[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02189159A - Coating method for aerosol - Google Patents

Coating method for aerosol

Info

Publication number
JPH02189159A
JPH02189159A JP832289A JP832289A JPH02189159A JP H02189159 A JPH02189159 A JP H02189159A JP 832289 A JP832289 A JP 832289A JP 832289 A JP832289 A JP 832289A JP H02189159 A JPH02189159 A JP H02189159A
Authority
JP
Japan
Prior art keywords
aerosol
coated
solvent
particles
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP832289A
Other languages
Japanese (ja)
Other versions
JPH0785790B2 (en
Inventor
Masabumi Matsunaga
正文 松永
Takeshi Moriyama
剛 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP1008322A priority Critical patent/JPH0785790B2/en
Publication of JPH02189159A publication Critical patent/JPH02189159A/en
Publication of JPH0785790B2 publication Critical patent/JPH0785790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

PURPOSE:To improve coating efficiency by reducing the occurrence of bound of aerosol particles by a method wherein solvent steam is present in aerosol, a substance to be coated is cooled, aerosol particles are adhered on dewdrops, generated resulting from formation of dew of steam, e.g. a solvent, on the surface of the substance to be coated, or a liquid film by means of a line of electric force, and thereafter, the solvent is vaporized. CONSTITUTION:Steam generated through gasification of a solvent is contained in aerosol. A cooling board 25 connected to a cooling device 23 is situated below a coating part, a substance Oa to be coated is placed thereon through an earthed plate 27 to cool the substance to be coated, and the temperature of the substance to be coated is by means of the temperature of solvent steam at the coating part. Reduction of the temperature causes solvent steam to produce dew Sc formed on the surface to be coated. Particles R carried by carrier gas are adhered on the dewdrops generated resulting from formation of the dew and accelerated by a line of electric force emitted toward the substance Oa to be coated from an electrode 26 for application of static electricity, and the line of electric force is collided with the surface of the substance to be coated. Movement energy of the particles is absorbed by liquid of the dewdrops, the occurrence of bound is reduced, and the particles are effectively adhered on the dewdrops by means of electrostatic attractive force. When a number of dewdrops are gathered, they form a liquid filmform substance Sf with which the whole surface of the substance to be coated is covered, and the occurrence of bound of the particles can be further reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエアロゾルの塗布方法に係る。[Detailed description of the invention] [Industrial application field] The present invention relates to an aerosol application method.

[従来の技術1 従来のエアロゾル塗布方法の代表的例をあげると、第5
図に見られるように、液体り、などを加圧してスプレィ
ノズル54から噴出し、それを硬板55に衝突させて、
より微細な微粒子となし、それらを導入したキャリアガ
スCG3などの気流に乗せて被塗物00面上まで運び。
[Conventional technology 1 To give a typical example of the conventional aerosol application method, the fifth
As shown in the figure, pressurized liquid is ejected from the spray nozzle 54 and collided with the hard plate 55.
The particles are made into finer particles and transported to the surface of the object to be coated on the airflow of the introduced carrier gas CG3.

その速度の下に被塗物Oc面に灯光て、又は静電気など
(静電気印加装置!58)の力などにより被塗物00面
上に付着即ち塗布していた。
At that speed, it was attached to or coated on the surface of the object to be coated 00 by shining a light onto the surface of the object to be coated, or by the force of static electricity (static electricity applying device!58).

[解決しようとする問題点] 上述の如く、エアロゾルの粒子はキャリアガス即ち搬送
気流に乗せて、又は静電気印加による電気力線などの力
によって被塗物面上に塗着されていた。
[Problems to be Solved] As described above, aerosol particles have been applied to the surface of the object to be coated by carrying them on a carrier gas, that is, a conveying air flow, or by a force such as electric lines of force due to the application of static electricity.

元来、微粒子(1ミクロン前後)というのは、表面積/
重量が大きく、即ち比較的空気抵抗が大であるのに反し
、慣性の力が小であるため、微粒子の周辺の気体の動き
に左右され易い、換言すれば、気体中の微粒子の運動速
度が終末速度に達するまでの時間は殆どなく、従って。
Originally, fine particles (around 1 micron) have a surface area of
Although their weight is large, which means relatively large air resistance, their inertial force is small, so they are easily affected by the movement of the gas around them.In other words, the speed of movement of particles in the gas is influenced by the movement of the gas around them. There is therefore little time to reach terminal velocity.

エアロゾル粒子の初速度と気体の流速とは殆ど無関係な
のである0文献、ウィリアム・C・ハインズ著: 「エ
アロゾルテクノロジー」弁上書院(昭60)によると粒
径(μm)     終末速度に達する時間(ms)1
0             0.941      
       0.011上記の如く、殆ど瞬間的に終
末速度に達するのである。
The initial velocity of aerosol particles is almost unrelated to the flow velocity of the gas.0 Literature: "Aerosol Technology" by William C. Hines, Benjo Shoin (1980): Particle size (μm) Time to reach terminal velocity (ms) )1
0 0.941
0.011 As mentioned above, the terminal velocity is reached almost instantaneously.

即ち、エアロゾル粒子は、殆ど瞬間的に気体の流速と等
しくなるのである。
That is, the aerosol particles almost instantaneously become equal to the gas flow velocity.

従って、静止気体中では、エアロゾル粒子は殆ど動かな
くなり、被塗物までの到着時間が長くなる。一方、キャ
リアガスの流速を上げると2工アロゾル粒子は、そ九と
殆ど同速となり、被塗物面上に衝突し、跳返り現象が発
生し、付着効率が低下するのである。
Therefore, in a stationary gas, aerosol particles hardly move, and the time it takes for them to reach the object to be coated becomes longer. On the other hand, when the flow rate of the carrier gas is increased, the secondary arosol particles reach almost the same speed as the flow rate of the carrier gas and collide with the surface of the object to be coated, causing a rebound phenomenon and reducing the adhesion efficiency.

本発明の動機は、上述の如く、塗布時におけるエアロゾ
ル粒子のバウンドを少なくして塗着効率を上げ、更に静
電気の電気力線によりその効率を上げることであった。
As mentioned above, the motivation for the present invention was to increase the coating efficiency by reducing the bounce of aerosol particles during coating, and to further increase the efficiency by using electrostatic electric lines of force.

[問題点を解決するための手段] 前述したように、非常に微細なエアロゾル粒子(例えば
1ミクロン前後)は、キャリアガスによって移動させら
れ、ある程度の速度を持った運動エネルギをもって。
[Means for solving the problem] As mentioned above, very fine aerosol particles (for example, around 1 micron) are moved by a carrier gas and have kinetic energy with a certain degree of speed.

被塗物面上に衝突する。しかし、それら微粒子の付着す
る力はVan der Waals力もしくは若干の荷
電を持った静電気による引力であって、非常に小さいエ
ネルギである。他方上記被塗物への衝突により、変換さ
れた跳返りエネルギはより大きく、上記エアロゾル粒子
は付着し難い0例えば被塗物がプラスチックと、より硬
い石英との場合には、それらの付着力が3倍も相異があ
ると言われている。
Collisions onto the surface of the workpiece. However, the force with which these fine particles adhere is the Van der Waals force or the attractive force due to slightly charged static electricity, and has very small energy. On the other hand, upon collision with the object to be coated, the converted rebound energy is larger, making it difficult for the aerosol particles to adhere. It is said that there is a difference of three times.

本発明の目的は、エアロゾル塗布方法において、被塗物
を冷却することによって該被塗物面上に溶媒による液膜
を形成し、それによってエアロゾルの粒子の数面に対す
るバウンドを少なくシ、更に静電気による電気力線によ
って、より効果的に塗着効率を上げることである。
An object of the present invention is to form a liquid film of a solvent on the surface of an object to be coated by cooling the object in an aerosol coating method, thereby reducing bounce of aerosol particles on several sides, and furthermore, to reduce static electricity. The goal is to more effectively increase coating efficiency by using electric lines of force.

本発明の要旨は、エアロゾル生成装置により発生したエ
アロゾルを被塗物面上まで導いて塗布する方法において
、その気体中に溶媒蒸気を存在させ、かつそのエアロゾ
ルの中に置いた被塗物を、上記溶媒蒸気の飽和点以下に
冷却し、それによってエアロゾル中に含ま九でいる溶媒
蒸気を被塗物面上に結露させ、更に静電気印加による電
気力線によってそれら霧滴の面上、又はそ九らの集合し
て形成された同液膜面上に、上記導かれてきたエアロゾ
ルの分散質(以下粒子と称す)をより効率的に付着せし
め、しかる後、上記液膜状の溶媒を蒸発させ、残された
エアロゾルの粒子のみを塗布することを特徴とするエア
ロゾルの塗布方法である。
The gist of the present invention is to provide a method in which an aerosol generated by an aerosol generating device is guided onto the surface of a workpiece to be coated, in which solvent vapor is present in the gas, and the workpiece placed in the aerosol is The solvent vapor contained in the aerosol is cooled to below the saturation point, thereby condensing the solvent vapor contained in the aerosol onto the surface of the object to be coated, and further condensing the vapor onto the surface of the mist droplets or around them by the lines of electric force caused by the application of static electricity. The dispersoids (hereinafter referred to as particles) of the guided aerosol are more efficiently deposited on the surface of the liquid film formed by the aggregation of the particles, and then the solvent in the form of a liquid film is evaporated. , is an aerosol coating method characterized by coating only remaining aerosol particles.

次に1本発明の詳細な説明する。エアロゾル生成に当っ
て使用される液体を、溶媒の含まれている溶液と、含ま
れていない溶融体の二つに分けて説明する。
Next, one aspect of the present invention will be explained in detail. The liquid used for aerosol generation will be divided into two types: a solution containing a solvent, and a melt that does not contain a solvent.

(1)  ill液の場合 先ず、従来のエアロゾル生成方法を簡単に説明する。(1) In the case of ill liquid First, a conventional aerosol generation method will be briefly explained.

第1図を参照されたい、液体りをポンプアップして、チ
ャンバ2内にてスプレィノズル4より噴出、そのスプレ
ィを硬板5に打当て、微細化された微粒子を得る。同時
に上記液体り中の溶媒も気化し、これら気体と微粒子よ
り成るエアロゾルAsが生成される。また他方、チャン
バ2の下方よりは、必要とするガスGが導入され、これ
はキャリアガスCGとして上記エアロゾルAsを塗布部
22内に運ぶ。
Refer to FIG. 1, the liquid is pumped up and ejected from the spray nozzle 4 in the chamber 2, and the spray is applied to the hard plate 5 to obtain fine particles. At the same time, the solvent in the liquid is also vaporized, and an aerosol As consisting of these gases and fine particles is generated. On the other hand, a necessary gas G is introduced from below the chamber 2, and this carries the aerosol As into the application section 22 as a carrier gas CG.

上記エアロゾル内の気体には、上述の如く溶媒の気化し
た蒸気が含まれており、該蒸気の量は飽和蒸気量の50
%以上が含まれていることが望ましい、理由はそれ以下
であると1次に述べる結露現象が起き難くなるからであ
る。
The gas in the aerosol contains vaporized solvent as described above, and the amount of this vapor is 50% of the saturated vapor amount.
% or more is desirable, because if it is less than that, the condensation phenomenon described in the first section becomes less likely to occur.

塗布部の下方には、冷却袋M23に接読された冷却盤2
5が設けら九ており、該盤上にアースされた板27を介
して、被塗物Oaが置かれる。該被塗物Oaは冷却され
て、上記塗布部における溶媒蒸気の温度より低下せしめ
る。その温度差は10℃よりも大きくすることが望まし
い、理由はそれよりも小であると1次に述べる結露がし
にくくなるからである。それによってその溶媒蒸気は被
塗物面上に容易に結露Scする(第2図参照)、これら
結露した霧滴の上に、キャリアガスに乗ってきた微粒子
Rは、静電気印加用電極26より被塗物Oaに向けて発
する電気力線によって加速され、該被塗物面上に打当る
。ただし、これら霧滴の液体により微粒子の運動エネル
ギは吸収され、バウンドすることが少なくなり、更に静
電気引力により、同霧滴上により効果的に付着するので
ある。
Below the application section, there is a cooling plate 2 connected to the cooling bag M23.
5 is provided, and the object to be coated Oa is placed on the board via a grounded board 27. The object to be coated Oa is cooled down to a temperature lower than that of the solvent vapor at the coating area. It is desirable that the temperature difference be larger than 10° C., because if it is smaller than that, it becomes difficult for dew condensation to occur as described in the first section. As a result, the solvent vapor easily condenses on the surface of the object to be coated (see Fig. 2). On top of these condensed mist droplets, the fine particles R riding on the carrier gas are exposed to the electrostatic charge applying electrode 26. It is accelerated by the electric lines of force emitted toward the object Oa and strikes the surface of the object to be coated. However, the liquid in these droplets absorbs the kinetic energy of the particles, reducing their bounce and allowing them to more effectively adhere to the droplets due to electrostatic attraction.

なお、上記霧滴が多数集合すると、第31i1に示すよ
うに、液膜状Sfとなって、被塗物面上を一面に覆い、
微粒子のバウンドをより少なくすることができるのであ
る。
In addition, when a large number of the above-mentioned mist droplets gather, as shown in No. 31i1, they become a liquid film Sf that completely covers the surface of the object to be coated,
This makes it possible to further reduce the bounce of fine particles.

また、上記のスプレィする溶液やキャリアガス、または
移動行程において、エアロゾルを適切な温度に加熱し。
In addition, the aerosol is heated to an appropriate temperature during the spraying solution, carrier gas, or moving process.

蒸気量を増やしてやることは、冷却による液膜形成の速
度及び面積をより大とすることになる。
Increasing the amount of steam increases the speed and area of liquid film formation due to cooling.

上述のエアロゾルの生成材料を溶液としたが、それはt
Il濁液及び乳濁液等も含まれることは公知の通りであ
る。
The above-mentioned aerosol generating material was made into a solution, but it was
As is known, it also includes Il suspensions, emulsions, and the like.

次にS濁液を使用した場合の、実験例について述べる。Next, an experimental example using an S suspension will be described.

実験例1゜ 懸濁液 水(純水)         92重量部ジル
コニア粉(粒径5μm)   7重量部ロジン系水溶性
樹脂      1重量部室温  25℃ 液圧  40kg/ff1(プランジャポンプにて)液
温  60℃ エアロゾル  分散質 ジルコニア粉及びロジン系水溶
性樹脂 分散媒 水 キャリアガス 乾燥空気 流速(エアロゾル移送管19中にて) 8m/min エフ0ゾル移送管上の加熱温度     80℃静電気
印加電圧            10KV被塗物  
  石英ガラス    10cnX10cm冷却された
被塗物湿度          20℃所要時間(上記
被塗物1枚に対し)    30秒結果   30秒後
にガラス面1−当り約2千個のジルコニア粉が均一に分
布付着する塗布面を得ることができた。
Experimental Example 1 Suspension Water (pure water) 92 parts by weight Zirconia powder (particle size 5 μm) 7 parts by weight Rosin water-soluble resin 1 part by weight Room temperature 25°C Liquid pressure 40 kg/ff1 (by plunger pump) Liquid temperature 60 °C Aerosol Dispersoid Zirconia powder and rosin-based water-soluble resin dispersion medium Water carrier gas Dry air flow rate (in the aerosol transfer pipe 19) 8 m/min Heating temperature on the F0 sol transfer pipe 80°C Electrostatic applied voltage 10 KV Object to be coated
Quartz glass 10cn x 10cm Cooled object to be coated Humidity 20℃ Required time (for one object to be coated) 30 seconds Result Approximately 2,000 zirconia powders per glass surface are uniformly distributed and adhered after 30 seconds I was able to get

実験例2゜ 懸濁液 トリクロロトリフルオロエタン 97重量部ビ
ニル系樹脂         1.5重量部シアニン系
顔料(粒径0.5μm)1.5重量部室1Ilt25℃ 液圧  40kg/aJ 液膜  25℃ エアロゾル 分子ll質  ビニル系樹脂及びシアニン
系顔料 分散媒 トリクロロトリフルオロエタンキャリアガス 
 窒素ガス 流速(エアロゾル移送管39中にて) 5 m / m in エアロゾル移送管上の加熱温度      40℃静電
気印加電圧              10KV被塗
物  錆面アルミ板      1oll!lXl0Q
I冷却された被塗物温度          15℃所
要時間(上記被塗物1枚に対し)    20秒結果 
  20秒後、0.7ミクロンの均一な青色塗膜を得た
Experimental Example 2 Suspension Trichlorotrifluoroethane 97 parts by weight Vinyl resin 1.5 parts by weight Cyanine pigment (particle size 0.5 μm) 1.5 parts by weight Room 1Ilt25℃ Liquid pressure 40kg/aJ Liquid film 25℃ Aerosol Molecule Quality Vinyl resin and cyanine pigment dispersion medium Trichlorotrifluoroethane carrier gas
Nitrogen gas flow rate (in the aerosol transfer pipe 39) 5 m / min in Heating temperature on the aerosol transfer pipe 40°C Static electricity applied voltage 10 KV Object to be coated Rusted aluminum plate 1 oll! lXl0Q
I Cooled object temperature 15℃ Required time (for one object to be coated above) 20 seconds Result
After 20 seconds, a uniform blue coating of 0.7 microns was obtained.

溶液及び乳濁液については、未実験につきデータなし。There is no data regarding solutions and emulsions as they have not been tested.

(2) 溶融体の場合 溶媒を含まない溶融体のエアロゾルを生成した場合であ
る。第4図を参照されたい、加熱溶融された液状の溶融
体HMは、スプレィノズル34から噴出し、硬板35に
打当てられて微粒子化する。ただし前述の液体の場合の
ように溶媒は含まれていないので、溶融体の単体の固体
の微粒子より成るエアロゾルが生成される。それが。
(2) In the case of a molten body This is a case where an aerosol of a molten body containing no solvent is generated. Referring to FIG. 4, the heated liquid melt HM is ejected from the spray nozzle 34, hits the hard plate 35, and becomes fine particles. However, since no solvent is included as in the case of the liquid described above, an aerosol consisting of single solid particles of the melt is produced. that is.

キャリアガスに乗せられ、塗布室42内に至る。同室の
下方部には、冷却盤45の設けられていることは前述と
同様であるが、同室内のエアロゾルの中には、溶媒が含
まれていないので、冷却による結露現象は起こらない。
It is carried by the carrier gas and reaches the inside of the coating chamber 42. The cooling plate 45 is provided in the lower part of the same room as described above, but since the aerosol in the same room does not contain a solvent, no dew condensation phenomenon occurs due to cooling.

よって、溶媒蒸篤発生装置47により、適当する溶媒蒸
気を同室内に導入してやる。それによって、同室内には
Therefore, a suitable solvent vapor is introduced into the same chamber by the solvent vapor generator 47. As a result, in the same room.

結露が行なわれて、被塗物Ob画面上は、それら溶媒の
霧滴や液膜が形成されるのである。これらに、エアロゾ
ル中の微粒子が、静電気による電気力線EF、により加
速され、上記液膜上に打当る。ただし液膜により緩衝さ
れて、更に静電気引力によりバウンドすることが少なく
、より効率的に塗着することは、主項と同様である。
As dew condenses, mist droplets or a liquid film of the solvent are formed on the screen of the object to be coated. The fine particles in the aerosol are accelerated by the lines of electric force EF caused by static electricity and strike the liquid film. However, as in the main item, it is buffered by the liquid film and is less likely to bounce due to electrostatic attraction, resulting in more efficient coating.

上述のように、エアロゾルの分散質としての固体微粒子
には、単一成分の場合と複数成分との場合がある。液体
の場合も同様に単一成分の場合と複数成分との場合があ
る。また、これらが、液体の微粒子と固体の微粒子との
混合体の場合もある。
As mentioned above, the solid fine particles used as the dispersoid of the aerosol may have a single component or multiple components. Similarly, in the case of a liquid, there are cases in which it has a single component and cases in which it has multiple components. Further, these may be a mixture of liquid fine particles and solid fine particles.

[発明の効果] 本発明の方法によれば、生成されたエアロゾルの粒子を
、バウンドすることが少なく、効果的に被塗物面上に塗
布することができるのである。
[Effects of the Invention] According to the method of the present invention, the generated aerosol particles are less likely to bounce and can be effectively applied onto the surface of the object to be coated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエアロゾル塗布方法の説明図第2図は
同上図上”A”部における結露状態図  第3図は同じ
く”A”部における結露の集合して形成された液膜上に
微粒子の付着する状態説明図  第4図はエアロゾルの
分散質が溶融体である場合のエアロゾル塗布方法  第
5図は従来のエアロゾル塗布方法l、31−・・・・・
エアロゾル生成装置!  4,34・・・・・・スプレ
ィノズル  5.35・・・・・・硬板   21,4
1・・・・・・塗布部  23.43・・・・・・冷却
装置  25.45・・・・・・冷却盤  26.44
−・・・・・静電気印加用電極47・・・・・・溶媒蒸
発装31   As・・・・・・エアロゾル  CG・
−・・・・キャリアガス  EF、EF□・・・・・・
電気力線HM・・・・・・溶融体  Oa、Ob、Oc
・・・・・・被塗物Sc・・・・・・結露 Sf・・・・・・液膜
Fig. 1 is an explanatory diagram of the aerosol application method of the present invention. Fig. 2 is a diagram of dew condensation at the "A" section in the same figure as above. An explanatory diagram of the state in which fine particles adhere. Fig. 4 shows an aerosol application method when the aerosol dispersoid is a melt. Fig. 5 shows a conventional aerosol application method.
Aerosol generator! 4,34...Spray nozzle 5.35...Hard board 21,4
1... Application section 23.43... Cooling device 25.45... Cooling plate 26.44
-...Electrode for applying static electricity 47...Solvent evaporator 31 As...Aerosol CG・
−・・・Carrier gas EF, EF□・・・・・・
Electric force lines HM...Melted body Oa, Ob, Oc
・・・・・・Object to be coated Sc・・・・Condensation Sf・・・・Liquid film

Claims (1)

【特許請求の範囲】 1、エアロゾル発生装置より発生したエアロゾルを被塗
物面上まで導いて塗布する方法において、エアロゾル内
に溶媒蒸気を存在せしめ、被塗物を冷却装置などにより
冷却し、それによって被塗物上方の雰囲気中に存在する
溶媒等の蒸気を該被塗物面上に結露してできた霧滴また
は霧滴が集合して形成された同液膜上に、静電気の電気
力線により上記エアロゾルの粒子をより効果的に付着せ
しめ、しかる後に上記液状の溶媒を蒸発せしめてエアロ
ゾル粒子のみを塗着せしめることを特徴とするエアロゾ
ルの塗布方法。 2、被塗物が、エアロゾル発生装置より導かれた出口よ
り吐出される溶媒等の蒸気又は/及びエアロゾルの温度
より10℃以上冷却されることを特徴とする特許請求の
範囲第1項記載のエアロゾルの塗布方法。 3、被塗物上方の雰囲気中に存在する該被塗物に結露さ
せるべき溶媒の蒸気量が、該溶媒の飽和蒸気量の50%
以上であることを特徴とする特許請求の範囲第1項記載
のエアロゾルの塗布方法。 4、エアロゾルの分散質が、単一成分若しくは複数成分
の固体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 5、エアロゾルの分散質が、単一成分若しくは複数成分
の液体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 6、エアロゾルの分散質が、単一成分若しくは複数成分
より成る固体粒子と単一成分若しくは複数成分より成る
液体粒子とから成る固体と液体との混合粒子であること
を特徴とする特許請求の範囲第1項記載のエアロゾルの
塗布方法。
[Scope of Claims] 1. A method in which an aerosol generated by an aerosol generator is guided onto the surface of the object to be coated, in which solvent vapor is made to exist in the aerosol, the object to be coated is cooled by a cooling device, etc. The electric force of static electricity is applied to the fog droplets formed by condensing the vapor of the solvent, etc. present in the atmosphere above the workpiece on the workpiece surface, or to the liquid film formed by the collection of fog droplets. A method for applying an aerosol, which comprises making the particles of the aerosol adhere more effectively by using a line, and then evaporating the liquid solvent to apply only the aerosol particles. 2. The object to be coated is cooled by at least 10°C below the temperature of the vapor and/or aerosol of a solvent discharged from an outlet led from an aerosol generator. How to apply an aerosol. 3. The amount of vapor of the solvent that exists in the atmosphere above the object to be coated and which should cause dew condensation on the object to be coated is 50% of the saturated vapor amount of the solvent.
The method for applying an aerosol according to claim 1, characterized in that the method is as follows. 4. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of solid particles of a single component or multiple components. 5. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of liquid particles of a single component or multiple components. 6. Claims characterized in that the dispersoid of the aerosol is a mixed particle of solid and liquid consisting of solid particles consisting of a single component or multiple components and liquid particles consisting of a single component or multiple components. The method for applying an aerosol according to item 1.
JP1008322A 1989-01-17 1989-01-17 Aerosol application method Expired - Fee Related JPH0785790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008322A JPH0785790B2 (en) 1989-01-17 1989-01-17 Aerosol application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008322A JPH0785790B2 (en) 1989-01-17 1989-01-17 Aerosol application method

Publications (2)

Publication Number Publication Date
JPH02189159A true JPH02189159A (en) 1990-07-25
JPH0785790B2 JPH0785790B2 (en) 1995-09-20

Family

ID=11689934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008322A Expired - Fee Related JPH0785790B2 (en) 1989-01-17 1989-01-17 Aerosol application method

Country Status (1)

Country Link
JP (1) JPH0785790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043656A1 (en) * 2004-10-21 2006-04-27 Hoya Corporation Apparatus and method for depositing fine particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811741B2 (en) * 2001-03-08 2004-11-02 The Regents Of The University Of California Method for making thick and/or thin film
CN109016046A (en) * 2018-08-09 2018-12-18 东易日盛智能家居科技有限公司 A kind of furniture processing MDF board processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312667A (en) * 1986-07-02 1988-01-20 バスフ アクチェン ゲゼルシャフト Thienothiophene dye

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312667A (en) * 1986-07-02 1988-01-20 バスフ アクチェン ゲゼルシャフト Thienothiophene dye

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043656A1 (en) * 2004-10-21 2006-04-27 Hoya Corporation Apparatus and method for depositing fine particles
US7829154B2 (en) 2004-10-21 2010-11-09 Hoya Corporation Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device

Also Published As

Publication number Publication date
JPH0785790B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
EP0411499B1 (en) Process and device for coating a substrate
JP4237289B2 (en) Method of attaching metal coating to the surface of a cast metal substrate
CA1051286A (en) Electrostatic spray nozzle system
RU2623779C2 (en) Method and plant for electrostatic painting
US3911161A (en) Electrostatic spray-coating with hot melt compositions
WO2004041443A3 (en) Method and apparatus for electrostatic spraying
JPH07506530A (en) Method and apparatus for minimizing deposits in drying chambers
US5156880A (en) Space charge electrostatic coating method and apparatus
JPH11501579A (en) Rotating electrostatic spraying apparatus and method
US3208951A (en) Electrostatic encapsulation
JPH02189159A (en) Coating method for aerosol
US4744513A (en) Device and process for the electrostatic coating of articles with fluids
JPH0661530B2 (en) Aerosol application method
JPH0463169A (en) Coating method with aerosol
Castle et al. Space charge effects in orchard spraying
US4433003A (en) Electrogasdynamic coating system
US3790080A (en) Method of spraying
US4273831A (en) Powdered polymer compositions produced by electron beam polymerization of polymerizable compositions
US2933414A (en) Electrostatic spray painting method and apparatus
US2847324A (en) Method and apparatus for control of charged particles in electrostatic machines
RU94018548A (en) Method of coatings production
Zentner Techniques of aerosol formation
JP2000070830A (en) Coating
JPH02229562A (en) Method and device for forming and spraying particle of liquid or melt
JP4347591B2 (en) Painted glass container manufacturing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees