[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02174066A - Manufacture of negative electrode active material for alkaline battery - Google Patents

Manufacture of negative electrode active material for alkaline battery

Info

Publication number
JPH02174066A
JPH02174066A JP63327538A JP32753888A JPH02174066A JP H02174066 A JPH02174066 A JP H02174066A JP 63327538 A JP63327538 A JP 63327538A JP 32753888 A JP32753888 A JP 32753888A JP H02174066 A JPH02174066 A JP H02174066A
Authority
JP
Japan
Prior art keywords
indium
mercury
bismuth
alloy powder
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63327538A
Other languages
Japanese (ja)
Inventor
Kiyonobu Nakamura
中村 精伸
Toyohide Uemura
植村 豊秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP63327538A priority Critical patent/JPH02174066A/en
Publication of JPH02174066A publication Critical patent/JPH02174066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the occurrence of hydrogen gas and improve corrosion resistance over a long period by electrolytically replacing bismuth, indium, mercury, or indium, bismuth, mercury in sequence on the surface of zinc-lead alloy powder then coating fluorinated alkyl ester. CONSTITUTION:Bismuth and indium or, on the contrary, indium and bismuth are electrolytically replaced in sequence on the surface of zinc-lead alloy powder, then mercury is electrolytically replaced, and fluorinated alkyl ester is coated, or bismuth is electrolytically replaced on the surface of zinc-lead alloy powder, then it is amalgamated with an indium-mercury alloy and coated with fluorinated alkyl ester. Their contents are lead 0.01-2.0wt.%, bismuth 0.05-0.2wt.%, indium 0.01-0.1wt.%, and mercury 0.01-1.0wt.%. The content of mercury is sharply decreased, the occurrence of hydrogen gas is suppressed over a long period, and corrosion resistance can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルカリ電池用の負極活物質の製造法に関し、
詳しくは亜鉛−鉛合金粉末の表面にビスマス、インジウ
ム、水銀を特定の順序で分散させた後にフッ素化アルキ
ルエステルを被覆させる、水素ガス発生が長期間にわた
って抑制されて耐食性が向上され、かつ放電性能に優れ
たアルカリ電池が得られる負極活物質の製造法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a negative electrode active material for alkaline batteries.
In detail, bismuth, indium, and mercury are dispersed in a specific order on the surface of zinc-lead alloy powder and then coated with fluorinated alkyl ester. Hydrogen gas generation is suppressed for a long period of time, corrosion resistance is improved, and discharge performance is improved. The present invention relates to a method for producing a negative electrode active material that provides an alkaline battery with excellent properties.

[従来の技術] 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
フ。
[Prior Art] In an alkaline battery using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more tightly sealed the battery is, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した氷化亜鉛合金粉末を負
極活物質として用いることが専ら行なわれている。この
ため、今日市販されているアルカリ電池の負極活物質は
1.5重量係程度の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an anode active material, and to reduce the generation of hydrogen gas inside the battery. is carried out exclusively. For this reason, the negative electrode active materials of alkaline batteries commercially available today contain about 1.5 weight factor of mercury, and as a social need, there is a strong expectation for the development of lower mercury or mercury-free batteries. It has started to be done.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した氷化亜鉛合金粉末に関する提案がな
されている。例えば、亜鉛−鉛合金粉末の表面にビスマ
ス、インジウム、水銀またはインジウム、ビスマス、水
銀を順次置換析出させた水化亜鉛合金粉末、あるいは亜
鉛−鉛合金粉末の表面にビスマスを置換析出させた後に
インジウム−水銀合金で氷化させた氷化亜鉛合金粉末が
本発明者等によって提案されている。
Therefore, in order to reduce the mercury content in batteries, proposals have been made regarding frozen zinc alloy powders in which various metals are added to zinc. For example, bismuth, indium, and mercury, or zinc hydrate alloy powder in which indium, bismuth, and mercury are sequentially precipitated by substitution on the surface of zinc-lead alloy powder, or indium after bismuth is precipitated by substitution on the surface of zinc-lead alloy powder. - A frozen zinc alloy powder frozen with a mercury alloy has been proposed by the present inventors.

また、同様の目的を達成する手段として、界面活性剤を
添加した負極活物質に関する提案がなされている。例え
ば、亜鉛溶湯中に鉛、アルミニウム、インジウム等を添
加して得られる亜鉛合金粉末を氷化した氷化亜鉛合金粉
末の表面にフッ素化アルキルエステルを被覆した負極活
物質が本発明者等によって提案されている。
In addition, as a means to achieve the same objective, proposals have been made regarding negative electrode active materials to which surfactants are added. For example, the present inventors have proposed a negative electrode active material in which the surface of frozen zinc alloy powder, which is obtained by freezing zinc alloy powder obtained by adding lead, aluminum, indium, etc. to molten zinc, is coated with a fluorinated alkyl ester. has been done.

このような従来の水化亜鉛合金粉末あるいは負極活物質
はいずれもある程度の水素ガス発生抑制効果を奏するも
のであった。
Such conventional zinc hydrate alloy powders or negative electrode active materials have both been effective in suppressing hydrogen gas generation to some extent.

[発明が解決しようとする課題] しかしながら、上記提案のような従来の氷化亜鉛合金粉
末あるいは負極活物質にあってはいずれも、低汞化とし
つつ、特に水銀含有量を1.0重量%以下に低減して、
長期間にわたる水素ガス発生量の低減および放電性能の
向上の両者をバランス良く高い水準で達成したアルカリ
電池を得るには至っていなかった。
[Problems to be Solved by the Invention] However, in the conventional frozen zinc alloy powder or negative electrode active material as proposed above, while reducing the mercury content to 1.0% by weight, Reduce to below,
It has not yet been possible to obtain an alkaline battery that achieves both a long-term reduction in the amount of hydrogen gas generated and an improvement in discharge performance at a high level in a well-balanced manner.

本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を長期間にわたって抑制して耐
食性を向上させ、しかも放電性能も向上させる、アルカ
リ電池用の負極活物質の製造法を提供することを目的と
する。
In view of the current situation, the present invention provides a method for producing a negative electrode active material for alkaline batteries, which significantly reduces the mercury content, suppresses hydrogen gas generation for a long period of time, improves corrosion resistance, and also improves discharge performance. The purpose is to provide

[課題を解決するだめの手段〕 本発明者らはこの目的に沿って鋭意研究の結果、下記の
製造法によって、亜鉛−鉛合金粉末の表面にビスマス、
インジウム、水銀またはインジウム、ビスマス、水銀を
順次置換析出させた3層構造、あるいは亜鉛−鉛合金粉
末の表面に先ずビスマスを置換析出させた後にインジウ
ム−水銀合金で氷化させた2層構造となっている氷化亜
鉛合金粉末の表面に、さらにフッ素化アルキルエステル
を被覆させた負極活物質において上記目的が達成される
ことを見い出し、本発明に到達した。
[Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors have found that bismuth,
It has a three-layer structure in which indium, mercury, or indium, bismuth, and mercury are sequentially precipitated by substitution, or a two-layer structure in which bismuth is first precipitated by substitution on the surface of zinc-lead alloy powder and then iced with indium-mercury alloy. The present inventors have discovered that the above object can be achieved in a negative electrode active material in which the surface of a frozen zinc alloy powder is further coated with a fluorinated alkyl ester, and the present invention has been achieved.

すなわち、本発明のアルカリ電池用負極活物質の製造法
は、亜鉛−鉛合金粉末の表面にビスマス、インジウムま
たは逆にインジウム、ビスマスを順次置換析出させ、次
いで水銀を置換析出させた後にフッ素化アルキルエステ
ルを被覆させるか、あるいは亜鉛−鉛合金粉末の表面に
ビスマスを置換析出させた後にインジウム−水銀合金で
氷化させ、さらにフッ素化アルキルエステルを被覆させ
ることを特徴とするものである。
That is, in the method for producing a negative electrode active material for alkaline batteries of the present invention, bismuth, indium, or conversely, indium and bismuth are sequentially precipitated by substitution on the surface of a zinc-lead alloy powder, and then mercury is precipitated by substitution, and then fluorinated alkyl It is characterized by coating the surface of the zinc-lead alloy powder with an ester, or by precipitating bismuth by substitution on the surface of the zinc-lead alloy powder, then freezing it with an indium-mercury alloy, and then coating it with a fluorinated alkyl ester.

以下に、本発明の製造法について更に詳細に説明する。Below, the manufacturing method of the present invention will be explained in more detail.

本発明の製造法においては、先ず、所定量の鉛を含有す
る亜鉛−鉛合金粉末を得る。その方法としては、例えば
亜鉛溶湯中に鉛を所定量添加し、撹拌して合金化させた
後、圧縮空気によりアトマイズし、粉体化させ、さらに
篩い分けを行なって整粒する方法が行なわれる。
In the manufacturing method of the present invention, first, a zinc-lead alloy powder containing a predetermined amount of lead is obtained. One method is, for example, to add a predetermined amount of lead to molten zinc, stir it to form an alloy, then atomize it with compressed air, turn it into powder, and then sieve it to size it. .

次に、本発明の製造法にあっては、得られた亜鉛−鉛合
金粉末の表面にビスマス、インジウム、水銀を添加する
ものであるが、その方法としては以下の3通りがある。
Next, in the manufacturing method of the present invention, bismuth, indium, and mercury are added to the surface of the obtained zinc-lead alloy powder, and there are three methods for adding it.

(I):ビスマス、インジウム、水銀を順次置換析出さ
せる。
(I): Bismuth, indium, and mercury are sequentially substituted and precipitated.

(■):インジウム、ビスマス、水銀を順次置換析出さ
せる。
(■): Indium, bismuth, and mercury are sequentially substituted and precipitated.

(■);ビスマスを置換析出させた後にインジウム−水
銀合金で氷化させる。
(■); After bismuth is precipitated by substitution, it is iced with an indium-mercury alloy.

先ず、(I)または(II)の方法について説明する。First, method (I) or (II) will be explained.

ただし、(1)の方法と(II)の方法とでは、ビスマ
スとインジウムを置換析出させる順序が異なるのみで、
その他は共通であるので、ビスマスとインジウムを置換
析出させる方法については(1)の方法のみを説明する
However, method (1) and method (II) differ only in the order in which bismuth and indium are precipitated by substitution.
Since the other aspects are common, only method (1) will be described as a method for substituting bismuth and indium to be precipitated.

すなわち、上記で得られた亜鉛−鉛合金粉末を希酸性溶
液中に投入して撹拌、混合し、ここに、所定量のビスマ
スが溶解されている希酸性溶液を滴下する。滴下終了後
1時間程度撹拌を続け、希酸性溶液中のビスマスを亜鉛
−鉛合金粉末の表面に置換析出させる。ここで用いられ
るビスマスが溶解された希酸性溶液は、例えば酸化ビス
マスを希酸性溶液に溶解させることによって好適に得ら
れる。さらに、ここで用いられる希酸性溶液としては、
濃度が5〜15%の塩酸が好ましい。
That is, the zinc-lead alloy powder obtained above is poured into a dilute acidic solution, stirred and mixed, and the diluted acidic solution in which a predetermined amount of bismuth is dissolved is dropped therein. After the dropwise addition is completed, stirring is continued for about 1 hour to cause the bismuth in the dilute acidic solution to be displaced and precipitated on the surface of the zinc-lead alloy powder. The dilute acidic solution in which bismuth is dissolved used here can be suitably obtained by, for example, dissolving bismuth oxide in the dilute acidic solution. Furthermore, the dilute acidic solution used here is
Hydrochloric acid with a concentration of 5-15% is preferred.

続いて、所定量のインジウムが溶解されている希酸性溶
液を、上記で得られたビスマスが置換析出された亜鉛−
鉛合金粉末が入っている希酸性溶液中に撹拌下滴下し、
ビスマスの場合と同様にしてインジウムをその粉末の表
面に置換析出させる。
Next, a dilute acidic solution in which a predetermined amount of indium was dissolved was added to the zinc-based solution in which the bismuth obtained above had been precipitated.
Dropped into a dilute acidic solution containing lead alloy powder while stirring,
Indium is substituted and precipitated on the surface of the powder in the same manner as in the case of bismuth.

ここで用いられるインジウムが溶解された希酸性溶液は
、例えば水酸化インジウムを希酸性溶液に溶解させるこ
とによって好適に得られる。また、希酸性溶液としては
、ビスマスの置換析出の際と同様に濃度が5〜15%の
塩酸が好ましい。
The dilute acidic solution in which indium is dissolved used here can be suitably obtained by, for example, dissolving indium hydroxide in the dilute acidic solution. Further, as the dilute acidic solution, hydrochloric acid having a concentration of 5 to 15% is preferable, as in the case of displacement precipitation of bismuth.

さらに、(1)または(II)の方法では、上記で得ら
れたビスマス、インジウムまたはインジウム、ビスマス
が順次置換析出された亜鉛−鉛合金粉末の表面に水銀を
置換析出させて氷化亜鉛合金粉末が得られる。
Furthermore, in the method (1) or (II), mercury is precipitated by substitution on the surface of the zinc-lead alloy powder obtained above, in which bismuth, indium, or indium and bismuth are sequentially precipitated by substitution. is obtained.

この方法は、所定量の水銀が溶解されている希酸性溶液
を、上記のビスマス、インジウムまたはインジウム、ビ
スマスが順次置換析出された亜鉛−鉛合金粉末が入って
いる希酸性溶液中に撹拌下滴下し、ビスマス、インジウ
ムを置換析出させた場合と同様にして水銀をその粉末の
表面に置換析出させる。次いで、得られた粉末を水洗し
た後に濾過、乾燥して氷化亜鉛合金粉末が得られる。こ
こで用いられる水銀が溶解された希酸性溶液は、例えば
塩化第2水銀を希酸性溶液に溶解させることによって好
適に得られる。また、希酸性溶液としては、ビスマス、
インジウムの置換析出の際と同様に濃度が5〜15%の
塩酸が好ましい。
In this method, a dilute acidic solution in which a predetermined amount of mercury is dissolved is dropped under stirring into a dilute acidic solution containing the above-mentioned bismuth, indium, or zinc-lead alloy powder in which indium and bismuth are sequentially precipitated. Then, mercury is precipitated by substitution on the surface of the powder in the same manner as bismuth and indium are precipitated by substitution. Next, the obtained powder is washed with water, filtered, and dried to obtain a frozen zinc alloy powder. The dilute acidic solution in which mercury is dissolved used here can be suitably obtained by, for example, dissolving mercuric chloride in the dilute acidic solution. In addition, as a dilute acidic solution, bismuth,
Hydrochloric acid having a concentration of 5 to 15% is preferred as in the case of displacement precipitation of indium.

このような(1)または(II)の方法により得られた
氷化亜鉛合金粉末は、亜鉛−鉛合金粉末の外周にビスマ
ス層、インジウム層または逆にインジウム層、ビスマス
層を有し、さらにその外周に水銀層を有するものである
The frozen zinc alloy powder obtained by the method (1) or (II) has a bismuth layer and an indium layer on the outer periphery of the zinc-lead alloy powder, or conversely an indium layer and a bismuth layer, and It has a mercury layer around its outer periphery.

他方、(■)の方法においては、前記で得られた亜鉛−
鉛合金粉末の表面に先ず(1)または(n)の方法と同
様にしてビスマスを置換析出させた後、インジウム−水
銀合金で氷化させて氷化亜鉛合金粉末が得られる。その
方法は例えば以下の方法で行なわれる。
On the other hand, in the method (■), the zinc-
First, bismuth is precipitated by substitution on the surface of lead alloy powder in the same manner as in method (1) or (n), and then iced with an indium-mercury alloy to obtain frozen zinc alloy powder. The method is carried out, for example, as follows.

すなわち、゛上記のビスマスを置換析出させた亜鉛−鉛
合金粉末と所定量のインジウム−水銀合金とを希酸性溶
液あるいは希アルカリ性溶液中に投入し、1時間程度混
合、撹拌しながら汞化処理を行ない、次いで水洗を行な
った後に濾過、乾燥して氷化亜鉛合金粉末が得られる。
That is, ``The above zinc-lead alloy powder in which bismuth has been precipitated by substitution and a predetermined amount of indium-mercury alloy are put into a dilute acidic solution or a dilute alkaline solution, and the mixture is mixed and stirred for about 1 hour while being subjected to a hydrogenation treatment. After washing with water, filtration and drying are performed to obtain a frozen zinc alloy powder.

ここで用いられるインジウム−水銀合金は、例えば10
%塩酸中でインジウムと水銀とを混合して合金化させる
ことによって得られる。また、希酸性溶液としては濃度
が5〜15%の塩酸が好ましく、希アルカリ性溶液とし
ては濃度が5〜15%の水酸化カリウム水溶液が好まし
い。
The indium-mercury alloy used here is, for example, 10
% by mixing and alloying indium and mercury in hydrochloric acid. Further, as the dilute acidic solution, hydrochloric acid with a concentration of 5 to 15% is preferable, and as the dilute alkaline solution, a potassium hydroxide aqueous solution with a concentration of 5 to 15% is preferable.

このような(m)の方法により得られた氷化亜鉛合金粉
末は、亜鉛−鉛合金粉末の外周にビスマス層を有し、さ
らにその外周にインジウム−水銀合金層を有するもので
ある。
The frozen zinc alloy powder obtained by the method (m) has a bismuth layer on the outer periphery of the zinc-lead alloy powder, and further has an indium-mercury alloy layer on the outer periphery.

次に、本発明の製造法にあっては、上記(1)〜(m)
の方法で得られた氷化亜鉛合金粉末の表面にフッ素化ア
ルキルエステルを被覆させて負極活物質を得る。その方
法としては次の方法が好適である。
Next, in the manufacturing method of the present invention, the above (1) to (m)
A negative electrode active material is obtained by coating the surface of the frozen zinc alloy powder obtained by the above method with a fluorinated alkyl ester. The following method is suitable as the method.

す゛なわち、所定量のフッ素化アルキルエステルを添加
したトルエン等の溶媒中に上記で得られた氷化亜鉛合金
粉末を投入して撹拌し、氷化亜鉛合金粉末の外周部等に
存在する金属酸化物等の不純物を氷化亜鉛合金粉末から
離脱せしめ、その不純物を系外に除去する。その後、溶
媒を乾燥揮発させることによって氷化亜鉛合金粉末の表
面にフッ素化アルキルエステルを被覆させて負極活物質
が得られる。
That is, the glazed zinc alloy powder obtained above is poured into a solvent such as toluene to which a predetermined amount of fluorinated alkyl ester has been added and stirred, and the metals present in the outer periphery of the glazed zinc alloy powder are removed. Impurities such as oxides are separated from the frozen zinc alloy powder, and the impurities are removed from the system. Thereafter, by drying and volatilizing the solvent, the surface of the frozen zinc alloy powder is coated with a fluorinated alkyl ester, thereby obtaining a negative electrode active material.

本発明の製造法において用いられるフッ素化アルキルエ
ステルは、一般式 %式% で表される化合物であり、上式中R,R’はそれぞれフ
ッ素化アルキル基を示し、R,R’は同一または異なっ
てもよい。このフッ素化アルキル基としては一般式C,
F、、。+(nは1以上の整数を示す)で表されるもの
等が挙げられる。前記フッ素化アルキル基の炭素数(n
)の好ましい範囲は1〜20であり、具体的にはR,R
’ としては、トリフルオロメチル基、ペンタフルオロ
エチル基、ヘプタフルオロプロピル基、ノナフルオロブ
チル基、ウンデカフルオロペンチル基、トリデカフルオ
ロヘキシル基、ペンタデカフルオロヘプチル基、ヘプタ
デカフルオロオクチル基、ノナデカフルオロノニル基、
ヘンエイコサフルオロデシル基、トリコサフルオロウン
デシル基、ペンタコサフルオロドデシル基、ヘプタコサ
フルオロトリデシル基、ノナコサフルオロテトラデシル
基、ヘントリアコンタフルオロペンタデシル基、トリト
リアコンタフルオロヘキサデシル基、ペンタトリアコン
タフルオロヘプタデシル基、ヘプタトリアコンタフルオ
ロオクタデシル基、ノナトリアコンタフルオロノナデシ
ル基、ヘンテトラコンタフルオロエイコシル基等のフッ
素化アルキル基が挙げられる。なお、本発明の製造法に
おいて用いられるフッ素化アルキルエステルは、上記一
般式で表されるフッ素化アルキルエステルのうちのいず
れか1種であっても、あるいは2種以上の混合物であっ
てもよい。
The fluorinated alkyl ester used in the production method of the present invention is a compound represented by the general formula %, where R and R' each represent a fluorinated alkyl group, and R and R' are the same or May be different. This fluorinated alkyl group has the general formula C,
F... Examples include those represented by + (n represents an integer of 1 or more). The number of carbon atoms (n
) is preferably in the range of 1 to 20, specifically R, R
' as trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, undecafluoropentyl group, tridecafluorohexyl group, pentadecafluoroheptyl group, heptadecafluorooctyl group, nonadecafluorobutyl group, fluorononyl group,
Heneicosafluorodecyl group, tricosafluoroundecyl group, pentacosafluorododecyl group, heptacosafluorotridecyl group, nonacosafluorotetradecyl group, hentriacontafluoropentadecyl group, tritriacontafluorohexadecyl group, Examples include fluorinated alkyl groups such as a pentatriacontafluoroheptadecyl group, a heptatriacontafluorooctadecyl group, a nonatriacontafluorononadecyl group, and a hetetracontafluoroeicosyl group. The fluorinated alkyl ester used in the production method of the present invention may be any one of the fluorinated alkyl esters represented by the above general formula, or may be a mixture of two or more. .

このフッ素化アルキルエステルの被覆量は、前記氷化亜
鉛合金粉末100重量部に対して0.001〜1.0重
量部であり、o、ooi重量部未満では、亜鉛の耐食性
を改善して水素ガス発生を抑制するという本発明の効果
が充分に得られず、また1、0重量部を超えた場合には
、放電時に氷化亜鉛合金粉末表面上に形成させたフッ素
化アルキルエステルのコーティング層中等に存在するフ
ッ素化アルキルエステルがバリヤーとなって亜鉛の溶解
反応が阻害される等して良好な放電性能が得られない。
The coating amount of this fluorinated alkyl ester is 0.001 to 1.0 parts by weight based on 100 parts by weight of the frozen zinc alloy powder, and if it is less than o, ooi parts by weight, the corrosion resistance of zinc is improved and hydrogen If the effect of the present invention of suppressing gas generation is not sufficiently obtained, and if the amount exceeds 1.0 parts by weight, the coating layer of fluorinated alkyl ester formed on the surface of the frozen zinc alloy powder during discharge. The fluorinated alkyl ester present in the battery acts as a barrier and inhibits the zinc dissolution reaction, making it impossible to obtain good discharge performance.

本発明の製造法で得られる負極活物質は、鉛を0.01
〜2,0重量%、ビスマスを0.05〜0.2重量%、
インジウムを0.01〜0.1重量%、水銀を0.01
〜1.0重量%含有するものである。
The negative electrode active material obtained by the production method of the present invention contains 0.01 lead
~2.0% by weight, 0.05-0.2% by weight of bismuth,
0.01-0.1% by weight of indium, 0.01% of mercury
It contains ~1.0% by weight.

鉛、ビスマス、インジウムの各含有量が上記の下限未満
の場合は、アルカリ電池としたときの水素ガス発生抑制
および放電性能の向上に対する添加効果が小さい。また
、上限を超えた場合は、水素ガス発生量が増加して耐食
性が減少し、さらに放電容量も低下した。
If the content of each of lead, bismuth, and indium is less than the above lower limit, the effect of addition on suppressing hydrogen gas generation and improving discharge performance when used as an alkaline battery is small. Moreover, when the upper limit was exceeded, the amount of hydrogen gas generated increased, corrosion resistance decreased, and discharge capacity also decreased.

他方、本発明の製造法で得られる負極活物質は、水銀の
含有量が0.01−1.0重量%と極めて低歯を率の場
合に、他の製造法で得られる負極活物質より顕著に水素
ガス発生が抑制されかつ放電性能が向上されるアルカリ
電池が得られる。
On the other hand, when the negative electrode active material obtained by the production method of the present invention has an extremely low mercury content of 0.01-1.0% by weight, it has a higher content than the negative electrode active material obtained by other production methods. An alkaline battery in which hydrogen gas generation is significantly suppressed and discharge performance is improved can be obtained.

[作用] 本発明の作用効果は十分に解明されていないが、推定す
るに以下のことが考えられる。
[Action] Although the action and effect of the present invention are not fully elucidated, the following may be considered.

(1)ビスマス、インジウムは共に亜鉛粉末表面にあっ
て十分に水素過電圧が高く、従来の水銀の添加効果を代
替することが可能である。即ち、水銀含有量を低減させ
ても、これらの元素を添加することによって耐食性のカ
バーが可能である。また、鉛も耐食性向上に有効な元素
である。
(1) Bismuth and indium are both present on the surface of the zinc powder and have a sufficiently high hydrogen overvoltage, making it possible to replace the conventional effect of adding mercury. That is, even if the mercury content is reduced, corrosion resistance can be covered by adding these elements. Furthermore, lead is also an effective element for improving corrosion resistance.

(2)ビスマスは水銀とアマルガム化し難いので、ビス
マス層は亜鉛合金粉末内部への水銀の拡散を抑制するバ
リヤーとなる。また、インジウムは水銀とアマルガム化
し品いので、インジウムは水銀とアマルガム化すること
によって亜鉛合金粉末内部への水銀の拡散を抑制する。
(2) Since bismuth is difficult to amalgamate with mercury, the bismuth layer acts as a barrier to suppress the diffusion of mercury into the zinc alloy powder. Furthermore, since indium is amalgamated with mercury, indium suppresses the diffusion of mercury into the zinc alloy powder by amalgamating with mercury.

こうした作用によって亜鉛合金粉末表面の水銀濃度が高
く維持されるので、少量の水銀含有量であっても水銀に
よる耐食性および電池特性の向上効果が十分に発揮され
る。
These actions maintain a high mercury concentration on the surface of the zinc alloy powder, so even a small amount of mercury can sufficiently exhibit the effects of mercury on improving corrosion resistance and battery characteristics.

(3)汞化亜鉛合金粉末の表面に被覆されたフッ素化ア
ルキルエステルがインヒビターとして作用するために、
耐食性の向上に効果がある。
(3) Because the fluorinated alkyl ester coated on the surface of the zinc chloride alloy powder acts as an inhibitor,
Effective in improving corrosion resistance.

(4)フッ素化アルキルエステルを添加したトルエン等
の溶媒を用いて氷化亜鉛合金粉末の表面にフッ素化アル
キルエステルを被覆させる場合においては、上記溶媒中
で氷化亜鉛合金粉末を撹拌することによって、氷化亜鉛
合金粉末の外周部に存在する金属酸化物等、電池性能劣
化の要因となる不純物をキレート化作用等によって氷化
亜鉛合金粉末から離脱せしめて除去することができるの
で、電池性能の向上に効果がある。
(4) When coating the surface of a fluorinated zinc alloy powder with a fluorinated alkyl ester using a solvent such as toluene to which a fluorinated alkyl ester has been added, the fluorinated zinc alloy powder is stirred in the above solvent. Impurities that cause deterioration of battery performance, such as metal oxides present on the outer periphery of glazed zinc alloy powder, can be removed from the glazed zinc alloy powder by chelation, so that battery performance can be improved. Effective for improvement.

上記の本発明の作用効果はいずれも、ビスマス、インジ
ウム、水銀の各元素を、本発明の製造法によって亜鉛−
鉛合金粉末の表面に特定の順序で所定量存在させ、さら
に所定量のフッ素化アルキルエステルを被覆させること
によって達成されるものである。
All of the above-mentioned effects of the present invention are such that each element of bismuth, indium, and mercury is produced by the production method of the present invention.
This is achieved by making a predetermined amount of lead alloy powder present in a specific order on the surface of the lead alloy powder, and further coating the surface with a predetermined amount of fluorinated alkyl ester.

本発明は、これら各作用の相乗効果により、耐食性、放
電性能が共に優れた、アルカリ電池の負極活物質として
用いられる負極活物質の製造法を提供するものである。
The present invention provides a method for producing a negative electrode active material that is excellent in both corrosion resistance and discharge performance and is used as a negative electrode active material for alkaline batteries due to the synergistic effect of these respective actions.

[実施例] 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜14および比較例1〜7 純度99.997%以上の亜鉛地金を約500℃で溶融
して、これに第1表の組成になるように鉛を添加して亜
鉛−鉛合金を作成した。次に、得られた亜鉛−鉛合金を
高圧アルゴンガス(噴出圧5に’J/CIi”)を使っ
て粉体化し、さらに篩い分けによって粉体の粒度を48
〜150メツシユに整粒して第1表に示されるアトマイ
ズ粉末を得た。
Examples 1 to 14 and Comparative Examples 1 to 7 Zinc ingots with a purity of 99.997% or more are melted at about 500°C, and lead is added to the melt to have the composition shown in Table 1 to form a zinc-lead alloy. It was created. Next, the obtained zinc-lead alloy is powdered using high-pressure argon gas (injection pressure 5'J/CIi'), and further sieved to reduce the particle size of the powder to 48.
The atomized powder shown in Table 1 was obtained by sizing to ~150 meshes.

次に、上記製造法(1)により氷化亜鉛合金粉末を得た
Next, a frozen zinc alloy powder was obtained by the above manufacturing method (1).

すなわち、10%塩酸が0.51入ったビーカーに、得
られたアトマイズ粉末を200g投入し、撹拌機で撹拌
、混合した。また他方で、酸化ビスマスを第1表の組成
となるように所定量溶解させた10%塩酸を0.IJ用
意した。このビスマスを含有する塩酸を上述のアトマイ
ズ粉末を含有する塩酸中に撹拌上滴下させた。滴下終了
後さらに1時間撹拌を行ない、溶液中のビスマスをアト
マイズ粉末表面に置換析出させて、ビスマス層をアトマ
イズ粉末の外周に形成させた。
That is, 200 g of the obtained atomized powder was put into a beaker containing 0.51 g of 10% hydrochloric acid, and stirred and mixed using a stirrer. On the other hand, 10% hydrochloric acid in which a predetermined amount of bismuth oxide was dissolved to have the composition shown in Table 1 was added to 0.0% hydrochloric acid. I prepared IJ. This bismuth-containing hydrochloric acid was dropped into the above-mentioned atomized powder-containing hydrochloric acid with stirring. After the dropwise addition was completed, stirring was continued for an additional hour to displace and precipitate the bismuth in the solution onto the surface of the atomized powder, thereby forming a bismuth layer around the outer periphery of the atomized powder.

次いで、水酸化インジウムを第1表の組成となるように
所定量溶解させた10%塩酸を0.1 !用意し、これ
を上記のビスマス層を有するアトマイズ粉末を含有する
塩酸中に撹拌上滴下させた。滴下終了後さらに1時間撹
拌を行ない、溶液中のインジウムを前記粉末の表面に置
換析出させて、インジウム層を前記粉末の外周に形成さ
せた。
Next, add 0.1% of 10% hydrochloric acid in which a predetermined amount of indium hydroxide was dissolved to have the composition shown in Table 1. This was dropped into hydrochloric acid containing the atomized powder having the bismuth layer with stirring. After the dropwise addition was completed, stirring was further continued for 1 hour, and the indium in the solution was displaced and precipitated on the surface of the powder, thereby forming an indium layer around the outer periphery of the powder.

さらに、塩化第2水銀を第1表の組成となるように所定
量溶解させた10%塩酸を0.1 、f用意し、これを
上記のビスマス層、インジウム層を順次存するアトマイ
ズ粉末を含有する塩酸中に撹拌上滴下させた。滴下終了
後さらに 1時間撹拌を行ない、溶液中の水銀を前記粉
末の表面に置換析出させて、水銀層を前記粉末の外周に
形成させた。続いて、得られた粉末を水洗した後に濾過
、乾燥を行なって、第1表に示す組成の氷化亜鉛合金粉
末を得た。
Furthermore, prepare 0.1 f of 10% hydrochloric acid in which a predetermined amount of mercuric chloride is dissolved to have the composition shown in Table 1, and add this to the atomized powder containing the above-mentioned bismuth layer and indium layer sequentially. The mixture was added dropwise to hydrochloric acid with stirring. After the dropwise addition was completed, stirring was further continued for 1 hour to displace and precipitate the mercury in the solution onto the surface of the powder, thereby forming a mercury layer around the outer periphery of the powder. Subsequently, the obtained powder was washed with water, filtered, and dried to obtain glazed zinc alloy powder having the composition shown in Table 1.

次に、フッ素化アルキルエステル(住友スリーエム■製
、商品名:フロラードPC−430)を第1表の組成と
なるように所定量をビーカーにとり、これにトルエンを
0.I J投入し、溶解させた。そのトルエン中に上記
で得られた氷化亜鉛合金粉末を投入して撹拌した後、氷
化亜鉛合金粉末から離脱された金属酸化物等を含有する
照温化したトルエンの上澄液を除去した。さらに、トル
エン中に投入された汞化亜鉛合金粉末を混合しながらト
ルエンを乾燥揮発させ、氷化亜鉛合金粉末の表面にフッ
素化アルキルエステルを被覆させて第1表に示す組成の
負極活物質を得た。なお、第1表に示されるフッ素化ア
ルキルエステルの数値は、汞化亜鉛合金粉末100重量
部に対する量(Ii量置部である。
Next, a predetermined amount of fluorinated alkyl ester (manufactured by Sumitomo 3M, trade name: Florado PC-430) having the composition shown in Table 1 was placed in a beaker, and toluene was added to the beaker at 0.0%. IJ was added and dissolved. The frozen zinc alloy powder obtained above was added to the toluene and stirred, and then the supernatant liquid of heated toluene containing metal oxides released from the frozen zinc alloy powder was removed. . Furthermore, the toluene was dried and volatilized while mixing the zinc chloride alloy powder put into toluene, and the surface of the fluorinated zinc alloy powder was coated with fluorinated alkyl ester to form a negative electrode active material having the composition shown in Table 1. Obtained. The numerical values of the fluorinated alkyl ester shown in Table 1 are the amounts (Ii measured parts) based on 100 parts by weight of the zinc chloride alloy powder.

このようにして得られた各負極活物質を使って水素ガス
発生試験を行なった。それらの結果を第1表に示す。
A hydrogen gas generation test was conducted using each negative electrode active material thus obtained. The results are shown in Table 1.

なお、水素ガス発生試験は、電解液として濃度40重量
%の水酸化カリウム水溶液に酸化亜鉛を飽和させたもの
を5d用い。負極活物質を10g用いて45℃で25日
問および60日間のガス発生速度(μQ/g−day)
を測定した。
In the hydrogen gas generation test, 5 days of an aqueous potassium hydroxide solution with a concentration of 40% by weight saturated with zinc oxide was used as the electrolytic solution. Gas generation rate (μQ/g-day) for 25 days and 60 days at 45°C using 10g of negative electrode active material
was measured.

さらに、濃度40%の水酸化カリウム水溶液に酸化亜鉛
を飽和させたものにゲル化剤としてカルボキシメチルセ
ルロースとポリアクリル酸ソーダを1.0%程度加えて
作成した電解液t、ggと、上記で得られた負極活物質
3.0gとを混合してゲル状化して負極材を得た。他方
、二酸化マンガンと導電剤を混合して正極材を得た。こ
れらの負極材と正極材を用いて、第1図に示すアルカリ
マンガン電池を作成し、電池性能を評価した。
Furthermore, electrolytes t and gg were prepared by adding about 1.0% of carboxymethylcellulose and sodium polyacrylate as gelling agents to a 40% potassium hydroxide aqueous solution saturated with zinc oxide, and The mixture was mixed with 3.0 g of the obtained negative electrode active material to form a gel, thereby obtaining a negative electrode material. On the other hand, a positive electrode material was obtained by mixing manganese dioxide and a conductive agent. Using these negative electrode materials and positive electrode materials, an alkaline manganese battery shown in FIG. 1 was prepared, and the battery performance was evaluated.

第1図のアルカリマンガン電池は、正極缶1、正極2、
負極3、セパレーター4、封口体5、負極底板6、負極
集電体7、キャップ8、熱収縮性樹脂チューブ9、絶縁
リング!0.11 、外装缶I2で構成されている。
The alkaline manganese battery shown in Figure 1 consists of a positive electrode can 1, a positive electrode 2,
Negative electrode 3, separator 4, sealing body 5, negative electrode bottom plate 6, negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9, insulation ring! 0.11, and consists of an outer can I2.

このアルカリマンガン電池を用いて放電負荷4Ω、20
℃の放電条件により終止電圧0,9vまでの放電持続時
間を測定し、亜鉛溶湯中に鉛、アルミニウム、インジウ
ムを添加して得られた亜鉛合金粉末に水銀含有量が1.
5重量%となるように汞化処理を施した従来の氷化亜鉛
合金粉末を負極活物質として用いた比較例12の測定値
を100とした指数で示した。それらの結果を第1表に
示す。
Using this alkaline manganese battery, the discharge load is 4Ω, 20Ω.
The discharge duration up to the final voltage of 0.9 V was measured under the discharge conditions of 1.5 °C, and it was found that the mercury content of the zinc alloy powder obtained by adding lead, aluminum, and indium to molten zinc was 1.5 V.
It is expressed as an index, with the measured value of Comparative Example 12 using a conventional frozen zinc alloy powder that has been subjected to a hydration treatment so as to have a concentration of 5% by weight as 100 as a negative electrode active material. The results are shown in Table 1.

実施例15〜z8 上記の製造法(n)に従って、すなわち、ビスマスとイ
ンジウムを置換析出させる順序を逆にした以外は実施例
1〜14とそれぞれ同様にして第1表に示す組成の氷化
亜鉛合金粉末を得た。
Examples 15 to z8 Glyzed zinc having the composition shown in Table 1 in the same manner as Examples 1 to 14, respectively, according to the production method (n) above, that is, except that the order of replacing and precipitating bismuth and indium was reversed. An alloy powder was obtained.

さらに、得られた汞化亜鉛合金粉末の表面に実施例1〜
14とそれぞれ同様にしてフッ素化アルキルエステルを
被覆させて第1表に示す組成の負極活物質を得た。
Furthermore, Examples 1 to 3 were applied to the surface of the obtained zinc chloride alloy powder.
The negative electrode active materials having the compositions shown in Table 1 were obtained by coating them with fluorinated alkyl esters in the same manner as in No. 14.

このようにして得られた各負極活物質を用いて実施例1
〜14と同様に水素ガス発生試験および放電試験を行な
い、それらの結果を第1表に示す。
Example 1 Using each negative electrode active material obtained in this way
A hydrogen gas generation test and a discharge test were conducted in the same manner as in 14 to 14, and the results are shown in Table 1.

実施例29〜42 上記の製造法(m)に従って氷化亜鉛合金粉末を得た。Examples 29-42 A frozen zinc alloy powder was obtained according to the above manufacturing method (m).

すなわち、先ず実施例1〜14とそれぞれ同様にしてビ
スマス層を有するアトマイズ粉末を得、得られた粉末を
充分に水洗した。次いで、インジウムと水銀を10%塩
酸中で混合させて合金化させたものと前記のビスマス層
を有するアトマイズ粉末とを、第1表の組成となるよう
に10%水酸化カリウム水溶液中に投入し、約1時間混
合撹拌して氷化処理を行ない、その粉末の外周にインジ
ウム−水銀合金層を形成させた。さらに、得られた粉末
を水洗した後に濾過、乾燥を行なって、第1表に示す組
成の氷化亜鉛合金粉末を得た。
That is, first, atomized powders having a bismuth layer were obtained in the same manner as in Examples 1 to 14, and the obtained powders were thoroughly washed with water. Next, an alloy of indium and mercury mixed in 10% hydrochloric acid and the atomized powder having the bismuth layer were poured into a 10% potassium hydroxide aqueous solution so as to have the composition shown in Table 1. The mixture was mixed and stirred for about 1 hour to carry out freezing treatment, and an indium-mercury alloy layer was formed around the outer periphery of the powder. Furthermore, the obtained powder was washed with water, filtered, and dried to obtain glazed zinc alloy powder having the composition shown in Table 1.

次に、得られた汞化亜鉛合金粉末の表面に実施例1〜1
4とそれぞれ同様にしてフッ素化アルキルエステルを被
覆させて第1表に示す組成の負極活物質を得た。
Next, Examples 1 to 1 were applied to the surface of the obtained zinc chloride alloy powder.
The negative electrode active materials having the compositions shown in Table 1 were obtained by coating with fluorinated alkyl esters in the same manner as in 4.

このようにして得られた各負極活物質を用いて実施例1
〜14と同様に水素ガス発生試験および放電試験を行な
い、それらの結果を第1表に示す。
Example 1 Using each negative electrode active material obtained in this way
A hydrogen gas generation test and a discharge test were conducted in the same manner as in 14 to 14, and the results are shown in Table 1.

比較例8〜10 比較例8では実施例2、比較例9では実施例16比較例
IOでは実施例30とそれぞれ同様にして得られた氷化
亜鉛合金粉末を、フッ素化アルキルエステルを被覆させ
ないで負極活物質として用いて、実施例と同様にして水
素ガス発生試験および放電試験を行ない、それらの結果
を第1表に示す。
Comparative Examples 8 to 10 In Comparative Example 8, Example 2 was used, in Comparative Example 9, Example 16, and in Comparative Example IO, glazed zinc alloy powder obtained in the same manner as in Example 30 was used without coating with fluorinated alkyl ester. Using the material as a negative electrode active material, a hydrogen gas generation test and a discharge test were conducted in the same manner as in the examples, and the results are shown in Table 1.

比較例11〜14 亜鉛溶湯中に第1表の組成になるように各元素を添加し
て、実施例と同様にして第1表に示されるアトマイズ粉
末を得た。
Comparative Examples 11 to 14 Each element was added to molten zinc to have the composition shown in Table 1, and the atomized powder shown in Table 1 was obtained in the same manner as in Examples.

続いて、得られたアトマイズ粉末を10%水酸化カリウ
ム水溶液中に投入し、これに第1表の組成となるように
金属水銀を撹拌下滴下して氷化処理を行ない、水洗した
後に濾過、乾燥を行なって、第1表に示す組成の氷化亜
鉛合金粉末を得た。比較例11〜12においては、得ら
れた氷化亜鉛合金粉末をそのまま負極活物質とした。ま
た、比較例13〜14においては、得られた氷化亜鉛合
金粉末の表面に実施例2と同様にしてフッ素化アルキル
エステルを被覆させて第1表に示す組成の負極活物質を
得た。
Subsequently, the obtained atomized powder was poured into a 10% potassium hydroxide aqueous solution, and metallic mercury was added dropwise under stirring to achieve the composition shown in Table 1 to perform an ice treatment, and after washing with water, filtration was performed. Drying was performed to obtain glazed zinc alloy powder having the composition shown in Table 1. In Comparative Examples 11 and 12, the obtained frozen zinc alloy powder was directly used as the negative electrode active material. Further, in Comparative Examples 13 and 14, the surface of the obtained frozen zinc alloy powder was coated with a fluorinated alkyl ester in the same manner as in Example 2 to obtain negative electrode active materials having the compositions shown in Table 1.

このようにして得られた各負極活物質を用いて実施例と
同様に水素ガス発生試験および放電試験を行ない、それ
らの結果を第1表に示す。
Using each negative electrode active material thus obtained, a hydrogen gas generation test and a discharge test were conducted in the same manner as in the examples, and the results are shown in Table 1.

第1表に示されるごとく、 実施例1〜14は、前記製造法(1)で得られた氷化亜
鉛合金粉末の表面にフッ素化アルキルエステルを被覆さ
せて得られた負極活物質、実施例15〜28は、前記製
造法(II)で得られた氷化亜鉛合金粉末の表面にフッ
素化アルキルエステルを被覆させて得られた負極活物質
、実施例29〜42は、前記製造法(m)で得られた氷
化亜鉛合金粉末の表面にフッ素化アルキルエステルを被
覆させて得られた負極活物質、であるが、いずれも水素
ガス発生抑制効果が大きく、放電性能にも優れており、
特に長期間(60日間)にわたる水素ガス発生抑制効果
が顕著に優れていた。
As shown in Table 1, Examples 1 to 14 are negative electrode active materials obtained by coating the surface of the frozen zinc alloy powder obtained by the production method (1) with a fluorinated alkyl ester. Examples 15 to 28 are negative electrode active materials obtained by coating the surface of the frozen zinc alloy powder obtained by the production method (II) with a fluorinated alkyl ester, and Examples 29 to 42 are the negative electrode active materials obtained by coating the surface of the frozen zinc alloy powder obtained by the production method (II). ) is a negative electrode active material obtained by coating the surface of the frozen zinc alloy powder obtained with fluorinated alkyl ester, but both have a large hydrogen gas generation suppressing effect and excellent discharge performance.
In particular, the effect of suppressing hydrogen gas generation over a long period of time (60 days) was outstanding.

これに対して、 比較例1〜7は、実施例1〜14の負極活物質と添加さ
れる成分の種類および製造法は同じで、添加される成分
の含有量が前記の本発明の組成範囲から外れているもの
であるが、前述のごとく、水素ガス発生抑制効果、放電
性能が劣っていた。
On the other hand, in Comparative Examples 1 to 7, the types and manufacturing methods of the added components are the same as those of Examples 1 to 14, and the content of the added components is within the composition range of the present invention. However, as mentioned above, the hydrogen gas generation suppressing effect and discharge performance were inferior.

比較例8〜lOは、実施例2、実施例16、実施例30
とそれぞれ同一の氷化亜鉛合金粉末をフ・ソ素化アルキ
ルエステルを被覆させないでそのまま負極活物質とした
ものであるが、水素ガス発生抑制効果、放電性能共に劣
ったものであった。
Comparative Examples 8 to 1O are Example 2, Example 16, and Example 30.
The same frozen zinc alloy powder was used as the negative electrode active material without being coated with the fluorinated alkyl ester, but both the hydrogen gas generation suppressing effect and the discharge performance were poor.

比較例11−12は、本発明で用いられる氷化亜鉛合金
粉末と合金組成の異なる氷化亜鉛合金粉末を負極活物質
としたものであるが、水銀含有量を本発明の組成範囲内
まで低減した比較例11は、同一水銀含有量において、
水素ガス発生抑制効果、放電性能共に劣っていた。また
、水銀含有量を従来同様1.5重量%とした比較例12
にあっても、水銀含有量が実施例より多いにもかかわら
ず長期間(80日間)にわたる水素ガス発生抑制効果が
劣り、放電性能についても同等以下であった。
In Comparative Examples 11-12, the negative electrode active material was a frozen zinc alloy powder having a different alloy composition from the frozen zinc alloy powder used in the present invention, but the mercury content was reduced to within the composition range of the present invention. In Comparative Example 11, at the same mercury content,
Both the hydrogen gas generation suppressing effect and the discharge performance were inferior. In addition, Comparative Example 12 where the mercury content was 1.5% by weight as in the conventional example.
Even though the mercury content was higher than that of the example, the effect of suppressing hydrogen gas generation over a long period of time (80 days) was inferior, and the discharge performance was also equal or lower.

比較例13は、比較例11と同一の氷化亜鉛合金粉末の
表面にフッ素化アルキルエステルを被覆させた従来の負
極活物質を用いたものであるが、同一水銀含有量におい
て、長期間(60日間)にわたる水素ガス発生抑制効果
および放電性能が劣っていた。
Comparative Example 13 uses a conventional negative electrode active material in which the surface of the same frozen zinc alloy powder as Comparative Example 11 is coated with a fluorinated alkyl ester. The hydrogen gas generation suppressing effect and discharge performance over a period of 1 day) were poor.

比較例14は、本発明で用いられる負極活物質と組成は
同一で、本発明と異なる製造法で得られたものであるが
、水素ガス発生抑制効果、放電性能共に劣っていた。
Comparative Example 14 had the same composition as the negative electrode active material used in the present invention and was obtained by a manufacturing method different from that of the present invention, but was inferior in both hydrogen gas generation suppressing effect and discharge performance.

[発明の効果] 以上説明のごとく、上記製造法(1)〜(m)で得られ
た、鉛、インジウム、ビスマス、水銀が特定位置に一定
組成範囲で分散された氷化亜鉛合金粉末の表面に一定量
のフッ素化アルキルエステルを被覆する本発明によって
得られる負極活物質は、特に水銀の含有量が0,01〜
1.0重量%と極めて低汞化率において、他の製造法に
よって得られる種々の負極活物質と比較して、長期間に
わたって水素ガス発生を抑制して耐食性を向上させ、し
かも放電性能を向上させることができる。
[Effects of the Invention] As explained above, the surface of the frozen zinc alloy powder obtained by the above manufacturing methods (1) to (m), in which lead, indium, bismuth, and mercury are dispersed in specific positions and within a certain composition range. The negative electrode active material obtained by the present invention, in which a certain amount of fluorinated alkyl ester is coated on
At an extremely low fraction of 1.0% by weight, it suppresses hydrogen gas generation over a long period of time, improves corrosion resistance, and improves discharge performance compared to various negative electrode active materials obtained by other manufacturing methods. can be done.

従って、本発明の製造法は、アルカリ電池に用いられる
負極活物質の製造法として好適に使用される。
Therefore, the production method of the present invention is suitably used as a production method for negative electrode active materials used in alkaline batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の側断面
図を示す。 1・・・正極缶、    2・・・正極、3・・・負極
、      4・・・セパレーター5・・・封口体、
    6・・・負極底板、7・・・負極集電体、  
8・・・キャップ、9・・・熱収縮性樹脂チューブ、 10111・・・絶縁リング、 12・・・外装缶。 特許出願人 三井金属鉱業株式会社
FIG. 1 shows a side sectional view of an alkaline manganese battery according to the present invention. 1... Positive electrode can, 2... Positive electrode, 3... Negative electrode, 4... Separator 5... Sealing body,
6... Negative electrode bottom plate, 7... Negative electrode current collector,
8... Cap, 9... Heat-shrinkable resin tube, 10111... Insulating ring, 12... Exterior can. Patent applicant Mitsui Metal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 1、亜鉛−鉛合金粉末の表面にビスマス、インジウム、
水銀を順次置換析出させた後にフッ素化アルキルエステ
ルを被覆させることを特徴とする、鉛を0.01〜2.
0重量%、ビスマスを0.05〜0.2重量%、インジ
ウムを0.01〜0.1重量%、水銀を0.01〜1.
0重量%含有するアルカリ電池用負極活物質の製造法。 2、亜鉛−鉛合金粉末の表面にインジウム、ビスマス、
水銀を順次置換析出させた後にフッ素化アルキルエステ
ルを被覆させることを特徴とする、鉛を0.01〜2.
0重量%、インジウムを0.01〜0.1重量%、ビス
マスを0.05〜0.2重量%、水銀を0.01〜1.
0重量%含有するアルカリ電池用負極活物質の製造法。 3、亜鉛−鉛合金粉末の表面にビスマスを置換析出させ
た後にインジウム−水銀合金で■化させ、さらにフッ素
化アルキルエステルを被覆させることを特徴とする、鉛
を0.01〜2.0重量%、ビスマスを0.05〜0.
2重量%、インジウムを0.01〜0.1重量%、水銀
を0.01〜1.0重量%含有するアルカリ電池用負極
活物質の製造法。
[Claims] 1. Bismuth, indium,
The method is characterized in that mercury is sequentially precipitated by substitution and then coated with a fluorinated alkyl ester.
0% by weight, bismuth 0.05-0.2% by weight, indium 0.01-0.1% by weight, mercury 0.01-1.
A method for producing a negative electrode active material for alkaline batteries containing 0% by weight. 2. Indium, bismuth,
The method is characterized in that mercury is sequentially precipitated by substitution and then coated with a fluorinated alkyl ester.
0% by weight, indium 0.01-0.1% by weight, bismuth 0.05-0.2% by weight, mercury 0.01-1.
A method for producing a negative electrode active material for alkaline batteries containing 0% by weight. 3. Bismuth is substituted and precipitated on the surface of zinc-lead alloy powder, then treated with an indium-mercury alloy, and further coated with a fluorinated alkyl ester. %, bismuth from 0.05 to 0.
2% by weight of indium, 0.01 to 0.1% by weight of indium, and 0.01 to 1.0% by weight of mercury.
JP63327538A 1988-12-27 1988-12-27 Manufacture of negative electrode active material for alkaline battery Pending JPH02174066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63327538A JPH02174066A (en) 1988-12-27 1988-12-27 Manufacture of negative electrode active material for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63327538A JPH02174066A (en) 1988-12-27 1988-12-27 Manufacture of negative electrode active material for alkaline battery

Publications (1)

Publication Number Publication Date
JPH02174066A true JPH02174066A (en) 1990-07-05

Family

ID=18200212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63327538A Pending JPH02174066A (en) 1988-12-27 1988-12-27 Manufacture of negative electrode active material for alkaline battery

Country Status (1)

Country Link
JP (1) JPH02174066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
JPS5994371A (en) Alkaline battery and its manufacturing method
JPH02174066A (en) Manufacture of negative electrode active material for alkaline battery
JP3647980B2 (en) Anode material for alkaline manganese batteries
JP3617743B2 (en) Negative electrode material for alkaline manganese battery and method for producing the same
JPH0317181B2 (en)
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH02170352A (en) Mercurized zinc alloy powder for alkaline cell and its manufacture
JPS58225565A (en) Alkaline battery
JPH02165564A (en) Manufacture of mercurated zinc alloy powder for alkaline cell
JPH0282451A (en) Alkaline battery and negative electrode active material therefor
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPH01302663A (en) Manufacture of amalgamated zinc alloy powder
JPH02135666A (en) Alkaline battery and negative active material thereof
JP2805488B2 (en) Alkaline battery and its negative electrode active material
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JP2805485B2 (en) Alkaline battery and its negative electrode active material
JPH02199773A (en) Alkali battery and its negative electrode active material
JPH0290465A (en) Alkaline battery and its negative electrode active material
JPH0377274A (en) Manufacture of negative electrode active material for alkaline battery
JPH02129854A (en) Alkaline battery and negative active material thereof
JPH0636764A (en) Zinc-alkaline battery