[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02186604A - Pressure-sensitive resistance changing type conductive composition - Google Patents

Pressure-sensitive resistance changing type conductive composition

Info

Publication number
JPH02186604A
JPH02186604A JP29479687A JP29479687A JPH02186604A JP H02186604 A JPH02186604 A JP H02186604A JP 29479687 A JP29479687 A JP 29479687A JP 29479687 A JP29479687 A JP 29479687A JP H02186604 A JPH02186604 A JP H02186604A
Authority
JP
Japan
Prior art keywords
pressure
conductive
composition
resistance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29479687A
Other languages
Japanese (ja)
Other versions
JPH0787123B2 (en
Inventor
Yoshihiro Soeda
善弘 添田
Toshio Kobayashi
俊夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27774486A external-priority patent/JPH01168761A/en
Priority claimed from JP9939287A external-priority patent/JPH01243401A/en
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP62294796A priority Critical patent/JPH0787123B2/en
Publication of JPH02186604A publication Critical patent/JPH02186604A/en
Publication of JPH0787123B2 publication Critical patent/JPH0787123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adjustable Resistors (AREA)
  • Push-Button Switches (AREA)

Abstract

PURPOSE:To obtain a composition, which shows electric resistance substantially lower than that of the case where electric resistance is compressed, and to obtain the composition which gives a pressure-sensitive conductive body with which resistance is smoothly reduced by the increase of pressuring force by a method wherein the title conductive composition is composed of an organic polymer material, a semiconductor material having the electric conductivity less than the specific ratio of the conductive material, and an insulating material. CONSTITUTION:The title composition contains an organic polymer material, a conductive material, a semiconductor material having electric conductivity of 1/100 or less of that of the conductive material and an insulating material. As the organic polymer material used, the thermosetting resin such as phenol resin, urea resin, melamine resin, silicon resin, polyurethane resin and the like, and the thermoplastic resin such as vinyl chloride resin, vinylidene chloride resin, polyamide resin and the like are enumerated. Also, silver, nickel, copper and graphite are used as the conductive material. Chrome trioxide and dioxide, titanium dioxide, boron nitride, molybdenum disulfide, magnesium oxide, calcium carbonate, aluminum hydroxide, alumina, zinc flowers, clay, talk and the like are used as the semiconductor material and insulating material. As a result, a conductive composition, withstanding repetition of pressurization and having the characteristics in which its resistance value is smoothly reduced with the increase of pressuring force, can be obtained.

Description

【発明の詳細な説明】 ■ 産業上の利用分野 本発明は印刷、塗装、コーティング等に適用することが
できる感圧抵抗変化型導電性組成物に関し、更に詳しく
は加圧による絶縁−導電状態変化のみならず、加圧力と
抵抗値が逆比例関係を示す感圧抵抗変化型導電性組成物
に関する。
DETAILED DESCRIPTION OF THE INVENTION ■ Industrial Application Field The present invention relates to a pressure-sensitive resistance change type conductive composition that can be applied to printing, painting, coating, etc. More specifically, it relates to a pressure-sensitive resistance change type conductive composition that can be applied to printing, painting, coating, etc. The present invention also relates to a pressure-sensitive resistance change type conductive composition in which the applied force and the resistance value are inversely proportional.

II  従来技術とその問題点 従来から感圧抵抗変化特性を有する材料は知られている
。 例えは、米国特許第2044.080号明細書には
、粒状の炭素(Granulated Carbon 
)の如き導電材料を電極の間にはさみ込んだ材料を圧迫
すると、その材料の抵抗値か低下するという発見が開示
されている。 これと同様の例は米国特許第3,806
.471号明細書にも開示されており、ここには各種の
半導体物質を使用すること、粉粒状物質がバインダーで
まとめられること、ヒステリシス現象を小さくする為お
よび摩耗を防ぐ為に球状または粒状物質を使用する事な
どが述へられている。
II. Prior Art and its Problems Materials having pressure-sensitive resistance change characteristics have been known for some time. For example, U.S. Patent No. 2044.080 discloses that Granulated Carbon
It has been disclosed that when a conductive material such as ) is pressed between electrodes, the resistance value of the material decreases. A similar example is U.S. Patent No. 3,806.
.. No. 471 also discloses the use of various semiconductor materials, the granular material being held together by a binder, and the use of spherical or granular materials to reduce hysteresis phenomena and prevent wear. It describes how to use it.

更に米国特許第3,710,050号明細書には、導電
性粉体に20〜50%のゴム粉末を加え粉体の感圧導電
性を引き出した発明が開示されている。
Further, US Pat. No. 3,710,050 discloses an invention in which 20 to 50% of rubber powder is added to conductive powder to bring out the pressure-sensitive conductivity of the powder.

これらの例では、かかる粉末状の材料がゴム等の分散媒
を用いずそのままの状態で使用されるため、感圧導電性
材料は特別な容器に収容されなければならない等の欠点
がある。 前述の米国特許第3,806,471号明細
書の発明では、粉粒状物がバインダーでまとめられる工
夫が、なされているが、材料の可撓性は不十分であった
In these examples, the powdered material is used as it is without using a dispersion medium such as rubber, so there are drawbacks such as the pressure-sensitive conductive material having to be housed in a special container. In the invention of the above-mentioned US Pat. No. 3,806,471, an idea was made to bind the powdery material with a binder, but the flexibility of the material was insufficient.

特開昭56−108279号明細書には、このバインダ
ーの厚さを254μm以下にする発明が開示されている
。 また、粉体を発泡体のセルの空間にとじこめる発明
が米国特許第2.305,717号明細書に開示されて
いるが、この発明によりても粉体の脱落は完全に防止で
きない。
JP-A-56-108279 discloses an invention in which the thickness of this binder is reduced to 254 μm or less. Further, although an invention for trapping powder in the cell spaces of a foam is disclosed in US Pat. No. 2,305,717, even this invention cannot completely prevent the powder from falling off.

粉体脱落の問題は、例えば米国特許第3,629.77
4号明細書に記載のように、発泡体のセルの面を導電粉
体を含有する塗膜でおおうことにより解消する。 しか
しこの技術で得られる感圧導電体の抵抗値の変化範囲は
小さなものである。 すなわち、解放時の抵抗値自体が
十分には高くはなく、加圧時の抵抗値に対する解放時の
抵抗値の比も小さいため、例えばスイッチ素子としては
好ましいものではない。
The problem of powder shedding can be solved, for example, in U.S. Patent No. 3,629.77.
As described in the specification of No. 4, this problem can be solved by covering the surface of the cells of the foam with a coating film containing conductive powder. However, the range of change in the resistance value of the pressure-sensitive conductor obtained by this technique is small. That is, the resistance value itself when released is not sufficiently high, and the ratio of the resistance value when released to the resistance value when pressurized is small, so it is not preferable as a switch element, for example.

またシリコーンゴム等の弾性材料に特殊な導電性粉体を
配合し感圧導電性を付与した感圧導電性弾性体組成物が
特公昭56−9137号等に開示されているが、これら
の弾性体組成物に印刷、塗装、コーティング等の特性を
イ」与する事はぎわめて困難であり、スイッチ素子や電
子部品等の精密化、薄膜化、軽量化に対しては自ずと限
界があり、すぐれた感圧性と印刷、塗装、コーティング
等の特性を兼備した感圧抵抗変化型導電性材料の出現が
望まれていた。
In addition, pressure-sensitive conductive elastic compositions in which pressure-sensitive conductivity is imparted by blending special conductive powder with elastic materials such as silicone rubber are disclosed in Japanese Patent Publication No. 56-9137, etc.; It is extremely difficult to impart properties such as printing, painting, and coating to body compositions, and there are naturally limits to the precision, thinning, and weight reduction of switch elements and electronic components. There has been a desire for the emergence of a pressure-sensitive resistance change type conductive material that has excellent pressure sensitivity and properties such as printing, painting, and coating.

II+  発明の目的 本発明の目的は、加圧圧縮によってその電気抵抗が加圧
圧縮されていない場合の電気抵抗に比較して大幅な低下
を示し、かつ加圧力の増大によりその抵抗が滑らかに減
少する感圧導電性体をあたえる組成物を提供することに
ある。
II+ OBJECTS OF THE INVENTION The object of the present invention is to show that the electrical resistance is significantly reduced by pressurization compared to the electrical resistance when not pressurized, and that the resistance smoothly decreases as the pressurizing force increases. It is an object of the present invention to provide a composition that provides a pressure-sensitive conductive material that provides a pressure-sensitive conductive material.

本発明の他の目的は、印刷、塗装、コーティング等に適
用することができる感圧抵抗変化型導電性組成物を提供
することにある。
Another object of the present invention is to provide a pressure-sensitive resistance variable conductive composition that can be applied to printing, painting, coating, etc.

+V  発明の構成 本発明の第1の態様によれば、有機高分子材料と導電性
材料および前記導電性材料の1/100以下の電気伝導
度を有する半導体材料および絶縁性材料を含有してなる
ことを特徴とする感圧抵抗変化型導電性組成物が提供さ
れる。
+V Structure of the Invention According to the first aspect of the present invention, the material contains an organic polymer material, a conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the conductive material, and an insulating material. A pressure-sensitive resistance variable conductive composition is provided.

また、本発明の第2の態様によれば、有機高分子材料と
導電性材料と前記導電性材料の1/100以下の電気伝
導度を有する半導体材料および絶縁性材料ならびに有機
溶媒を含有してなることを特徴とする感圧抵抗変化型導
電性組成物が提供される。
Further, according to a second aspect of the present invention, the organic polymer material, an electrically conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the electrical conductivity of the electrically conductive material, an insulating material, and an organic solvent are contained. Provided is a pressure-sensitive resistance variable conductive composition characterized by the following characteristics.

ここで、前記有機高分子材料が、塩化ビニル・酢酸ビニ
ル共重合体であるのが好ましい。
Here, it is preferable that the organic polymer material is a vinyl chloride/vinyl acetate copolymer.

また、前記導電性材料が、グラファイトであるのが好ま
しい。
Further, it is preferable that the conductive material is graphite.

また、前記半導体材料および絶縁性材料が、二酸化クロ
ム、二酸化チタン、窒化硼素、硫化モリブデン、酸化マ
グネシウム、炭酸カルシウム、水酸化アルミニウム、ア
ルミナ、亜鉛華、クレーおよびタルクの中から選択され
た1種以上からなる物質であるのが好ましい。
Further, the semiconductor material and the insulating material are one or more selected from chromium dioxide, titanium dioxide, boron nitride, molybdenum sulfide, magnesium oxide, calcium carbonate, aluminum hydroxide, alumina, zinc white, clay, and talc. Preferably, it is a substance consisting of.

さらに、前記有機溶媒がエチレングリコールモノブチル
エーテルおよび/または酢酸エチレングリコールモツプ
チルエーテルであるのが好ましい。
Furthermore, it is preferable that the organic solvent is ethylene glycol monobutyl ether and/or acetic acid ethylene glycol mobutyl ether.

以下に本発明の構成を詳述する。The configuration of the present invention will be explained in detail below.

本発明において使用されるバインダーとしての有機高分
子材料は、例えばフェノール樹脂、ユリア樹脂、メラミ
ン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポキ
シ樹脂、ケイ素樹脂、ポリウレタン樹脂等の熱硬化性樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル
樹脂、アクリル樹脂、スチロール樹脂、ポリアミド樹脂
等の熱可塑性樹脂、ニトロセルロース、アセチルセルロ
ース、エチルセルロース等の繊維素誘導体、塩化ゴム、
塩酸ゴム、シリコンゴム等のゴム誘導体などを例示する
ことができるが、印刷、塗装、コーティング等が可能な
ものであれば如何なるものでもよいが、塩化ビニル・酢
酸ビニル共重合体ならびにその変性体の使用が特に好ま
しい。
Examples of organic polymeric materials used as binders in the present invention include thermosetting resins such as phenol resins, urea resins, melamine resins, furan resins, unsaturated polyester resins, epoxy resins, silicone resins, and polyurethane resins, and vinyl chloride. Resins, thermoplastic resins such as vinylidene chloride resin, vinyl acetate resin, acrylic resin, styrene resin, polyamide resin, cellulose derivatives such as nitrocellulose, acetylcellulose, and ethylcellulose, chlorinated rubber,
Examples include rubber derivatives such as hydrochloric acid rubber and silicone rubber, but any material that can be printed, painted, coated, etc. may be used. Vinyl chloride/vinyl acetate copolymers and modified products thereof The use is particularly preferred.

本発明において使用される導電性材料は、導電性を有す
る物質なら如何なるものでもよく、例えば銀、ニッケル
、銅および表面を導電性材料でコートしたマイカ等があ
げられるが、なかでもグラファイトの使用が好ましく、
特に好ましくは、鱗片状のグラファイトでそのサイズが
6.0μm程度のものがよい。
The conductive material used in the present invention may be any substance that has conductivity, such as silver, nickel, copper, and mica whose surface is coated with a conductive material, but graphite is especially preferred. Preferably,
Particularly preferred is flaky graphite having a size of about 6.0 μm.

なお、グラファイトの電気伝導度は異方性があり、10
3〜10°S−cm−’の範囲にある。
Note that the electrical conductivity of graphite is anisotropic, with 10
It is in the range of 3 to 10°S-cm-'.

本発明に使用される半導体材料および絶縁性材料は、前
記導電性材料の1/100以下の電気伝導度を有する物
質なら如何なる物質でもよいが、好ましくは、三二酸化
クロム、二酸化チタン、窒化硼素、二硫化モリブデン、
酸化マグネシウム、炭酸カルシウム、水酸化アルミニウ
ム、アルミナ、亜鉛華、クレーおよびタルクの中から選
択された1 ffi以上からなる物質であることが好ま
しい。
The semiconductor material and insulating material used in the present invention may be any material as long as it has an electrical conductivity of 1/100 or less of the conductive material, but preferably chromium sesquioxide, titanium dioxide, boron nitride, molybdenum disulfide,
Preferably, the material consists of 1 ffi or more selected from magnesium oxide, calcium carbonate, aluminum hydroxide, alumina, zinc white, clay, and talc.

半導体材料および絶縁性材料が、前記導電性材料のj/
100以下の電気伝導度を有するものであるのが好まし
い理由は、半導体材料および絶縁性材料の電気伝導度が
導電性材料の電気伝導度の1/100を超えると感圧性
が発現しないからである。
The semiconductor material and the insulating material are j/
The reason why it is preferable to have an electrical conductivity of 100 or less is because if the electrical conductivity of the semiconductor material and the insulating material exceeds 1/100 of the electrical conductivity of the conductive material, pressure sensitivity will not be expressed. .

導電性材料と、導電性材料の17100以下の電気伝導
度を有する半導体材料および絶縁性材料の具体的な組合
せとしては、例えばグラファイト(電気伝導度103〜
10゜S−em−’)と三二酸化クロム(電気伝導度1
0−” S −am−’以下)、グラファイトと二酸化
チタン(電気伝導度10−5〜10−”S・Cm”’)
、グラファイトと窒化硼素(電気伝導度io−I48−
Cm−1)、グラファイトと二硫化モリブデン(電気伝
導度10−3〜10−IQS−cm−’)、グラファイ
トと酸化マグネシウム(電気伝導度10−” S−am
−’) 、グラファイトと炭酸カルシウム(電気伝導度
10−” S −cm−’)、グラファイトと水酸化ア
ルミニウム(電気伝導度io−’s・am−’)、グラ
ファイトとアルミナ(電気伝導度10−15  ・cm
−I)、グラファイトと亜鉛華(電気伝導度10〜10
〜ICM”S・Cm′−1)、グラファイトとクレー(
電気伝導度10−” S−cm−’)およびグラファイ
トとタルク(電気伝導度10−” S ・am−’)等
があげられる。
A specific combination of a conductive material, a semiconductor material having an electrical conductivity of 17100 or less, and an insulating material includes, for example, graphite (electrical conductivity of 103 to 103).
10°S-em-') and chromium sesquioxide (electrical conductivity 1
0-"S-am-' or less), graphite and titanium dioxide (electrical conductivity 10-5 to 10-"S・Cm"')
, graphite and boron nitride (electrical conductivity io-I48-
Cm-1), graphite and molybdenum disulfide (electrical conductivity 10-3 to 10-IQS-cm-'), graphite and magnesium oxide (electrical conductivity 10-'' S-am
-'), graphite and calcium carbonate (electrical conductivity 10-'' S -cm-'), graphite and aluminum hydroxide (electrical conductivity io-'s am-'), graphite and alumina (electrical conductivity 10-'' S -cm-') 15 cm
-I), graphite and zinc white (electrical conductivity 10-10
~ICM"S・Cm'-1), graphite and clay (
Electric conductivity: 10-''S-cm-'), graphite and talc (electrical conductivity: 10-''S.am-'), and the like.

さらに銀(電気伝導度6.3x105S・cm−’)と
上記半導体材料および絶縁材料、ニッケル(電気伝導度
!、4X105S・cm−’)と上記半導体材料および
絶縁材料、銅(電気伝導度6.Oxl O5S−cm−
’)と上記半導体材料および絶縁材料、アルミニウム(
電気伝導度3.8x 105S −cm−’)と上記半
導体材料および絶縁材料、導電性材料て表面を被覆した
マイカ(電気伝導度3×10S10S−’)と上記半導
体および絶縁材料、導電性材料であるセラミックウィス
カー(電気伝導度10−1〜10−2S−c m−’)
と上記半導体および絶縁材料等があげられる。
Further, silver (electrical conductivity: 6.3 x 105 S cm-'), the above semiconductor material and insulating material, nickel (electric conductivity, 4 x 105 S cm-'), the above semiconductor material and insulating material, and copper (electric conductivity: 6. Oxl O5S-cm-
') and the above semiconductor materials and insulating materials, aluminum (
Mica (electrical conductivity 3.8x 105S-cm-') whose surface is coated with the semiconductor material and insulating material, conductive material (electrical conductivity 3x10S10S-') and the semiconductor material, insulating material, and conductive material. Certain ceramic whiskers (electrical conductivity 10-1 to 10-2 S-cm m-')
and the above-mentioned semiconductors and insulating materials.

上記有機高分子材料と導電性材料および絶縁性材料の配
合量は、特に限定されず、これら三者の配合によフて得
られる組成物が感圧抵抗変化を示す範囲内であれば自由
に定め得る。
The blending amounts of the above-mentioned organic polymer material, conductive material, and insulating material are not particularly limited, and can be freely determined as long as the composition obtained by blending these three materials exhibits a pressure-sensitive resistance change. It can be determined.

例えば、導電性材料にグラファイトを、絶縁性材料に三
二酸化クロムおよび二酸化チタンを使用した場合を例に
とると、それぞれの配合量は以下の範囲が好ましい。
For example, if graphite is used as the conductive material and chromium sesquioxide and titanium dioxide are used as the insulating materials, the amounts of each are preferably in the following ranges.

導電性材料にグラファイトを、絶縁性材料に一酸化クロ
ムを使用した場合、グラファイトの配合量は、バインダ
ーの有機高分子材料100重量部に対して40〜180
重量部の範囲が好ましく、より好ましくは45〜110
重置部の範囲が良い。
When graphite is used as the conductive material and chromium monoxide is used as the insulating material, the amount of graphite blended is 40 to 180 parts by weight based on 100 parts by weight of the organic polymer material of the binder.
The weight part range is preferably from 45 to 110.
The range of overlapping parts is good.

40重量部未満であると、加圧による抵抗変化が少なく
、180重量部超であると加圧による抵抗変化が急激に
過ぎる。
If it is less than 40 parts by weight, the resistance change due to pressurization is small, and if it exceeds 180 parts by weight, the resistance change due to pressurization is too rapid.

また、三二酸化クロムの配合量は、有機高分子材料(バ
インダー樹脂)100重量部に対して110〜340重
量部の範囲が好ましく、より好ましくは、その粒径が0
.1〜03μm程度の粒状の三二酸化クロムを225〜
325重量部配合するのが良い。
Further, the blending amount of chromium sesquioxide is preferably in the range of 110 to 340 parts by weight based on 100 parts by weight of the organic polymer material (binder resin), and more preferably, the particle size is 0.
.. Granular chromium sesquioxide with a size of about 1 to 03 μm is
It is preferable to mix 325 parts by weight.

三二酸化クロムの配合量が110重量部未満であると、
加圧による抵抗変化が急激に過ぎ、340重量部超であ
ると加圧による抵抗変化が少いからである。
When the amount of chromium sesquioxide is less than 110 parts by weight,
This is because the resistance change due to pressurization is too rapid, and if it exceeds 340 parts by weight, the resistance change due to pressurization is small.

また、グラファイトと三二酸化クロムの総和は、有機高
分子材料100重量部に対し280〜390重量部とす
るのが好ましい。
The total amount of graphite and chromium sesquioxide is preferably 280 to 390 parts by weight based on 100 parts by weight of the organic polymer material.

これは、280重量部未満あるいは390重量部超であ
ると、本発明の感圧抵抗変化型には成り得ないからであ
る。
This is because if the amount is less than 280 parts by weight or more than 390 parts by weight, the variable pressure sensitive resistance type of the present invention cannot be achieved.

導電性材料にグラファイトを、絶縁性材料に一酸化チタ
ンを使用した場合、加圧力0〜3kgで、絶縁状態から
導電状態に変化し、横軸に加圧力の対数、縦軸に抵抗値
の対数をとフた場合の傾きをほぼ−1とするには、後で
第7〜9図に示すように、グラファイトの配合量は、有
機高分子材料(バインダー樹脂)100M量部に対して
30〜160重量部の範囲が好ましく、より好ましくは
33〜148重量部の範囲が良い。
When graphite is used as a conductive material and titanium monoxide is used as an insulating material, an applied force of 0 to 3 kg changes from an insulating state to a conductive state. The horizontal axis is the logarithm of the applied force, and the vertical axis is the logarithm of the resistance value. In order to make the slope approximately -1 when 0 is removed, as shown later in Figures 7 to 9, the blending amount of graphite should be 30 to 30 M parts per 100 M parts of the organic polymer material (binder resin). A range of 160 parts by weight is preferred, and a range of 33 to 148 parts by weight is more preferred.

30重量部未満であると、加圧による抵抗変化が少なく
、160重量部超であると加圧による抵抗変化が急激に
過ぎるからである。
This is because if it is less than 30 parts by weight, the resistance change due to pressurization is small, and if it exceeds 160 parts by weight, the resistance change due to pressurization is too rapid.

また二酸化チタンの配合量は、有機高分子材料(バイン
ダー樹脂)100重量部に対して50〜150重量部の
範囲であり、より好ましくはその粒径が0.1〜03μ
m程度のものが良い。
The amount of titanium dioxide to be blended is in the range of 50 to 150 parts by weight per 100 parts by weight of the organic polymer material (binder resin), and more preferably the particle size is 0.1 to 0.3μ.
Something around m is good.

そして、導電性材料としてのグラファイトと絶縁性材料
としての二酸化チタンの総和は170〜220重量部の
範囲にするのが好ましい。
The total amount of graphite as a conductive material and titanium dioxide as an insulating material is preferably in the range of 170 to 220 parts by weight.

これは、170重量部未満あるいは220重量部超であ
ると、本発明の感圧抵抗変化型には成り得ないからであ
る。
This is because if the amount is less than 170 parts by weight or more than 220 parts by weight, the variable pressure sensitive resistance type of the present invention cannot be achieved.

なお、上述した本発明の感圧抵抗変化型導電性組成物を
適当な有機溶媒中に溶解分散させれば、印刷、塗装、コ
ーティング等に優れた組成物とすることができ、例えば
これをポリエステルフィルム等の基材上に塗布して溶媒
を蒸発させることによって成膜化することができる。
Note that by dissolving and dispersing the pressure-sensitive resistance change type conductive composition of the present invention described above in a suitable organic solvent, a composition excellent in printing, painting, coating, etc. can be obtained. It can be formed into a film by applying it onto a base material such as a film and evaporating the solvent.

本発明の第2の態様において使用される有機溶媒として
は、例えば、工業用ガソリン、灯油等の脂肪族炭化水素
、低沸点芳香族石油ナフサ、中沸点芳香族石油ナフサ等
の芳香族石油ナフサ、ペンゾール、ドルオール、キジロ
ール、ソルベントナフサ等の芳香族炭化水素、テレピン
油、ジペンテン、パインオイル等のテルペン族炭化水素
、メチレンクロライド、トリクロルエチレン、パークロ
ルエチレン、オルトジクロルヘンゼン等の塩化炭化水素
、2−ニトロプロパン等のニトロ化炭化水素、メチルア
ルコール、エチルアルコール、イソプロピルアルコール
、イソブチルアルコール等の脂肪族アルコール、エチレ
ングリコールモノメチルエーテル、エチレングリコール
モノエチルエーテル、エチレングリコールモノブチルエ
ーテル、ジエチレングリコール千ツメチルエーテル、ジ
エチレングリコールモノブチルエーテル等のエーテルア
ルコール、ジオキサン等のエーテル、酢酸メチル、酢酸
エチル、酢酸イソプロピル等の酢酸エステル、酢酸エチ
レングリコールモノメチルエーテル、酢酸エチレングリ
コールモノエチルエーテル、酢酸エチレングリコールモ
ノブチルエーテル、酢酸ジエチレングリコールモノエチ
ルエーテル等のエーテルエステルなどを例示することが
できる。
Examples of the organic solvent used in the second aspect of the present invention include aliphatic hydrocarbons such as industrial gasoline and kerosene, aromatic petroleum naphthas such as low-boiling aromatic petroleum naphtha, and medium-boiling aromatic petroleum naphtha; Aromatic hydrocarbons such as penzole, doluol, quijirole, and solvent naphtha, terpene hydrocarbons such as turpentine oil, dipentene, and pine oil, and chlorinated hydrocarbons such as methylene chloride, trichlorethylene, perchlorethylene, orthodichlorohenzene. , nitrated hydrocarbons such as 2-nitropropane, aliphatic alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol methyl ether, Ether alcohols such as diethylene glycol monobutyl ether, ethers such as dioxane, acetic acid esters such as methyl acetate, ethyl acetate, isopropyl acetate, ethylene glycol monomethyl acetate, ethylene glycol monoethyl acetate, ethylene glycol monobutyl acetate, diethylene glycol monoethyl acetate Examples include ether esters such as.

印刷、塗装、コーティング等の方法とバインダーおよび
溶剤の揮発速度を考慮した上で、使用可能な溶剤であれ
ば如何なる溶剤でもよいが、特に好ましいのはエチレン
グリコールモノブチルエーテルおよび/または酢酸エチ
レングリコールモノブチルエーテルである。
Any usable solvent may be used, taking into account printing, painting, coating, etc. methods and the volatilization rate of the binder and solvent, but particularly preferred are ethylene glycol monobutyl ether and/or acetic acid ethylene glycol monobutyl ether. It is.

本発明の第1の態様の感圧抵抗変化型導電性組成物の製
造方法は、いかなる方法でもよいが、1例を挙げると、
導電性材料であるグラファイトと電気絶縁材料である三
二酸化クロムと有機高分子バインダーとを適当な溶媒中
に溶解分散させた本発明の第2の態様の組成物を、ポリ
エステルフィルム等の基材上にて溶媒を蒸発させること
によって得られる。 使用する基材としてはポリエステ
ルフィルムに限らず、印刷、塗装、コーティングに適し
たものであれば如何なるものでもよい。
The pressure-sensitive resistance variable conductive composition of the first aspect of the present invention may be produced by any method, but one example is:
The composition of the second aspect of the present invention, in which graphite as a conductive material, chromium sesquioxide as an electrically insulating material, and an organic polymer binder are dissolved and dispersed in a suitable solvent, is applied onto a substrate such as a polyester film. It is obtained by evaporating the solvent at . The base material to be used is not limited to polyester film, but any material suitable for printing, painting, and coating may be used.

本発明の感圧抵抗変化型導電性組成物は、導電性材料と
半導体材料又は絶縁性材料の比率を変えることにより、
または該絶縁性材料の種類を変えることにより、加圧力
に対する抵抗の変化率(感度)を制御することが可能で
ある。
The pressure-sensitive resistance variable conductive composition of the present invention can be produced by changing the ratio of the conductive material and the semiconductor material or the insulating material.
Alternatively, by changing the type of the insulating material, it is possible to control the rate of change in resistance (sensitivity) to pressing force.

■ 実施例 以下に実施例により、更に具体的に説明する。■ Example A more specific explanation will be given below with reference to Examples.

(A)絶縁性材料として三二酸化クロムを使用し、その
配合量を変えた場合の加圧力に対する抵抗の変化率を調
べた。
(A) Chromium sesquioxide was used as an insulating material, and the rate of change in resistance with respect to pressing force was investigated when the amount of chromium sesquioxide was varied.

(実施例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト(サイズ約6.0μm)52重量部、三二酸化ク
ロム370重量部、酢酸エチレングリコールモノブチル
エーテル115重量部、エチレングリコールモノブチル
エーテル485重量部からなる印刷用インキ組成物を厚
さ188μmのポリエステルフィルム上に印刷した後、
溶媒である酢酸エチレングリコールモノブチルエーテル
、エチレングリコールモノブチルエーテルを除去する為
に加熱乾燥処理を行い、厚さ70μmの感圧導電体層を
有する感圧抵抗変化型導電性組成物を得た。 この組成
物を平らな櫛目電極上に置き、50にΩの並列抵抗を加
え、直径10mmの平坦な先端を有する棒て加圧および
除圧を繰り返して特性を観察した。
(Example 1) 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 52 parts by weight of graphite (size approximately 6.0 μm), 370 parts by weight of chromium sesquioxide, 115 parts by weight of ethylene glycol monobutyl ether acetate, 485 parts by weight of ethylene glycol monobutyl ether After printing a printing ink composition consisting of parts by weight on a polyester film with a thickness of 188 μm,
In order to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, a heating drying treatment was performed to obtain a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 μm. This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 mm.

特性を第1図に示す。 ヒステリシスカーブの上のカー
ブは加圧測定であり、下のカーブは減圧測定(以下第1
図〜第6図において同じ)である。
The characteristics are shown in Figure 1. The upper curve of the hysteresis curve is the pressurization measurement, and the lower curve is the decompression measurement (hereinafter the first
6).

第1図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下フて導通状態
となり、加圧か解除されると直ちに且つ滑らかに元の抵
抗値に復帰し、加圧力と抵抗値かほぼ逆比例関係を示す
As shown in Figure 1, the relationship between pressurizing force and resistance is such that as soon as pressurization begins, the resistance drops smoothly and becomes conductive, and when pressurization is released, the original resistance immediately and smoothly returns. It returns to the value and shows an almost inversely proportional relationship between the pressurizing force and the resistance value.

また、この状態は、棒での繰り返し100万回の加圧に
よっても変化を生しなかった。
Further, this state did not change even after repeated pressurization with a rod 1 million times.

本発明の組成物が加圧と解放の繰り返しに対する耐久性
に優れていることかわかる。
It can be seen that the composition of the present invention has excellent durability against repeated pressurization and release.

(実施例2) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト41重量部、三二酸化クロム330重量部、酢酸
エチレングリコールモノブチルエーテル90重量部、エ
チレングリコールモノブチルエーテル510重量部から
なる印刷用インキ組成物を厚さ188μmのポリエステ
ルフィルム上に印刷した後、溶媒である酢酸エチレング
リコールモノブチルエーテル、エチレングリコールモノ
ブチルエーテルを除去する為に加熱乾燥処理を行い、厚
さ70μmの感圧導電体層を有する感圧抵抗変化型導電
性組成物を得た。 この組成物を平らな櫛目電極上に置
き、50にΩの並列抵抗を加え、直径10mmの平坦な
先端を有する棒で加圧および除圧を繰り返して特性を観
察した。
(Example 2) Printing ink consisting of 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 41 parts by weight of graphite, 330 parts by weight of chromium sesquioxide, 90 parts by weight of ethylene glycol monobutyl ether acetate, and 510 parts by weight of ethylene glycol monobutyl ether. After printing the composition on a polyester film with a thickness of 188 μm, a heat drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, resulting in a pressure-sensitive conductor layer with a thickness of 70 μm. A pressure-sensitive resistance variable conductive composition was obtained. This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 mm.

特性を第2図に示す。The characteristics are shown in Figure 2.

第2図に示されるように、加圧力と抵抗との関係は、加
圧か始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 2, the relationship between pressurization force and resistance is such that as soon as pressurization begins, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(実施例3) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト180重合部、三二酸化クロム111重量部、酢
酸エチレングリコールモノブチルエーテル420重量部
、エチレングリコールモノブチルエーテル180重量部
からなる印刷用インキ組成物を厚さ188μmのポリエ
ステルフィルム上に印刷した後、溶媒である酢酸エチレ
ングリコールモノブチルエーテル、エチレングリコール
モノブチルエーテルを除去する為に加熱乾燥処理を行い
、厚さ70μmの感圧導電体層を有する感圧抵抗変化型
導電性組成物を得た。 この組成物を平らな櫛目電極上
に置き、50にΩの並列抵抗を加え、直径】Ommの平
坦な先端を有する棒て加圧および除圧を繰り返して特性
を観察した。
(Example 3) Printing ink consisting of 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 180 parts by weight of graphite, 111 parts by weight of chromium sesquioxide, 420 parts by weight of ethylene glycol monobutyl ether acetate, and 180 parts by weight of ethylene glycol monobutyl ether. After printing the composition on a polyester film with a thickness of 188 μm, a heat drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether, resulting in a pressure-sensitive conductor layer with a thickness of 70 μm. A pressure-sensitive resistance variable conductive composition was obtained. This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod with a flat tip having a diameter of 0 mm.

特性を第3図に示す。The characteristics are shown in Figure 3.

第3図に示されるように、加圧力と抵抗との関係は、加
圧か始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 3, the relationship between pressurization force and resistance is such that as soon as pressurization begins, the resistance drops smoothly and becomes conductive, and when pressurization is released, the resistance returns immediately and smoothly to the original resistance value. to return to.

(比較例1) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト227重量部、三二酸化クロム36重量部、酢酸
エチレングリコールモノブチルエーテル540重量部、
エチレングリコルモノブチルエーテル60重量部からな
る印刷用インキ組成物を厚さ188μmのポリエステル
フィルム上に印刷した後、溶媒である酢酸エチレングリ
コールモノブチルエーテル、エチレングリコールモノブ
チルエーテルを除去する為に加熱乾燥処理を行い、厚さ
70μmの組成物を得た。 この組成物を平らな櫛目電
極上に置き、50にΩの並列抵抗を加え、直径tomm
の平坦な先端を有する棒で加圧および除圧を繰り返して
特性を観察した。 特性を第4図に示す。
(Comparative Example 1) 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 227 parts by weight of graphite, 36 parts by weight of chromium sesquioxide, 540 parts by weight of ethylene glycol monobutyl ether acetate,
After printing a printing ink composition consisting of 60 parts by weight of ethylene glycol monobutyl ether on a 188 μm thick polyester film, a heat drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate and ethylene glycol monobutyl ether. , a composition with a thickness of 70 μm was obtained. This composition was placed on a flat comb electrode, a parallel resistance of 50 Ω was added, and the diameter tomm
The characteristics were observed by repeatedly applying and releasing pressure using a rod with a flat tip. The characteristics are shown in Figure 4.

この比較例では、第4図に示すように、加圧力と抵抗と
の関係は、加圧が始まると抵抗が降下して導通状態とな
り、他方加圧が解除されると抵抗が上昇して絶縁状態と
なる。 この比較例での組成物の感度は若干小さい。 
その理由は、グラファイトおよび三二酸化クロムの配合
量が最適配合量の範囲を逸脱しているためであり、感圧
性を発現しないわけではないが、若干実用性に欠ける。
In this comparative example, as shown in Figure 4, the relationship between pressurizing force and resistance is that when pressurization starts, resistance drops and becomes conductive, and when pressurization is released, resistance increases and insulation is established. state. The sensitivity of the composition in this comparative example is slightly lower.
The reason for this is that the blending amounts of graphite and chromium sesquioxide deviate from the optimal blending range, and although it does not mean that pressure sensitivity is not exhibited, it is somewhat lacking in practicality.

(比較例2) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト250重量部を酢酸エチレングリコールモノブチ
ルエーテル600重量部に溶解混合して得られる印刷用
インキ組成物を厚さ188μmのポリエステルフィルム
上に印刷した後、酢酸エチレングリコールそノブチルエ
ーテル、を除去する為に加熱乾燥処理を行い、乾燥膜厚
70μIの組成物を得た。 この組成物を平らな櫛目電
極上に置き、50にΩの並列抵抗を加え、直径10mm
の平坦な先端を有する棒で加圧および除圧を繰り返して
特性を観察した。
(Comparative Example 2) A printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 250 parts by weight of graphite in 600 parts by weight of ethylene glycol monobutyl ether acetate was applied on a polyester film with a thickness of 188 μm. After printing, a heating drying treatment was performed to remove ethylene glycol acetate sobutyl ether to obtain a composition with a dry film thickness of 70 μI. This composition was placed on a flat comb-like electrode, a parallel resistance of 50 Ω was added, and the diameter was 10 mm.
The characteristics were observed by repeatedly applying and releasing pressure using a rod with a flat tip.

特性を第5図に示す。The characteristics are shown in Figure 5.

この比較例では、第5図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まると抵抗が急降下して導
通状態となり、他方加圧が解除されると抵抗値が急上昇
して絶縁状態となり本発明の感圧抵抗変化型には成り得
ない。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 5, when pressurization starts, the resistance suddenly drops and becomes conductive, and when pressurization is released, the resistance value suddenly decreases. This results in an insulating state, and the variable pressure sensitive resistance type of the present invention cannot be realized.

(比較例3) 塩化ビニル・酢酸ビニル共重合体100重量部、三二酸
化クロム400重量部をエチレングリコールモノブチル
エーテル600重量部に溶解混合して得られる印刷用イ
ンキ組成物から実施例1と同様の方法で乾燥膜厚70u
mの組成物を作成し、実施例1と同一の特性を観察した
(Comparative Example 3) A printing ink composition similar to that of Example 1 was prepared by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 400 parts by weight of chromium sesquioxide in 600 parts by weight of ethylene glycol monobutyl ether. dry film thickness 70u
A composition of m was prepared and the same properties as in Example 1 were observed.

特性を第6図に示す。The characteristics are shown in Figure 6.

この比較例では、第6図の加圧カー抵抗の関係グラフか
ら明らかなように、加圧が始まっても抵抗値は全く変化
せず絶縁状態のままで、加圧が解除されても抵抗値は変
化せず絶縁状態のままでおりた。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 6, the resistance value does not change at all even when pressurization starts and remains in an insulated state, and even when pressurization is released, the resistance value remained in an insulating state without any change.

(B)絶縁性材料として二酸化チタンを使用し、その配
合量を変えた場合の加圧力に対する抵抗の変化率を調べ
た。
(B) Using titanium dioxide as an insulating material, the rate of change in resistance with respect to pressing force was investigated when the amount of titanium dioxide was varied.

(実施例4) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト50重量部、二酸化チタン134重量部、酢酸エ
チレングリコールモノブチルエーテル504重量部を含
む印刷用インキ組成物を厚さ188μ口のポリエステル
フィルム上に印刷した後、溶媒である酢酸エチレングリ
コールモノブチルエーテルを除去する為に加熱乾燥処理
を行い、厚さ70μ屯の感圧導電体層を有する感圧抵抗
変化型導電性組成物を得た。 この組成物を平らな櫛目
電極上に置き、50にΩの並列抵抗を加え、直径10m
mの平坦な先端を有する棒で加圧および除圧を繰り返し
て特性を観察した。
(Example 4) A printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 50 parts by weight of graphite, 134 parts by weight of titanium dioxide, and 504 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film having a thickness of 188 μm. After printing on the film, a heat-drying treatment was performed to remove the solvent ethylene glycol monobutyl ether acetate, thereby obtaining a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 μm. . This composition was placed on a flat comb electrode, a parallel resistance of 50 Ω was added, and the diameter was 10 m.
Pressure was repeatedly applied and depressurized using a rod with a flat tip of m, and the characteristics were observed.

この例での感圧抵抗変化型導電性組成物の特性は、第7
図に示されている。 この第7図は加圧力と抵抗との関
係を示し、加圧が始まると直ちに且つ滑らかに抵抗が下
りて導通状態となり、加圧が解除されると直ちに且つ滑
らかに元の抵抗値に復帰する状態が示されている。
The characteristics of the pressure-sensitive resistance variable conductive composition in this example are as follows.
As shown in the figure. This figure 7 shows the relationship between pressurization force and resistance. When pressurization starts, the resistance immediately and smoothly decreases to a conductive state, and when pressurization is released, it immediately and smoothly returns to the original resistance value. The condition is shown.

また、この状態は、前記棒で繰返し100万回の加圧を
行っても変化がなく、本発明の組成物が加圧と解放の繰
返しに耐久性に優れていることを示している。
Further, this state did not change even when the rod was repeatedly pressurized 1 million times, indicating that the composition of the present invention has excellent durability against repeated pressurization and release.

(実施例5) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト33重量部、二酸化チタン146重量部、酢酸エ
チレングリコールモノブチルエーテル497重量部を含
む印刷用インキ組成物を厚さ188μmのポリエステル
フィルム上に印刷した後、溶媒である酢酸エチレングリ
コールモノブチルエーテルを除去する為に加熱乾燥処理
を行い、厚さ70μmの感圧導電体層を有する感圧抵抗
変化型導電性組成物を得た。 この組成物を平らな櫛目
電極上に置き、50にΩの並列抵抗を加え、直径10m
mの平坦な先端を有する棒で加圧および除圧を繰り返し
て特性を観察した。
(Example 5) A printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 33 parts by weight of graphite, 146 parts by weight of titanium dioxide, and 497 parts by weight of ethylene glycol monobutyl ether acetate was applied to a polyester film with a thickness of 188 μm. After printing thereon, a heating drying process was performed to remove the solvent ethylene glycol monobutyl ether acetate, thereby obtaining a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 μm. This composition was placed on a flat comb electrode, a parallel resistance of 50 Ω was added, and the diameter was 10 m.
Pressure was repeatedly applied and depressurized using a rod with a flat tip of m, and the characteristics were observed.

特性を第8図に示す。The characteristics are shown in Figure 8.

第8図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗か下って導電状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 8, the relationship between pressurizing force and resistance is such that as soon as pressurization starts, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(実施例6) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト148重量部、二酸化チタン58重量部、酢酸エ
チレングリコールモノブチルエーテル547重量部を含
む印刷用インク組成物から実施例1と同様の方法て乾燥
膜厚70μmの組成物を作成し、実施例1と同一の方法
て特性を観察した。
(Example 6) The same method as in Example 1 was prepared from a printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 148 parts by weight of graphite, 58 parts by weight of titanium dioxide, and 547 parts by weight of ethylene glycol monobutyl ether acetate. A composition with a dry film thickness of 70 μm was prepared using the same method as in Example 1, and its properties were observed.

特性を第9図に示す。The characteristics are shown in Figure 9.

第9図に示されるように、加圧力と抵抗との関係は、加
圧が始まると直ちに且つ滑らかに抵抗が下って導通状態
となり、加圧が解除されると直ちに且つ滑らかに元の抵
抗値に復帰する。
As shown in Figure 9, the relationship between pressurization force and resistance is such that as soon as pressurization begins, the resistance decreases smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original resistance value. to return to.

(比較例4) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
アイ1〜198重量部、二酸化チタン20重量部、酢酸
エチレングリコールモノブチルエーテル569重量部を
含む印刷用インキ組成物から実施例1と同様の方法で乾
燥膜厚70μmの組成物を作成し、実施例1と同一の特
性を観察した。
(Comparative Example 4) Example 1 from a printing ink composition containing 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 1 to 198 parts by weight of Graphi, 20 parts by weight of titanium dioxide, and 569 parts by weight of ethylene glycol monobutyl ether acetate. A composition having a dry film thickness of 70 μm was prepared in the same manner as in Example 1, and the same characteristics as in Example 1 were observed.

特性を第10図に示す。 この第10図は、加圧力と抵
抗との関係を示し、加圧が始まると抵抗が降下して導通
状態となり、他方加圧が解除されると抵抗値か上昇して
絶縁状態となる。
The characteristics are shown in FIG. FIG. 10 shows the relationship between the pressurizing force and the resistance. When pressurization starts, the resistance decreases and becomes conductive, and when pressurization is released, the resistance value increases and becomes insulated.

この比較例での組成物の感度は若干小さい。The sensitivity of the composition in this comparative example is slightly lower.

その理由は、グラファイトおよび二酸化チタンの配合量
か最適配合量の範囲を逸脱しているためてあり、感圧性
を発現しないわけではないか、若干実用性に欠ける。
The reason for this is that the blending amounts of graphite and titanium dioxide are out of the optimum blending range, and this does not mean that pressure sensitivity does not develop, or that it is somewhat impractical.

(比較例5) 塩化ビニル・酢酸ビニル共重合体100重量部、グラフ
ァイト225重量部を酢酸エチレングリコールモノブチ
ルエーテル580重量部に溶解混合して得られる印刷用
インキ組成物を厚さ188μmのポリエステルフィルム
上に印刷した後、酢酸エチレングリコールモノブチルエ
ーテルを除去する為に加熱乾燥処理を行い、乾燥膜厚7
0μmの組成物を得た。 この組成物を平らな櫛目電極
上に置き、50にΩの並列抵抗を加え、直径10mmの
平坦な先端を有する棒て加圧および除圧を繰り返して特
性を観察した。
(Comparative Example 5) A printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 225 parts by weight of graphite in 580 parts by weight of ethylene glycol monobutyl ether acetate was applied on a polyester film with a thickness of 188 μm. After printing, heat drying is performed to remove ethylene glycol monobutyl ether acetate, resulting in a dry film thickness of 7.
A composition of 0 μm was obtained. This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 mm.

特性を第11図に示す。The characteristics are shown in FIG.

この比較例では、第11図の加圧カー抵抗の関係グラフ
から明らかなように、加圧が始まると抵抗が急降下して
導通状態となり、他方加圧が解除されると抵抗値が急上
昇して絶縁状態となり、本発明の感圧抵抗変化型には成
り得ない。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Fig. 11, when pressurization starts, the resistance suddenly drops and becomes conductive, and when pressurization is released, the resistance value suddenly decreases. This results in an insulating state, and the pressure-sensitive resistance variable type of the present invention cannot be achieved.

(比較例6) 塩化ビニル・酢酸ビニル共重合体100重量部、二酸化
チタン170重量部を酢酸エヂレングリコールモノブヂ
ルエーテル480重量部に溶解混合して得られる印刷用
インキ組成物から実施例1と同様の方法で乾燥膜厚70
μmの組成物を作成し、実施例1と同一の特性を観察し
た。
(Comparative Example 6) Example 1 from a printing ink composition obtained by dissolving and mixing 100 parts by weight of vinyl chloride/vinyl acetate copolymer and 170 parts by weight of titanium dioxide in 480 parts by weight of ethylene glycol monobutyl ether acetate. Dry film thickness 70 using the same method as
A composition of μm was prepared and the same characteristics as in Example 1 were observed.

特性を第12図に示す。The characteristics are shown in FIG.

この比較例では、第12図の加圧カー抵抗の関係グラフ
から明らかなように、加圧か始まっても抵抗値は全く変
化せず絶縁状態のままであり、加圧が解除されても抵抗
値は変化すぜ絶縁状態のままであった。
In this comparative example, as is clear from the relationship graph of pressurized Kerr resistance in Figure 12, the resistance value does not change at all even when pressurization starts and remains in an insulating state, and even when pressurization is released, the resistance value remains unchanged. The value changed but remained insulated.

(C)半導体および絶縁材料として表1に示す各物質を
使用した場合の加圧力に対する抵抗の変化率をそれぞれ
調べた。
(C) The rate of change in resistance with respect to pressing force was investigated when each substance shown in Table 1 was used as a semiconductor and an insulating material.

(実施例7〜16) 表1の実施例7〜16に示す電気伝導度を有する各物質
を半導体および絶縁材料として用い、塩化ビニル・酢酸
ビニル共重合体100重量部、グラファイト57重量部
、酢酸エチレングリコールモノブチルエーテル500重
量部に対し、この半導体および絶縁材料124重量部を
含む印刷用インキ組成物をそれぞれ厚さ188μmのポ
リエステルフィルム上に印刷した後、溶媒である酢酸エ
チレングリコールモノブチルエーテルを除去するために
加熱処理、乾燥処理を行い、厚さ70μmの感圧導電体
層を有する感圧抵抗変化型導電性組成物を得た。
(Examples 7 to 16) Each substance having the electrical conductivity shown in Examples 7 to 16 in Table 1 was used as a semiconductor and insulating material, and 100 parts by weight of vinyl chloride/vinyl acetate copolymer, 57 parts by weight of graphite, and acetic acid were used. After printing a printing ink composition containing 500 parts by weight of ethylene glycol monobutyl ether and 124 parts by weight of the semiconductor and insulating material on a polyester film having a thickness of 188 μm, the solvent ethylene glycol monobutyl ether acetate is removed. For this purpose, heat treatment and drying treatment were performed to obtain a pressure-sensitive resistance variable conductive composition having a pressure-sensitive conductor layer with a thickness of 70 μm.

この組成物を平らな櫛目電極上に置き、50にΩの並列
抵抗を加え、直径10mmの平坦な先端を有する棒で加
圧および除圧を繰り返して特性を観察した。
This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 mm.

結果を第13〜15図に示す。The results are shown in Figures 13-15.

第13〜15図に示されるように、加圧力と抵抗との関
係は、加圧が始まると直ちに且つ滑らかに抵抗が下って
導通状態となり、加圧が解除されると直ちに且つ滑らか
に元の抵抗値に復帰し、加圧力と抵抗値がほぼ逆比例関
係を示す。
As shown in Figures 13 to 15, the relationship between pressurizing force and resistance is that as soon as pressurization begins, the resistance drops smoothly and becomes conductive, and when pressurization is released, it immediately and smoothly returns to its original state. The resistance value returns, and the pressurizing force and resistance value show an almost inversely proportional relationship.

また、この状態は、棒での繰り返し100万回の加圧に
よっても変化を生じなかった。
Moreover, this state did not change even after repeated pressurization with a rod 1 million times.

本発明の組成物が加圧と解放の繰り返しに対する耐久性
に優れていることがわかる。
It can be seen that the composition of the present invention has excellent durability against repeated pressurization and release.

(比較例7.8) 比較例として、塩化ビニル、酢酸ビニル共重合体100
重量部、グラファイト57重量部、酢酸エチレングリコ
ールモノブチルエーテル500重量部に対し、表1の比
較例7.8に示す前記グラファイトの1/100超の電
気伝導度を有するカーボンブラックであるケッチエンブ
ラックEC(八にZOchemie製)またはパルカン
X C−72(Cabot製)を124重量部混合して
得られる印刷用インキ組成物を厚さ188μmのポリエ
ステルフィルム上に印刷した後、溶媒である酢酸エチレ
ングリコールモツプチルエーテルを除去するために加熱
処理、乾燥処理を行い、膜厚70μmの組成物を得た。
(Comparative Example 7.8) As a comparative example, vinyl chloride, vinyl acetate copolymer 100
Ketchen Black EC, which is a carbon black having an electrical conductivity of more than 1/100 of the graphite shown in Comparative Example 7.8 in Table 1, based on 57 parts by weight of graphite and 500 parts by weight of ethylene glycol monobutyl ether acetate. After printing on a 188 μm thick polyester film, a printing ink composition obtained by mixing 124 parts by weight of 80% (manufactured by ZOchemie) or Palcan X C-72 (manufactured by Cabot), Heat treatment and drying treatment were performed to remove butyl ether, and a composition having a film thickness of 70 μm was obtained.

この組成物を平らな櫛目電極上に置き、50にΩの並列
抵抗を加え、直径10mmの平坦な先端を有する棒で加
圧および除圧を繰り返して特性を観察した。
This composition was placed on a flat comb-like electrode, a parallel resistance of 50Ω and Ω was applied, and the properties were observed by repeatedly applying and removing pressure using a rod having a flat tip with a diameter of 10 mm.

特性を第16図に示す。The characteristics are shown in FIG.

第16図の加圧カー抵抗の関係グラフから明らかなよう
に、加圧が始まると抵抗が急降下して導通状態となり、
他方加圧が解除されると抵抗値が急上昇して絶縁状態と
なり本発明の感圧抵抗変化型には成り得ない。
As is clear from the relationship graph of pressurized Kerr resistance in Figure 16, when pressurization begins, the resistance suddenly drops and becomes conductive.
On the other hand, when the pressurization is released, the resistance value increases rapidly and becomes an insulating state, so that the pressure-sensitive resistance variable type of the present invention cannot be achieved.

Vl  発明の効果 本発明の感圧抵抗変化型導電性組成物は、繰り返し加圧
に耐え、更に加圧力の増大によって滑らかに抵抗値の減
少する特性を持ち、加圧力変換素子として、或いは可変
抵抗体などの用途に適する。
Vl Effects of the Invention The pressure-sensitive resistance variable conductive composition of the present invention has the property of being able to withstand repeated pressurization and smoothly decreasing its resistance value as the pressurizing force increases, and can be used as a pressurizing force conversion element or as a variable resistor. Suitable for uses such as the body.

さらに本発明の感圧抵抗変化型導電性組成物は、加圧に
よって作動するスイッチの素子として耐久性の点で優れ
ている。
Further, the pressure-sensitive resistance variable conductive composition of the present invention is excellent in durability as a switch element operated by pressurization.

また本発明の感圧抵抗変化型導電性組成物は、加圧力と
抵抗値が逆比例関係を示し、加圧力検出器などの各種セ
ンサーとしても応用できる。
Further, the pressure-sensitive resistance variable conductive composition of the present invention exhibits an inversely proportional relationship between applied force and resistance value, and can be applied as various sensors such as applied force detectors.

更に、本発明の感圧抵抗変化型導電性組成物は、印刷、
塗装、コーティング等の塗布特性を有し、スクリーン印
刷等の手法を用いることにより種々の形状に印刷が可能
である。
Furthermore, the pressure-sensitive resistance variable conductive composition of the present invention can be used for printing,
It has application properties such as painting and coating, and can be printed into various shapes by using techniques such as screen printing.

本発明は、キーボードスイッチ、自動ドアのスイッチ、
各種圧力接点スイッチ、その他のセンサーとして広範囲
に利用できる。
The present invention is a keyboard switch, an automatic door switch,
Can be widely used as various pressure contact switches and other sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第16図の特性は、組成物に50にΩの並列
抵抗を加えて測定したものである。 第1図は、実施例1の組成物の特性を示すグラフである
。 第2図は、実施例2の組成物の特性を示すグラフである
。 第3図は、実施例3の組成物の特性を示すグラフである
。 第4図は、比較例1の組成物の特性を示すグラフである
。 第5図は、比較例2の組成物の特性を示すグラフである
。 第6図は、比較例3の組成物の特性を示すグラフである
。 第7図は、実施例4の組成物の特性を示すグラフである
。 第8図は、実施例5の組成物の特性を示すグラフである
。 第9図は、実施例6の組成物の特性を示すグラフである
。 第10図は、比較例4の組成物の特性を示すグラフであ
る。 第11図は、比較例5の組成物の特性を示すグラフであ
る。 第12図は、比較例6の組成物の特性を示すグラフであ
る。 第13図は、実施例7〜9の組成物の特性を示すグラフ
である。 第14図は、実施例10〜13の組成物の特性を示すグ
ラフである。 第15図は、実施例14〜16の組成物の特性を示すグ
ラフである。 第16図は、比較例7および8の組成物の特性を示すグ
ラフである。 F I G、 1 内口  、圧  、77(kc+) F I G、2 シロ 力 (kg) F I G。 カロ 、圧 力 (kg) F I G。 カロ 圧 力 (kg) FIG、5 乃口 圧 力 (kg) F I G、6 カロ 7圧 カ (kg) FIG、8 内口 ■ カ (kg) FIG、7 カロ 万 カ (kg) FIG、9 内口 涯 カ (kg) FIG、10 カロ 月 力 (kg) FIG、12 力0 圧 力 (kg) FIG、11 カロ 力 (kg) FIG、13 力0 圧 力 (kg) FIG。 力O 尺 力(kg ) F I G、 15 カロ 7圧 力 (kg)
The properties shown in FIGS. 1 to 16 were measured by adding a parallel resistance of 50 Ω to the composition. FIG. 1 is a graph showing the characteristics of the composition of Example 1. FIG. 2 is a graph showing the characteristics of the composition of Example 2. FIG. 3 is a graph showing the characteristics of the composition of Example 3. FIG. 4 is a graph showing the characteristics of the composition of Comparative Example 1. FIG. 5 is a graph showing the characteristics of the composition of Comparative Example 2. FIG. 6 is a graph showing the characteristics of the composition of Comparative Example 3. FIG. 7 is a graph showing the characteristics of the composition of Example 4. FIG. 8 is a graph showing the characteristics of the composition of Example 5. FIG. 9 is a graph showing the characteristics of the composition of Example 6. FIG. 10 is a graph showing the characteristics of the composition of Comparative Example 4. FIG. 11 is a graph showing the characteristics of the composition of Comparative Example 5. FIG. 12 is a graph showing the characteristics of the composition of Comparative Example 6. FIG. 13 is a graph showing the characteristics of the compositions of Examples 7 to 9. FIG. 14 is a graph showing the characteristics of the compositions of Examples 10 to 13. FIG. 15 is a graph showing the characteristics of the compositions of Examples 14-16. FIG. 16 is a graph showing the characteristics of the compositions of Comparative Examples 7 and 8. F I G, 1 Inner mouth, pressure, 77 (kc+) F I G, 2 Shiro force (kg) F I G. Calo, pressure (kg) F I G. Calo pressure (kg) FIG, 5 Noguchi pressure (kg) FI G, 6 Calo 7 pressure (kg) FIG, 8 Inner mouth■ Force (kg) FIG, 7 Calorie (kg) FIG, 9 Inner mouth Life force (kg) FIG, 10 Calo force (kg) FIG, 12 Force 0 Pressure (kg) FIG, 11 Calo force (kg) FIG, 13 Force 0 Pressure (kg) FIG. Force O Scale force (kg) F I G, 15 Karo 7 pressure (kg)

Claims (9)

【特許請求の範囲】[Claims] (1)有機高分子材料と導電性材料および前記導電性材
料の1/100以下の電気伝導度を有する半導体材料お
よび絶縁性材料を含有してなることを特徴とする感圧抵
抗変化型導電性組成物。
(1) A pressure-sensitive resistance change type conductive material comprising an organic polymer material, a conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the conductive material, and an insulating material. Composition.
(2)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第1項に記載の感圧抵抗
変化型導電性組成物。
(2) The pressure-sensitive resistance variable conductive composition according to claim 1, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(3)前記導電性材料が、グラファイトである特許請求
の範囲第1項または第2項に記載の感圧抵抗変化型導電
性組成物。
(3) The pressure-sensitive resistance variable conductive composition according to claim 1 or 2, wherein the conductive material is graphite.
(4)前記半導体材料および絶縁性材料が、三二酸化ク
ロム、二酸化チタン、窒化硼素、二硫化モリブデン、酸
化マグネシウム、炭酸カルシウム、水酸化アルミニウム
、アルミナ、亜鉛華、クレーおよびタルクの中から選択
された1種以上からなる物質である特許請求の範囲第1
項〜第3項のいずれかに記載の感圧抵抗変化型導電性組
成物。
(4) The semiconductor material and the insulating material are selected from chromium sesquioxide, titanium dioxide, boron nitride, molybdenum disulfide, magnesium oxide, calcium carbonate, aluminum hydroxide, alumina, zinc white, clay, and talc. Claim 1, which is a substance consisting of one or more types
The pressure-sensitive resistance variable conductive composition according to any one of Items 1 to 3.
(5)有機高分子材料と導電性材料と前記導電性材料の
1/100以下の電気伝導度を有する半導体材料および
絶縁性材料ならびに有機溶媒を含有してなることを特徴
とする感圧抵抗変化型導電性組成物。
(5) A pressure-sensitive resistance change characterized by containing an organic polymer material, a conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the conductive material, an insulating material, and an organic solvent. type conductive composition.
(6)前記有機高分子材料が、塩化ビニル・酢酸ビニル
共重合体である特許請求の範囲第5項に記載の感圧抵抗
変化型導電性組成物。
(6) The pressure-sensitive resistance variable conductive composition according to claim 5, wherein the organic polymer material is a vinyl chloride/vinyl acetate copolymer.
(7)前記導電性材料が、グラファイトである特許請求
の範囲第5項もしくは第6項に記載の感圧抵抗変化型導
電性組成物。
(7) The pressure-sensitive resistance variable conductive composition according to claim 5 or 6, wherein the conductive material is graphite.
(8)前記半導体材料および絶縁性材料が、三二酸化ク
ロム、二酸化チタン、窒化硼素、二硫化モリブデン、酸
化マグネシウム、炭酸カルシウム、水酸化アルミニウム
、アルミナ、亜鉛華、クレーおよびタルクの中から選択
された1種以上からなる物質である特許請求の範囲第5
項〜第7項のいずれかに記載の感圧抵抗変化型導電性組
成物。
(8) The semiconductor material and the insulating material are selected from chromium sesquioxide, titanium dioxide, boron nitride, molybdenum disulfide, magnesium oxide, calcium carbonate, aluminum hydroxide, alumina, zinc white, clay, and talc. Claim 5, which is a substance consisting of one or more types
The pressure-sensitive resistance variable conductive composition according to any one of Items 1 to 7.
(9)前記有機溶媒がエチレングリコールモノブチルエ
ーテルおよび/または酢酸エチレングリコールモノブチ
ルエーテルである特許請求の範囲第5項〜第8項のいず
れかに記載の感圧抵抗変化型導電性組成物。
(9) The pressure-sensitive resistance variable conductive composition according to any one of claims 5 to 8, wherein the organic solvent is ethylene glycol monobutyl ether and/or acetic acid ethylene glycol monobutyl ether.
JP62294796A 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element Expired - Lifetime JPH0787123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294796A JPH0787123B2 (en) 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP61-277744 1986-11-20
JP27774486A JPH01168761A (en) 1986-11-20 1986-11-20 Pressure-sensitive, variable-resistance conductive composition
JP9939287A JPH01243401A (en) 1987-04-22 1987-04-22 Pressure sensitive variable resistance type conductive composition
JP62-99392 1987-04-22
JP62294796A JPH0787123B2 (en) 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element

Publications (2)

Publication Number Publication Date
JPH02186604A true JPH02186604A (en) 1990-07-20
JPH0787123B2 JPH0787123B2 (en) 1995-09-20

Family

ID=27308948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294796A Expired - Lifetime JPH0787123B2 (en) 1986-11-20 1987-11-20 Pressure-sensitive resistance changeable conductive coating film forming composition used as switch element

Country Status (1)

Country Link
JP (1) JPH0787123B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536770A (en) * 1993-10-16 1996-07-16 Merck Patent Gesellschaft Mit Beschrankter Haftung Conductive coating formulation
WO1997036758A3 (en) * 1996-03-29 1997-11-06 Michael Handfield System and method for monitoring a pneumatic tire
GB2359085A (en) * 2000-02-11 2001-08-15 Winn & Coales Internat Ltd Thermal insulation material
JP2005350614A (en) * 2004-06-14 2005-12-22 Koichi Niihara Pressure-sensitively electrically conductive elastomer
CN110576166A (en) * 2019-10-21 2019-12-17 徐州市国艺铝合金包装箱有限公司 Aluminum alloy adopting low-temperature die casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102144A2 (en) 2003-05-14 2004-11-25 Tekscan, Inc. High temperature pressure sensitive device and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190002A (en) * 1982-04-29 1983-11-05 オリンパス光学工業株式会社 Pressure electric resistance converting element and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190002A (en) * 1982-04-29 1983-11-05 オリンパス光学工業株式会社 Pressure electric resistance converting element and method of producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536770A (en) * 1993-10-16 1996-07-16 Merck Patent Gesellschaft Mit Beschrankter Haftung Conductive coating formulation
WO1997036758A3 (en) * 1996-03-29 1997-11-06 Michael Handfield System and method for monitoring a pneumatic tire
GB2359085A (en) * 2000-02-11 2001-08-15 Winn & Coales Internat Ltd Thermal insulation material
JP2005350614A (en) * 2004-06-14 2005-12-22 Koichi Niihara Pressure-sensitively electrically conductive elastomer
JP4517225B2 (en) * 2004-06-14 2010-08-04 ▲晧▼一 新原 Pressure sensitive conductive elastomer
CN110576166A (en) * 2019-10-21 2019-12-17 徐州市国艺铝合金包装箱有限公司 Aluminum alloy adopting low-temperature die casting

Also Published As

Publication number Publication date
JPH0787123B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US4061601A (en) Electrically conductive rear view mirror
KR100353314B1 (en) Force sensing ink, method of making same and improved force sensor
JP2544892B2 (en) Polymer thick film resistor composition
JP3358962B2 (en) Flexible thick film conductor composition
US5543246A (en) Battery tester adhesive system
US5843342A (en) Polymer compositions containing chlorided conductive particles
IE54309B1 (en) Flexible screen-printable conductive composition
US20050121657A1 (en) Thick film conductor compositions for use in membrane switch applications
JPH02186604A (en) Pressure-sensitive resistance changing type conductive composition
JPH02158105A (en) Laminated type pressure sensitive material
FR2459999A1 (en) ELECTROSTATIC REPRODUCTIVE MATERIAL
JPH05151828A (en) Pressure-sensitive conductive material
JPH01168761A (en) Pressure-sensitive, variable-resistance conductive composition
US20190189365A1 (en) Electrical switches and sensors
JPH01243401A (en) Pressure sensitive variable resistance type conductive composition
JPH03247662A (en) Pressure-sensitive and resistance-variable conductive composition
JP3907431B2 (en) Resistor for pressure sensor and pressure sensor using the same
JPS6015464A (en) Pigment
JPH0487208A (en) Composition for pressure sensitive conductive body, pressure sensitive conductive body and its manufacture
EP3592816B1 (en) Conductive ink composition
JPH0473809A (en) Transparent conductiv film
SU603353A3 (en) Material for manufacturing capacitor contact coating
US20090297697A1 (en) Silver doped white metal particulates for conductive composites
DE2166805C3 (en)
JPS6337443B2 (en)