[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02163912A - High magnetic flux density soft magnetic alloy thin film and manufacture thereof - Google Patents

High magnetic flux density soft magnetic alloy thin film and manufacture thereof

Info

Publication number
JPH02163912A
JPH02163912A JP31908888A JP31908888A JPH02163912A JP H02163912 A JPH02163912 A JP H02163912A JP 31908888 A JP31908888 A JP 31908888A JP 31908888 A JP31908888 A JP 31908888A JP H02163912 A JPH02163912 A JP H02163912A
Authority
JP
Japan
Prior art keywords
thin film
alloy
soft magnetic
flux density
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31908888A
Other languages
Japanese (ja)
Inventor
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31908888A priority Critical patent/JPH02163912A/en
Publication of JPH02163912A publication Critical patent/JPH02163912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enable the title soft magnetic alloy thin film in extremely high Bs value as well as low magnetostriction to be formed by four-element (Fe- Co-Ni-Mo) alloy electrodeposition process by a method wherein the four- component alloys are represented by a general formula of (Fe45+ or -alphaCo20+ or -betaNi35+ or -gamma)1-xMox (numerals represent percentages) where alpha-gamma, x respectively represent specific values. CONSTITUTION:The title thin film is composed of four-component alloy represented by a general formula (Fe45+ or -alphaCo20+ or -betaNi35+ or -gamma)1-xMox (numerals represent percentages) where alpha, beta, gamma respectively represent 15, 14, 10 and 0<x<=6. For example, the high magnetic flux density soft magnetic alloy thin film comprising the film composition of (Fe44Co18Ni38)97Mo3 can be formed by the four- component alloy electrodeposition process using electrolytic plating process at the bath temperature of 50 deg.C using electrodeposition bath adding citric acid 30g/l, Na2MoO4.2H2O 1g/l, to Fe-Co-Ni basic bath composition comprising NiSO4.6H2O 300g/l, CoSo4.6H2O 20g/l, FeSO4.7H2O 80g/l, H3BO3 40g/l, sodium sacchric acid 1.5g/l.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録再生用磁気ヘッドに用いる高磁
束密度軟磁性合金薄膜及び製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high magnetic flux density soft magnetic alloy thin film used in a magnetic head for high density magnetic recording/reproduction and a manufacturing method.

従来の技術 高密度の磁気記録に要求される大きな抗磁力(Ha)の
記録媒体に対して磁気ヘッド用材料には高い飽和磁束密
度(B8)が必要とされているが、従来の高BI!値を
有する薄膜磁気ヘッド用軟磁性材料として低温プロセス
において、パターニング精度良く作成できる電着法によ
る製法が可能なものは、Bs−約9000Gausg 
Nt−Fe2元素合金膜(パーマロイ膜)に限られてい
た。しかし、磁気ヘッドのより十分な磁気記録再生効率
の向上をはかるためには、さらに大きなりs値をもち、
軟磁気特性にも優れた薄膜をパーマロイ膜作製と同様な
利点をもった電着法によって得ることが望まれている。
Conventional technology A high saturation magnetic flux density (B8) is required for magnetic head materials for recording media with large coercive force (Ha) required for high-density magnetic recording, but conventional high BI! A soft magnetic material for a thin film magnetic head with a value of Bs-approximately 9000 Gausg that can be manufactured using an electrodeposition method that allows for high patterning accuracy in a low-temperature process.
It was limited to Nt-Fe two-element alloy films (permalloy films). However, in order to further improve the magnetic recording and reproducing efficiency of the magnetic head, it is necessary to have an even larger s value.
It is desired to obtain thin films with excellent soft magnetic properties by electrodeposition, which has the same advantages as permalloy film production.

発明が解決しようとする課題 ところで、Fs−Co−Ni3元素合金簿膜は、Bs=
10000Gausg 〜21000Gaussのきわ
めて高いBs値をもち、良好な軟磁気特性(高初透磁率
(μi)及び低抗磁力)を有するうえに、広い組成範囲
において、3元合金電着も可能であることが明らかにな
った(特願昭63−194096号)。
Problems to be Solved by the Invention By the way, the Fs-Co-Ni three-element alloy film has Bs=
It has an extremely high Bs value of 10,000 Gauss to 21,000 Gauss, has good soft magnetic properties (high initial permeability (μi) and low coercive force), and is also capable of ternary alloy electrodeposition in a wide composition range. It has become clear (Japanese Patent Application No. 194096/1983).

しかし、高Bs値をもつ組成では磁歪(λa)が正のや
や高い値をもち、磁気ヘッドデバイス中への実用素子に
対する応用には、第4元素の添加により、さらにλB値
を小さくする必要があった。
However, compositions with a high Bs value have a slightly high positive magnetostriction (λa), and for application to practical elements in magnetic head devices, it is necessary to further reduce the λB value by adding a fourth element. there were.

また同時に薄膜ヘッド等へ応用される電着膜として上記
のような低λB値をもったFe −Co−Ni系に第4
元素を含めた4元合金薄膜が、パーマロイ合金(Ni−
Fe系)や、Fe −Co−Ni系合金のように合金メ
ツキ法で得られることが、必要であるが、電解メツキ法
による4元合金メツキ法についてはこれまで知られてい
なく、その製造方法としての課題であった。
At the same time, as an electrodeposited film applied to thin-film heads, etc., the fourth
A quaternary alloy thin film containing elements is permalloy alloy (Ni-
Although it is necessary to obtain alloy plating methods such as Fe-based alloys and Fe-Co-Ni-based alloys, quaternary alloy plating methods using electrolytic plating methods have not been known so far, and the manufacturing method thereof is unknown. This was an issue.

課題を解決するための手段 本発明は上述の問題点にかんがみ発明されたものでろっ
て、請求項1の発明は一般式 %式% で示される4元合金であって(数字は百分率)、α=1
5,β=14,γ=10で且つO(x <、 6である
ことを特徴とする請求項2の発明の製造方法は軟磁性薄
膜を電解メツキ法を用いた4元合金電着法として得るこ
とを特徴とする請求項3の発明の製造方法は4元合金電
着法として、クエン酸及びモリブデン酸塩を添加したF
e−Co−Ni3元合金電着浴から成膜させることを特
徴とする。
Means for Solving the Problems The present invention was invented in view of the above-mentioned problems, and the invention of claim 1 is a quaternary alloy represented by the general formula % (the number is a percentage), α=1
5, β = 14, γ = 10, and O(x <, 6), the manufacturing method of the invention of claim 2 is characterized in that the soft magnetic thin film is formed by a quaternary alloy electrodeposition method using an electrolytic plating method. The manufacturing method of the invention according to claim 3 is characterized in that F to which citric acid and molybdate are added is used as a quaternary alloy electrodeposition method.
It is characterized by forming a film from an e-Co-Ni ternary alloy electrodeposition bath.

作   用 Fe −Co−4’Ji3元素について、軟磁気特性に
優れた低い抗磁力、高い透磁率を示す。Fe45+15
CO20カ、4 36よ、。の組成範囲の磁歪λBはN
i いずれも正の値を示し、λg)IXlo   の大きさ
をもっている(例えばF e 4s CO20N i 
3s組成ではλB=1.8X10〜5 > oをもつ)
。磁気へ、ノドコアとして実用的なものとするためには
、少なくとも1λ91<6X10−6は必要と考えられ
る。
Function Fe-Co-4'Ji3 elements exhibit low coercive force and high magnetic permeability with excellent soft magnetic properties. Fe45+15
CO20, 4 36. The magnetostriction λB in the composition range is N
i all show positive values and have a magnitude of λg) IXlo (for example, F e 4s CO20N i
3s composition has λB = 1.8X10~5 > o)
. In order to make it practical as a magnetic throat core, it is considered that at least 1λ91<6X10-6 is necessary.

このために有効な第4元素については十分に知られてい
なかったが、少量添加のMo元素を含んだFe −Co
−Ni −Mo 4元素はλSの絶対値を小さくするこ
とに有効で、且つ、従来と同様に合金電着法によって、
成膜できることがわかった(4元合金電着)。このとき
の電着浴は、Mo元素をモリブデン酸塩で供給するだけ
でなく、クエン酸を共存させることではじめて、Mo 
も薄膜中へ合金化して成膜できる。その池の例えば、電
着条件(PH値、浴温度、電着電流密度(1)、添加剤
等)については、Fe−Co−Nt3元素合金電着法と
同様にとることで十分である。Fe−Co−Ni系に対
してMOを含めた4元合金化は上記の方法で、少なくと
も10at%未満程度は可能であるが、多量のMoL7
)添加はλS値の絶対値を下げることができたとしても
、同時にFe−Co−Ni−Mo4元合金薄膜の飽和磁
束密度(Bg)値も下げることにつながるので、Fe−
Co−Ni系の特長であるところの高Bs値の特性が、
そこなわれることになる。
For this purpose, the effective fourth element was not sufficiently known, but Fe-Co containing a small amount of Mo element was added.
The four elements -Ni-Mo are effective in reducing the absolute value of λS, and as in the past, by alloy electrodeposition method,
It was found that it was possible to form a film (quaternary alloy electrodeposition). At this time, the electrodeposition bath not only supplies Mo element with molybdate, but also coexists with citric acid.
It is also possible to form a thin film by alloying it. For example, it is sufficient to set the electrodeposition conditions (PH value, bath temperature, electrodeposition current density (1), additives, etc.) in the same manner as in the Fe-Co-Nt three-element alloy electrodeposition method. Quaternary alloying including MO for the Fe-Co-Ni system is possible using the above method, at least to an extent of less than 10 at%, but a large amount of MoL7
) addition can lower the absolute value of λS value, but it also leads to lowering the saturation magnetic flux density (Bg) value of the Fe-Co-Ni-Mo quaternary alloy thin film.
The characteristic of high Bs value, which is a feature of Co-Ni system, is
It will be damaged.

実施例 本発明の実施例として作製したFe −Co −i’J
i −M。
Example Fe-Co-i'J produced as an example of the present invention
i-M.

4元素電着膜の磁気特性及びその膜組成と電M膜の作製
条件を表にまとめる。
The magnetic properties of the four-element electrodeposited film, its film composition, and the conditions for producing the electromagnetic film are summarized in a table.

いずれも4元合金化できたもの、全てについてパーマロ
イを上まわる高いBs  (飽和磁束密度)値を示した
。また、その中のいくつかは良好な軟磁気特性を示し・
F046±15 C020±14”35±10の組成領
域で、3元素に比べ(Fe46+15 ”20+14N
i35+10) 1−xMOx  で○〈xく6の範囲
テヨり小さなλSを示した。
All of the materials were quaternary alloyed, and all exhibited high Bs (saturation magnetic flux density) values that exceeded that of permalloy. In addition, some of them exhibit good soft magnetic properties.
In the composition range of F046±15 C020±14”35±10, compared to the three elements (Fe46+15”20+14N
i35+10) 1-xMOx showed a smaller λS in the range of ○<x6.

Fe45+15 20+14 35±10の組成範囲の
Co       N i 3元素に対し6at%までのMoi加が、λB値の低下
に有効なことが確かめられたが、このMOを含む4元素
合金電着膜の製法として、同じ表に示したように、クエ
ン酸を含む電M浴に限って、モリブデン酸塩(Na2M
oO4−2H20添加)の電着浴への添加が効果的であ
ることがわかった。クエン酸を含まない浴中へのモリブ
デン酸塩の添加では、表のf3の実施例のように、薄膜
が4元合金化しないことがわかる。また1表の蔦1に示
したFs−Co−Ni3元素合金電着基本浴に対して、
Na2MoO4−2H20のモリブデン酸塩の添加量を
かえることで1図面に示すように、得られる電着膜のF
e 、 Co 、 Ni 、Mo各元素の組成比率を制
御することも可能である。電層電流密度(1)はFe−
C。
It has been confirmed that adding up to 6 at% Moi to the three elements of CoNi in the composition range of Fe45+15 20+14 35±10 is effective in reducing the λB value, but the method for producing a four-element alloy electrodeposited film containing this MO is As shown in the same table, molybdate (Na2M
The addition of oO4-2H20) to the electrodeposition bath was found to be effective. It can be seen that the addition of molybdate to a bath without citric acid does not result in a quaternary alloying of the thin film, as in example f3 in the table. In addition, for the Fs-Co-Ni three-element alloy electrodeposition basic bath shown in Table 1,
By changing the amount of molybdate added in Na2MoO4-2H20, the F of the resulting electrodeposited film can be changed as shown in Figure 1.
It is also possible to control the composition ratio of the elements e, Co, Ni, and Mo. Layer current density (1) is Fe-
C.

Ni糸の3元の合金電着と同様Tく60m A/dの範
囲が適当であった。
As with the ternary alloy electrodeposition of Ni thread, a range of T of 60 mA/d was suitable.

発明の効果 本発明によれば、極めて高いBs値を有し、同時に磁歪
(λS)の小さな軟磁性薄膜が、Fa−CONi−Mo
の4元素合金電着法として得ることが可能となる。した
がってより十分な磁気記録再生効率を有する薄膜磁気ヘ
ッド用軟磁性材料として適用される。
Effects of the Invention According to the present invention, a soft magnetic thin film having an extremely high Bs value and a small magnetostriction (λS) is made of Fa-CONi-Mo.
It becomes possible to obtain the four-element alloy electrodeposition method. Therefore, it can be applied as a soft magnetic material for thin-film magnetic heads having more sufficient magnetic recording and reproducing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (3)

【特許請求の範囲】[Claims] (1)一般式(Fe_4_5_±_αCo_2_0_±
_βNi_3_5_±_γ)_1_−_xMo_x、で
示される4元合金であって(数字は百分率)、α=15
,β=14,γ=10で且つ0<x≦6であることを特
徴とする高磁束密度軟磁性合金薄膜。
(1) General formula (Fe_4_5_±_αCo_2_0_±
_βNi_3_5_±_γ)_1_-_xMo_x, (numbers are percentages), α=15
, β=14, γ=10, and 0<x≦6.
(2)軟磁性薄膜を電解メッキ法を用いた4元合金電着
法により形成する高磁束密度軟 磁性合金薄膜の製造方法。
(2) A method for producing a high magnetic flux density soft magnetic alloy thin film, in which the soft magnetic thin film is formed by a quaternary alloy electrodeposition method using an electrolytic plating method.
(3)4元合金電着法として、クエン酸及びモリブデン
酸塩を添加したFe−Co−Ni3元合金電着浴から成
膜させる請求項2記載の高磁束密度軟磁性合金薄膜の製
造方法。
(3) The method for producing a high magnetic flux density soft magnetic alloy thin film according to claim 2, wherein the film is formed from an Fe-Co-Ni ternary alloy electrodeposition bath to which citric acid and molybdate are added as the quaternary alloy electrodeposition method.
JP31908888A 1988-12-16 1988-12-16 High magnetic flux density soft magnetic alloy thin film and manufacture thereof Pending JPH02163912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31908888A JPH02163912A (en) 1988-12-16 1988-12-16 High magnetic flux density soft magnetic alloy thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31908888A JPH02163912A (en) 1988-12-16 1988-12-16 High magnetic flux density soft magnetic alloy thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02163912A true JPH02163912A (en) 1990-06-25

Family

ID=18106356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31908888A Pending JPH02163912A (en) 1988-12-16 1988-12-16 High magnetic flux density soft magnetic alloy thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02163912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034891A (en) * 2001-05-18 2003-02-07 Headway Technologies Inc Method for manufacturing cobalt iron alloy and plated magnetic thin-film of cobalt iron alloy, and method for manufacturing quaternary alloy and plated magnetic thin-film of cobalt iron molybdenum alloy
US6661606B2 (en) 1995-02-03 2003-12-09 Hitachi, Ltd. Magnetic disk apparatus with magnetic head having upper and lower magnetic cores of an electroplated thin film
EP1850334A1 (en) * 2006-04-27 2007-10-31 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917325A (en) * 1972-06-10 1974-02-15
JPS6235605A (en) * 1985-08-09 1987-02-16 Konishiroku Photo Ind Co Ltd Magnetically soft thin film
JPS6237914A (en) * 1985-08-13 1987-02-18 Sumitomo Special Metals Co Ltd Magnetically soft thin film having stabilized magnetic characteristic for change of thin film forming ambience

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917325A (en) * 1972-06-10 1974-02-15
JPS6235605A (en) * 1985-08-09 1987-02-16 Konishiroku Photo Ind Co Ltd Magnetically soft thin film
JPS6237914A (en) * 1985-08-13 1987-02-18 Sumitomo Special Metals Co Ltd Magnetically soft thin film having stabilized magnetic characteristic for change of thin film forming ambience

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661606B2 (en) 1995-02-03 2003-12-09 Hitachi, Ltd. Magnetic disk apparatus with magnetic head having upper and lower magnetic cores of an electroplated thin film
JP2003034891A (en) * 2001-05-18 2003-02-07 Headway Technologies Inc Method for manufacturing cobalt iron alloy and plated magnetic thin-film of cobalt iron alloy, and method for manufacturing quaternary alloy and plated magnetic thin-film of cobalt iron molybdenum alloy
EP1850334A1 (en) * 2006-04-27 2007-10-31 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target

Similar Documents

Publication Publication Date Title
Andricacos et al. Future directions in electroplated materials for thin-film recording heads
EP0243627B1 (en) Electro-deposited conife alloy for thin film heads
US7333295B1 (en) Magnetic recording head with high saturation magnetic flux density CoNiFe thin film composition
US7192662B2 (en) Ultra high saturation moment soft magnetic thin film
JPH0443989B2 (en)
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
US5011581A (en) Process for producing a thin alloy film having high saturation magnetic flux density
US20020106533A1 (en) Structure and plating method of thin film magnetic head and magnetic storage apparatus
US5575897A (en) Method of manufacturing soft-magnetic multilayer thin film including re-dissolution effect magnetically isolating layer
EP0092394A1 (en) Ferro magnetic recording materials
JPH02163912A (en) High magnetic flux density soft magnetic alloy thin film and manufacture thereof
US4990225A (en) Method of manufacturing high magnetic flux density electrodeposited quaternary alloy thin film
JPS5943837A (en) Amorphous alloy with high saturation magnetic flux density
JPH08241503A (en) Thin film magnetic head and its production
JP2508489B2 (en) Soft magnetic thin film
US6794063B2 (en) Thin film magnetic head and method of fabricating the head
JPH0199203A (en) Soft magnetic laminated layer film
JP2633326B2 (en) Manufacturing method of high saturation magnetic flux density alloy thin film
JP2002056507A (en) Method for manufacturing thin film magnetic head, thin film magnetic head and magnetic disk device
JPH0217846B2 (en)
JPS61188908A (en) Amorphous soft magnetic film
JPH0628088B2 (en) Magnetic recording medium
JPS62162223A (en) Thin film magnetic recording medium
JPH0322647B2 (en)
JP3019400B2 (en) Amorphous soft magnetic material