
There is little change in phase difference due to viewing angle, and viewing angle characteristics of display characteristics such as contrast ratio are excellent.

〔実施例2〕 第1図において、光学的二軸性結晶3として、Δn−d
=0.3μmのポリカーボネートフィルムを二枚用い、
その延伸軸をずらして積層する。
[Example 2] In FIG. 1, as the optically biaxial crystal 3, Δn-d
= Using two 0.3 μm polycarbonate films,
The sheets are stacked with their stretching axes shifted.

そのなす角度は、第14図に示すコントラスト比の関係
より、10度とした。上側フィルムの延伸軸と上側偏光
板の吸収軸(あるいは偏光軸)2のなす角度は40度と
し、その他の素子構成は実施例1と同じである。
The angle formed was set to 10 degrees based on the contrast ratio relationship shown in FIG. The angle between the stretching axis of the upper film and the absorption axis (or polarization axis) 2 of the upper polarizing plate was 40 degrees, and the other element configurations were the same as in Example 1.

第15図は本実施例における、背景色及び表示色をCI
E色度座標に示した。
Figure 15 shows the background color and display color in this example.
Shown in E chromaticity coordinates.

第7図と比較した場合CIE色度座標は、背景色は(0
,35,0,35)から(0,33,0,33)に、表
示色は(0,29,0,36)から(Q、33゜0.3
4)にいずれもC光源(0,31,0,31)に近づい
ており、概略白黒表示を実現している。
When compared with Figure 7, the CIE chromaticity coordinates indicate that the background color is (0
, 35, 0, 35) to (0, 33, 0, 33), and the display color changes from (0, 29, 0, 36) to (Q, 33° 0.3
4), both are close to the C light source (0, 31, 0, 31), achieving a roughly black and white display.

また、この時のコントラスト比は20対1である。Further, the contrast ratio at this time is 20:1.

〔実施例3〕 実施例1の素子構成において、第1図に示される光学的
二軸性結晶3あるいは、電極基板5,8に、赤、緑、青
の顔料型印刷タイプ、あるいは顔料型電着タイプ、染料
型タイプの色フィルタを組合せることにより、カラー表
示が可能となる。
[Example 3] In the device configuration of Example 1, the optically biaxial crystal 3 shown in FIG. Color display is possible by combining dye-type and dye-type color filters.

第16図は表示色をCIE色度座標に示した。FIG. 16 shows display colors in CIE chromaticity coordinates.

また同図の波線で示した領域は、薄膜トランジスタ(T
 P T)を用いたカラー液晶テレビの色再現性の範囲
を示したものである。同図より1本実施例の色再現性の
範囲はTPTカラー液晶テレビと同等である。
In addition, the area indicated by the dotted line in the same figure is a thin film transistor (T
PT) shows the range of color reproducibility of a color liquid crystal television. As can be seen from the figure, the range of color reproducibility of this example is equivalent to that of a TPT color liquid crystal television.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、全波長域で位相補正が成されるため、
背景及び表示部の色を無彩色にすることができるので、
白黒及びカラー表示が可能となる効果がある。
According to the present invention, since phase correction is performed in the entire wavelength range,
The background and display color can be made achromatic, so
This has the effect of allowing black and white and color display.

また、光学的二軸性結晶を用いることにより、従来の二
層構造液晶素子と比較して、視角特性が改善されるとい
う効果がある。
Furthermore, the use of optically biaxial crystals has the effect of improving viewing angle characteristics compared to conventional two-layer structure liquid crystal elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶素子の斜視図、第2図は従来技術
における液晶素子の斜視図、第3図は従来技術における
液晶素子の偏光状態を示す図、第4図は従来技術におけ
る液晶素子の左右方向のコントラスト比の視角特性を示
す図、第5図は従来技術における液晶素子の上下方向の
コントラスト比の視角特性を示す図、第6図は従来技術
による透過光の波長依存性を示す図、第7図は本発明に
おける液晶素子の表示色と背景色とCIE色度座標に示
した図、第8図は白黒表示を実現するための液晶分子と
複屈折フィルムのΔn−dの波長依在住を示す図、第9
図は本発明における液晶素子の左右方向のコントラスト
比の視角特性を示す図、第10図は本発明における液晶
素子の上下方向のコントラスト比の視角特性を示す図、
第11図は液晶分子のコノスコープ像を示す図、第12
図はポリカーボネートフィルムのコノスコープ像を示す
図、第13図は平行配向液晶素子及びポリカーボネート
フィルムの透過率の視角依存性を示す図、第14図は本
発明の第2の実施例における、位相板フィルムの延伸軸
のなす角とコントラスト比の関係、第15図は本発明の
第2の実施例における表示色と背景色をCIE色度座標
に示した図、第16図は本発明の第3の実施例における
1表示色の範囲をCIE色度座標に示した図、第17図
は位相差の波長依存性を示した図、第18図は異常分散
の現象を示す図、第19図はポリスチレンの吸収スペク
トルを示す図である。 1.19・・・上側偏光板、2,13・・・上側偏光板
の吸収軸、3・・・光学的二軸性結晶、4・・・延伸軸
、5゜22・・・駆動用液晶素子の上側電極基板、6,
14゜16・・・上側基板のラビング方向、7,15,
17・・・液晶分子、8,25・・・駆動用液晶素子の
下側電極基板、9,16.24・・・下側基板のラビン
グ方向、10.26・・・下側偏光板、11.18・・
・下側偏光板の偏光軸、]−2,27・・・光源。 第1 図 第2図 第3図 入射光偏光板駆動用液晶素子 補正用液晶素子偏光板出
射光 1・・・・・・上側偏光板 2・・・・・・吸収軸 3・・・・・・光学的二軸結晶 4・・・・・・延伸軸 5・・・・・・上側電極基板 6・・・・・・上側ラビング方向 7・・・・・・液晶分子ゝ 8・・・・・・下側電極基板 9・・・・・・下側ラビング軸 10・・・・・・下側偏光板 11・・・・・・吸収軸 12・・・・・・光源 直線偏光 楕円偏光 直線偏光 第 図 第 図 第 図 λ (nm) 第 図 左右方向視角 第 図 波長(nm) 第 図 第1O図 第11因 第12図 第 図 第 図 延伸軸のなす角度 第 図 第 図 第15 図 ■ 第 図 第 図 波 長 (μ) 波 数 (crn−’)
Figure 1 is a perspective view of a liquid crystal element of the present invention, Figure 2 is a perspective view of a liquid crystal element in the prior art, Figure 3 is a diagram showing the polarization state of the liquid crystal element in the prior art, and Figure 4 is a liquid crystal element in the prior art. FIG. 5 is a diagram showing the viewing angle characteristics of the contrast ratio in the horizontal direction of the device. FIG. 5 is a diagram showing the viewing angle characteristics of the contrast ratio in the vertical direction of a liquid crystal device in the prior art. FIG. 6 is a diagram showing the wavelength dependence of transmitted light in the prior art. 7 is a diagram showing the display color and background color of the liquid crystal element in the present invention and CIE chromaticity coordinates, and FIG. Diagram showing wavelength dependence, No. 9
FIG. 10 is a diagram showing the viewing angle characteristics of the contrast ratio in the horizontal direction of the liquid crystal element in the present invention, FIG. 10 is a diagram showing the viewing angle characteristics of the contrast ratio in the vertical direction of the liquid crystal element in the present invention,
Figure 11 shows a conoscopic image of liquid crystal molecules; Figure 12 shows a conoscopic image of liquid crystal molecules;
The figure shows a conoscope image of a polycarbonate film, FIG. 13 shows the viewing angle dependence of the transmittance of a parallel alignment liquid crystal element and a polycarbonate film, and FIG. 14 shows a phase plate in the second embodiment of the present invention. The relationship between the angle formed by the stretching axis of the film and the contrast ratio, FIG. 15 is a diagram showing the display color and background color in the second embodiment of the present invention in CIE chromaticity coordinates, and FIG. 16 is a diagram showing the third embodiment of the present invention. Figure 17 is a diagram showing the wavelength dependence of phase difference, Figure 18 is a diagram showing the phenomenon of anomalous dispersion, and Figure 19 is a diagram showing the range of one display color in the example of CIE chromaticity coordinates. FIG. 3 is a diagram showing an absorption spectrum of polystyrene. 1.19...Upper polarizing plate, 2,13...Absorption axis of upper polarizing plate, 3...Optical biaxial crystal, 4...Stretching axis, 5゜22...Liquid crystal for driving upper electrode substrate of the element, 6;
14°16...Rubbing direction of upper substrate, 7,15,
17...Liquid crystal molecules, 8,25...Lower electrode substrate of driving liquid crystal element, 9,16.24...Rubbing direction of lower substrate, 10.26...Lower polarizing plate, 11 .18...
- Polarization axis of lower polarizing plate, ]-2, 27... Light source. Figure 1 Figure 2 Figure 3 Liquid crystal element for driving incident light polarizing plate Liquid crystal element for correction Polarizing plate Outgoing light 1... Upper polarizing plate 2... Absorption axis 3...・Optical biaxial crystal 4...Stretching axis 5...Upper electrode substrate 6...Upper rubbing direction 7...Liquid crystal molecules 8... ...Lower electrode substrate 9 ...Lower rubbing axis 10 ...Lower polarizing plate 11 ...Absorption axis 12 ...Light source linearly polarized light elliptical polarized light straight line Polarization diagram Diagram Diagram λ (nm) Diagram Left-right viewing angle Diagram Wavelength (nm) Diagram 1 O Diagram 11 Factors Diagram 12 Diagram Diagram Angle formed by stretching axis Diagram Diagram 15 Diagram Figure Wavelength (μ) Wave number (crn-')

Claims (1)

【特許請求の範囲】 1、正の誘電異方性を有し、かつ旋光性物質が添加され
たネマチツク液晶が、対向配置された上下一対の電極基
板間に挟持され、上記電極基板間の厚さ方向にねじられ
たらせん構造を形成し、かつ上記らせん構造を挟んで設
けられた一対の偏光板の偏光軸あるいは吸収軸を、隣接
する電極基板の液晶分子配列方向と所定の角度に配置し
た液晶表示装置において、上記偏光板と上記電極基板の
少なくともいずれか一方に、一枚以上の複屈折性フィル
ムを配置し、その複屈折性フィルムの厚さd(μm)と
屈折率の異方性の差Δnとの積、Δn・dによつて生じ
る位相差の波長依存性と液晶表示素子のΔn・dとねじ
れ角(ツイスト角)θによつて生じる位相差の波長依存
性とが略等しいことを特徴とする液晶表示装置。 2、特許請求の範囲第1項記載の液晶表示装置において
、液晶素子のツイスト角をθ_1、Δn・dを(Δn・
d)_1、複屈折性フィルムのΔn・dを(Δn・d)
_2とし、光の波長をλ、mを任意の整数とした時、(
Δn・d)_2={(Δn・d)_1^2+λ^2(m
π^2+θ_1^2)−2mπλ^2(θ_1^2+(
Δn・d)_1^2/λ^2)^1^/^2}^1^/
^2の関係式を概略満たすことを特徴とする液晶表示装
置。 3、特許請求の範囲第1項記載の液晶表示装置において
、位相差の波長依存性の異なる複屈折性フィルムを二枚
以上積層し、積層した複屈折性フィルムの位相差の波長
依存性と液晶素子の位相差の波長依存性が概略等しいこ
とを特徴とする液晶表示装置。 4、特許請求の範囲第1項記載の液晶表示装置において
、複屈折性フィルムが光学的二軸性結晶であることを特
徴とする液晶表示装置。 5、特許請求の範囲第4項記載の液晶表示装置において
、偏光板を直交ニコル状態とし、その間に複屈折性フィ
ルムをその延伸軸を偏光板吸収軸と45度になるように
そう入した時、その干渉光の透過率が、フィルムに対し
垂直方向を1とした時、45度方向の透過率が0.6以
上であることを特徴とする液晶表示装置。 6、特許請求の範囲第1項記載の液晶表示装置において
、カラフィルターと組合せることにより、カラー表示が
可能な液晶表示装置。
[Claims] 1. A nematic liquid crystal having positive dielectric anisotropy and added with an optically active substance is sandwiched between a pair of upper and lower electrode substrates arranged oppositely, and the thickness between the electrode substrates is A spiral structure is formed that is twisted in the horizontal direction, and the polarization axes or absorption axes of a pair of polarizing plates provided on both sides of the spiral structure are arranged at a predetermined angle with respect to the alignment direction of liquid crystal molecules of an adjacent electrode substrate. In the liquid crystal display device, one or more birefringent films are disposed on at least one of the polarizing plate and the electrode substrate, and the thickness d (μm) and the anisotropy of the refractive index of the birefringent film are determined. The product of the difference Δn, the wavelength dependence of the phase difference caused by Δn・d, and the wavelength dependence of the phase difference caused by Δn・d of the liquid crystal display element and the twist angle θ are approximately equal. A liquid crystal display device characterized by: 2. In the liquid crystal display device according to claim 1, the twist angle of the liquid crystal element is θ_1, and Δn·d is (Δn·
d)_1, Δn・d of the birefringent film (Δn・d)
_2, the wavelength of light is λ, and m is any integer, (
Δn・d)_2={(Δn・d)_1^2+λ^2(m
π^2+θ_1^2)-2mπλ^2(θ_1^2+(
Δn・d)_1^2/λ^2)^1^/^2^1^/
A liquid crystal display device characterized by approximately satisfying the relational expression ^2. 3. In the liquid crystal display device according to claim 1, two or more birefringent films having different wavelength dependencies of retardation are laminated, and the wavelength dependence of the retardation of the laminated birefringent films and the liquid crystal A liquid crystal display device characterized in that the wavelength dependence of the phase difference of the elements is approximately equal. 4. The liquid crystal display device according to claim 1, wherein the birefringent film is an optically biaxial crystal. 5. In the liquid crystal display device according to claim 4, when the polarizing plate is placed in a crossed nicol state, and a birefringent film is inserted therebetween so that its stretching axis is at 45 degrees with the absorption axis of the polarizing plate. . A liquid crystal display device, characterized in that the transmittance of the interference light is 0.6 or more in a 45 degree direction, when the direction perpendicular to the film is 1. 6. The liquid crystal display device according to claim 1, which is capable of displaying color by combining with a color filter.
JP1016163A 1989-01-27 1989-01-27 Liquid crystal display Expired - Lifetime JP2555176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016163A JP2555176B2 (en) 1989-01-27 1989-01-27 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016163A JP2555176B2 (en) 1989-01-27 1989-01-27 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7218443A Division JP2814960B2 (en) 1995-08-28 1995-08-28 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH02197816A true JPH02197816A (en) 1990-08-06
JP2555176B2 JP2555176B2 (en) 1996-11-20

Family

ID=11908840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016163A Expired - Lifetime JP2555176B2 (en) 1989-01-27 1989-01-27 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2555176B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264920A (en) * 1989-03-24 1990-10-29 Seiko Epson Corp Liquid crystal electrooptical element
US6791640B1 (en) 1997-04-23 2004-09-14 Sharp Kabushiki Kaisha Reflection liquid crystal display and reflection liquid crystal display provided with built-in touch panel and comprising the same
US6900865B2 (en) 1998-03-26 2005-05-31 Sharp Kabushiki Kaisha Liquid crystal device and display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237321A (en) * 1988-07-27 1990-02-07 Toshiba Corp Liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237321A (en) * 1988-07-27 1990-02-07 Toshiba Corp Liquid crystal display element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264920A (en) * 1989-03-24 1990-10-29 Seiko Epson Corp Liquid crystal electrooptical element
US6791640B1 (en) 1997-04-23 2004-09-14 Sharp Kabushiki Kaisha Reflection liquid crystal display and reflection liquid crystal display provided with built-in touch panel and comprising the same
US6922220B2 (en) 1997-04-23 2005-07-26 Sharp Kabushiki Kaisha Reflective liquid crystal display device and reflective liquid crystal display device incorporating touch panel arranged therefrom
US6958794B2 (en) 1997-04-23 2005-10-25 Sharp Kabushiki Kaisha Reflective liquid crystal display device and reflective liquid crystal display device incorporating touch panel arranged therefrom
US7023510B2 (en) 1997-04-23 2006-04-04 Sharp Kabushiki Kaisha Reflective liquid crystal display device and reflective liquid crystal display device incorporating touch panel arranged therefrom
US7092052B2 (en) 1997-04-23 2006-08-15 Sharp Kabushiki Kaisha Reflective liquid crystal display device and reflective liquid crystal display device incorporating touch panel arranged therefrom
US6900865B2 (en) 1998-03-26 2005-05-31 Sharp Kabushiki Kaisha Liquid crystal device and display

Also Published As

Publication number Publication date
JP2555176B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US5119220A (en) Liquid crystal display device with a phase plate for shadow compensation
US5923392A (en) Liquid crystal display device
US5016988A (en) Liquid crystal display device with a birefringent compensator
JP2001013501A (en) Liquid crystal display device
JPH09101515A (en) Liquid crystal display device
JPH09105958A (en) Visual angle varying element and visual angle variable liquid crystal display device using the same
KR20020018170A (en) Liquid crystal display device
JPH0627433A (en) Stn type liquid crystal display device
JP3289386B2 (en) Color liquid crystal display
JPH03121523A (en) Touch panel integrated type liquid crystal display device
JP3143271B2 (en) Liquid crystal display
JPH02197816A (en) Liquid crystal display device
JP3206177B2 (en) Phase difference plate and liquid crystal display device using the same
WO2001018593A1 (en) Liquid crystal shutter
JP2881214B2 (en) Liquid crystal display device
JP2814960B2 (en) Liquid crystal display
JP2713328B2 (en) Twisted nematic liquid crystal display device
KR100720919B1 (en) a optical film for liquid crystal display
JP3289392B2 (en) Color liquid crystal display
JPH095702A (en) Color liquid crystal display device
JPH07294910A (en) Color liquid crystal display element
JPH0815696A (en) Color liquid crystal display element
JPH03269412A (en) Liquid crystal display device
JPH086012A (en) Color liquid crystal display device
JP2933857B2 (en) Color liquid crystal display panel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13