[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0216377B2 - - Google Patents

Info

Publication number
JPH0216377B2
JPH0216377B2 JP58248593A JP24859383A JPH0216377B2 JP H0216377 B2 JPH0216377 B2 JP H0216377B2 JP 58248593 A JP58248593 A JP 58248593A JP 24859383 A JP24859383 A JP 24859383A JP H0216377 B2 JPH0216377 B2 JP H0216377B2
Authority
JP
Japan
Prior art keywords
weight
hard phase
tic
hard
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248593A
Other languages
Japanese (ja)
Other versions
JPS60135551A (en
Inventor
Yasuhiro Shimizu
Kunihiro Takahashi
Masaaki Tobioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24859383A priority Critical patent/JPS60135551A/en
Publication of JPS60135551A publication Critical patent/JPS60135551A/en
Publication of JPH0216377B2 publication Critical patent/JPH0216377B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、主として工具として使用する焼結硬
質合金に関する。 〔従来の技術〕 周期率表の4A、5A、6A族遷移金属の1種又は
2種以上の金属元素と、C、N、Oからなる群よ
り選んだ1種又は2種以上の非金属元素との化合
物の1種又は2種以上からなる硬質相を、鉄族金
属の1種又は2種以上で結合した焼結硬質合金
は、高温強度が高く、弾性率が大きく、かつ強靭
であるため、切削工具、耐摩工具、耐衝撃工具と
して広く実用に供されている。 焼結硬質合金は硬質相と、それを結合する結合
相金属とから成り立つているが、焼結硬質合金の
もつ優れた特性は殆ど硬質相に依つており、結合
相金属は単に硬質相との濡れ性の良さを利用し
て、焼結性の改善をはかつているに過ぎない。 結合相金属としてよく用いられているNi、Co
などはいずれも1000℃以上では著しく軟化するこ
とが知られている為、これらを結合相金属として
用いる焼結硬質合金の耐熱性は硬質相がいくら高
い耐熱性をもつていても結合相金属の耐熱性によ
り制限されていた。 一般に、金属の耐熱性を向上させる手段とし
て、例えば特公昭55−16226号公報に示されてい
るように、金属間化合物を析出させる析出強化が
知られている。耐熱性の向上を計るには、多量の
金属間化合物の析出をはかることが望ましい。 従来行われているAl添加によるγ′(Ni3Al3)析
出強化法は、この点で問題があつた。即ちNiへ
のAlの固溶量が10原子%もあり、添加したAlは
まずNi中に固溶し、固溶限を超えた分が初めて
γ′として析出するため、かなりの量のAlの添加を
必要とする。 しかも固溶量が多いことは、それだけ析出する
γ′が少なくなることを意味し、期待されるほどの
効果は得られなかつた。 〔発明が解決しようとする課題〕 本発明は、硬質相にTiC又は/及びWCを含有
し、硬質相の残部がTi、周期率表の5A、6A族遷
移金属の1種又は2種以上の金属元素と、C、
N、Oからなる群から選んだ1種又は2種以上か
らなる非金属元素とのTiC、WC以外の化合物の
1種又は2種以上からな焼結硬質合金において、
これらの問題を解決して、耐熱性、耐摩耗性に優
れた焼結硬質合金を提供することを課題とする。 〔課題を解決するための手段〕 本発明は硬質相50〜99重量%と、残部が硬質相
の結合金属としての鉄属金属からなる焼結硬質合
金において、硬質相にTiC又は/及びWCを含有
し、硬質相中にこれらの一方のみを含有する場合
はその一方の量、両方を含有する場合は両方の合
計量が45.0〜99.5重量%であり、硬質相の残部が
Ti周期率表の5A、6A族遷移金属の1種又は2種
以上の金属元素と、C、N、Oからなる群から選
んだ1種又は2種以上からなる非金属元素との
WC、TiC以外の化合物の1種又は2種以上55.0
〜0.5重量%からなり、結合金属に内割で0.5〜40
重量%のZr、Hfの一方又は両方が含有せしめら
れている焼結硬質合金を課題を解決するための手
段とするものである。 Zr、Hfの添加方法としては、金属単体として
添加する方法、結合金属中に合金化して添加する
方法、その他窒化物の形で添加しても良く、この
場合は、焼結過程で窒化物が分解して、金属が結
合相に窒素は雰囲気に消失する。 〔作用〕 本発明焼結合金において、硬質相を合金全体の
55〜99重量%とするのは、硬質相が99重量%を超
えると、結合金属の量が1重量%未満となり靭性
が著しく低下するからであり、50重量%未満では
耐摩耗性が著しく低下するからである。硬質相中
のWC、TiC又はWCとTiCとの合計重量を硬質相
全体の45.0〜99.5重量%とするのは、99.5重量%
を超えると硬質相中のWCやTiC以外の硬質成分
の添加効果がなくなり、45.0重量%未満では耐摩
耗性が低下する。 TiCやWC以外の硬質成分は耐熱性、耐食性、
耐熱疲労性改善のため少なくとも0.5重量%は必
要であるが、55.0重量%を超えて多くなり過ぎる
と靭性が低下するようになるので、硬質相中にお
けるTiCやWC以外の硬質成分を55.0〜0.5重量%
の範囲とするものである。 結合相金属は鉄族金属(Fe、Ni、Co)の1種
又は2種以上からなり、この中に内割で0.5〜40
重量%の割合でZr、Hfの一方又は両方を含有せ
しめるのは、0.5重量%未満では耐熱性向上の効
果が認められず、40重量%を超すと結合金属相が
脆化するためである。 以下実施例について説明する。 〔実施列〕 実施例 1 硬質相がTiC37重量%、TiN13重量%、
TaN12重量%、MoC10.5重量%、WC12.5重量%
からなり、結合相金属を第1表に示す組成とした
合金(型番SNG432)を作成した。 まず原料を秤量後、ボールミルにて72時間湿式
混合し、乾燥した後、冷間プレスにより5t/cm2
圧力で成形し圧粉体とした。次にこの圧粉体を焼
結炉に挿入し、1430℃に1.5時間保持して焼結し
た。焼結雰囲気は1430℃に達するまでは
0.01Torrの真空に保持し、1430℃になつて窒素
を導入し20Torrに保ち、そのまま冷却過程も窒
素を流した。最終的な成形は、ダイヤモンド砥石
で研削を行いチツプを得た。
[Industrial Application Field] The present invention relates to a sintered hard alloy mainly used as a tool. [Prior art] One or more metal elements of group 4A, 5A, and 6A transition metals of the periodic table and one or more nonmetallic elements selected from the group consisting of C, N, and O. A sintered hard alloy in which a hard phase consisting of one or more compounds of iron group metals is combined with one or more iron group metals has high high temperature strength, high elastic modulus, and toughness. It is widely used in practical applications as cutting tools, wear-resistant tools, and impact-resistant tools. Sintered hard alloys are made up of a hard phase and a binder phase metal that binds them together, but the excellent properties of sintered hard alloys are mostly due to the hard phase, and the binder phase metal is simply a bond between the hard phase and the hard phase. It merely attempts to improve sinterability by taking advantage of its good wettability. Ni and Co are commonly used as bonding phase metals.
It is known that all of these materials soften significantly at temperatures above 1000℃, so the heat resistance of sintered hard alloys using these as the binder phase metal is Limited by heat resistance. Generally, as a means for improving the heat resistance of metals, precipitation strengthening is known, in which intermetallic compounds are precipitated, as disclosed in, for example, Japanese Patent Publication No. 16226/1983. In order to improve heat resistance, it is desirable to precipitate a large amount of intermetallic compounds. The conventional γ' (Ni 3 Al 3 ) precipitation strengthening method using Al addition had a problem in this respect. In other words, the amount of Al dissolved in Ni is as much as 10 at%, and the added Al first dissolves in Ni, and the amount exceeding the solid solubility limit precipitates as γ′, so a considerable amount of Al is dissolved in Ni. Requires addition. Moreover, a large amount of solid solution means that less γ' precipitates, and the expected effect was not obtained. [Problems to be Solved by the Invention] The present invention contains TiC or/and WC in the hard phase, and the remainder of the hard phase is Ti and one or more of the group 5A and 6A transition metals of the periodic table. Metal element and C,
In a sintered hard alloy consisting of one or more compounds other than TiC and WC with one or more nonmetallic elements selected from the group consisting of N and O,
It is an object of the present invention to solve these problems and provide a sintered hard alloy with excellent heat resistance and wear resistance. [Means for Solving the Problems] The present invention provides a sintered hard alloy consisting of 50 to 99% by weight of a hard phase and a ferrous metal as a binding metal for the hard phase, in which TiC or/and WC is added to the hard phase. If only one of these is contained in the hard phase, the amount of the other is 45.0 to 99.5% by weight, and if both are contained, the total amount of both is 45.0 to 99.5% by weight, and the remainder of the hard phase is
One or more metal elements of group 5A and 6A transition metals of the Ti periodic table and one or more nonmetallic elements selected from the group consisting of C, N, and O.
One or more compounds other than WC and TiC55.0
~0.5% by weight, divided into 0.5~40% by weight of the bonding metal
A sintered hard alloy containing one or both of Zr and Hf in a weight percent is used as a means to solve the problem. Zr and Hf may be added as single metals, alloyed into a bonded metal, or added in the form of nitrides. In this case, nitrides are added during the sintering process. Upon decomposition, the metal becomes the binder phase and the nitrogen disappears into the atmosphere. [Function] In the sintered alloy of the present invention, the hard phase is
The reason why the hard phase is set at 55 to 99% by weight is because if the hard phase exceeds 99% by weight, the amount of bonded metal will be less than 1% by weight, resulting in a significant decrease in toughness, and if it is less than 50% by weight, the wear resistance will decrease significantly. Because it does. The total weight of WC, TiC, or WC and TiC in the hard phase is 45.0 to 99.5% by weight of the entire hard phase, which is 99.5% by weight.
If it exceeds 45.0% by weight, the effect of adding hard components other than WC and TiC in the hard phase will be lost, and if it is less than 45.0% by weight, wear resistance will decrease. Hard components other than TiC and WC have heat resistance, corrosion resistance,
At least 0.5% by weight is necessary to improve thermal fatigue resistance, but if the amount exceeds 55.0% by weight, the toughness will decrease, so the hard components other than TiC and WC in the hard phase should be 55.0 to 0.5%. weight%
The range shall be as follows. The binder phase metal consists of one or more types of iron group metals (Fe, Ni, Co), of which 0.5 to 40
The reason why one or both of Zr and Hf is contained in a proportion by weight is that if it is less than 0.5 weight %, no effect of improving heat resistance is observed, and if it exceeds 40 weight %, the bonding metal phase becomes brittle. Examples will be described below. [Implementation row] Example 1 The hard phase is TiC37% by weight, TiN13% by weight,
TaN12wt%, MoC10.5wt%, WC12.5wt%
An alloy (model number SNG432) was prepared in which the binder phase metal had the composition shown in Table 1. First, the raw materials were weighed, wet mixed in a ball mill for 72 hours, dried, and then cold pressed at a pressure of 5 t/cm 2 to form a green compact. Next, this green compact was inserted into a sintering furnace and held at 1430°C for 1.5 hours for sintering. Until the sintering atmosphere reaches 1430℃
A vacuum of 0.01 Torr was maintained, and when the temperature reached 1430°C, nitrogen was introduced and maintained at 20 Torr, and nitrogen was continued to flow during the cooling process. For the final shaping, the chips were obtained by grinding with a diamond grindstone.

【表】【table】

【表】 A〜Fについて以下の条件で切削テストを行つ
た。 被削材:SMC435(HB=280) 切削速度:200m/min 送り:0.25mm/rev 切り込み:1.5mm 工具ホルダー:FN11R−44A その結果、10分の切削に対してAのフランク摩
耗が0.12mmで安定しているのに対し、Bは0.16
mm、Cは2分間で切削不能、またDはフランク摩
耗が0.14mm、Eが0.13mm、Fは0.18mmと摩耗が大
きく、本発明のA、D、Eが優れていることが判
つた。 実施例 2 WC85重量%、Ni5重量%、Co9重量%、
Cr3C20.5重量%、HfN0.5重量%の組成の混合粉
末をアトライターにて10時間湿式混合を行い、乾
燥した後、2t/cm2の圧力で成形し、更に冷間静水
圧プレスで8t/cm2の加圧を行つた。これを焼結炉
に挿入し、1380℃の真空中に1時間保持して焼結
し、研磨し鋼線熱間圧延用ロールを作成した。 この結合相中のHfは3.5重量%であつた。この
ロールをGとし、比較のためWC85重量%、Ni5
重量%、Co9.5重量%、Cr3C20.5重量%の鋼線熱
間圧延用ロール(H)を同じく作成した。 この両者をモルガン社製のブロツクミルの#16
スタンドにて、1000トン鋼線を圧延した後、摩耗
量を測定してみたところ(H)は(G)の3倍の摩耗量で
あつた。 実施例 3 第2表に示す組成に配合した原料粉末を、ボー
ルミル中で48時間湿式混合した後、乾燥し5t/cm2
の圧力で成形し圧粉体とした。この圧粉体を
0.5Torrの窒素雰囲気とした焼結炉中で1450℃に
1時間保持して焼結した。焼結体をダイヤモンド
砥石で仕上げして得たチツプ(型番:
SDKN42MT)を、カツター(型番:
FPG4160R)に取付け、以下の条件で切削テスト
を行つた。 被削材:SCM440(HB=220)、15mm幅3枚重ね 切削速度:150m/min 送り:0.22mm/刃 切り込み:2mm 切削時間:10分 テスト後の逃げ面摩耗幅(VB)、熱亀裂本数を
併せて第2表に示す。 尚、焼結後の合金の硬質相のWC、及びTiCの
硬質相中の重量%は次ぎのとおりである。 I…TiC+WC=69.0% J…TiC =65.1% K…TiC+WC=77.9% M…TiC+WC=46.2% N…TiC+WC=74.8% O… 〃 〃 〃 P…TiC+WC=66.0% Q…TiC+WC=46.2% R… 〃 〃 〃 S…TiC+WC=74.8%
[Table] A cutting test was conducted on A to F under the following conditions. Work material: SMC435 (H B = 280) Cutting speed: 200 m/min Feed: 0.25 mm/rev Depth of cut: 1.5 mm Tool holder: FN11R-44A As a result, the flank wear of A was 0.12 mm for 10 minutes of cutting. While B is stable at 0.16
It was found that A, D, and E of the present invention were superior because it was impossible to cut mm and C in 2 minutes, and the flank wear of D was 0.14 mm, E was 0.13 mm, and F was 0.18 mm. Example 2 WC85% by weight, Ni5% by weight, Co9% by weight,
A mixed powder with a composition of 0.5% by weight of Cr 3 C 2 and 0.5% by weight of HfN was wet mixed in an attritor for 10 hours, dried, molded at a pressure of 2t/cm 2 , and then cold isostatically pressed. A pressure of 8t/cm 2 was applied. This was inserted into a sintering furnace, held in a vacuum at 1380° C. for 1 hour, sintered, and polished to produce a roll for hot rolling of steel wire. Hf in this bonded phase was 3.5% by weight. This roll is designated as G, and for comparison, WC85% by weight and Ni5
A steel wire hot rolling roll (H) containing 9.5% by weight of Co and 0.5% by weight of Cr 3 C 2 was similarly prepared. Both of these were made using Morgan's Block Mill #16.
After rolling 1,000 tons of steel wire on a stand, the amount of wear was measured and the amount of wear in (H) was three times that in (G). Example 3 Raw material powders blended into the composition shown in Table 2 were wet mixed in a ball mill for 48 hours, then dried to give 5t/cm 2
The powder was molded at a pressure of This compacted powder
Sintering was carried out by holding at 1450° C. for 1 hour in a sintering furnace with a nitrogen atmosphere of 0.5 Torr. Chips obtained by finishing the sintered body with a diamond whetstone (model number:
SDKN42MT), cutter (model number:
FPG4160R) and conducted a cutting test under the following conditions. Work material: SCM440 (H B = 220), 15 mm width 3-piece stack Cutting speed: 150 m/min Feed: 0.22 mm / Blade depth of cut: 2 mm Cutting time: 10 minutes Flank wear width after test (V B ), heat The number of cracks is also shown in Table 2. The weight percentages of WC and TiC in the hard phase of the alloy after sintering are as follows. I...TiC+WC=69.0% J...TiC=65.1% K...TiC+WC=77.9% M...TiC+WC=46.2% N...TiC+WC=74.8% O... 〃 〃 〃 P...TiC+WC=66.0% Q...TiC+WC=46.2% R... 〃 〃 〃 S...TiC+WC=74.8%

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば以上のように耐熱性、耐摩耗性
に優れた工具用の焼結硬質合金を提供できる。
According to the present invention, as described above, it is possible to provide a sintered hard alloy for tools that has excellent heat resistance and wear resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 硬質相50〜99重量%と、残部が硬質相の結合
金属としての鉄族金属からなる焼結硬質合金にお
いて、硬質相にTiC又は/及びWCを含有し、硬
質相中にこれらの一方のみを含有する場合はその
一方の量、両方を含有する場合は両方の合計量が
45.0〜99.5重量%であり、硬質相の残部がTi、周
期律表の5A、6A族遷移金属の1種又は2種以上
の金属元素と、C、N、Oからなる群から選んだ
1種又は2種以上からなる非金属元素とのWC、
TiC以外の化合物の1種又は2種以上55.0〜0.5重
量%からなり、結合金属に内割りで0.5〜40重量
%のZr、Hfの一方又は両方が含有せしめられて
いる焼結硬質合金。
1 In a sintered hard alloy consisting of 50 to 99% by weight of a hard phase and the remainder consisting of an iron group metal as a binding metal of the hard phase, the hard phase contains TiC or/and WC, and only one of these is contained in the hard phase. If it contains, the amount of one, and if it contains both, the total amount of both.
45.0 to 99.5% by weight, and the remainder of the hard phase is Ti, one or more metal elements of group 5A and 6A transition metals of the periodic table, and one selected from the group consisting of C, N, and O. or WC with two or more nonmetallic elements,
A sintered hard alloy consisting of 55.0 to 0.5% by weight of one or more compounds other than TiC, and in which the bonding metal contains 0.5 to 40% by weight of one or both of Zr and Hf.
JP24859383A 1983-12-23 1983-12-23 Sintered hard alloy Granted JPS60135551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24859383A JPS60135551A (en) 1983-12-23 1983-12-23 Sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24859383A JPS60135551A (en) 1983-12-23 1983-12-23 Sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS60135551A JPS60135551A (en) 1985-07-18
JPH0216377B2 true JPH0216377B2 (en) 1990-04-17

Family

ID=17180417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24859383A Granted JPS60135551A (en) 1983-12-23 1983-12-23 Sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS60135551A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120902A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Laminated structure type cemented carbide, its manufacturing method, and tool made of the cemented carbide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754536A (en) * 1980-09-19 1982-04-01 Nippon Steel Corp Filling apparatus of grain
JPS58136744A (en) * 1982-02-09 1983-08-13 Nippon Tungsten Co Ltd Golden sintered alloy for decoration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754536A (en) * 1980-09-19 1982-04-01 Nippon Steel Corp Filling apparatus of grain
JPS58136744A (en) * 1982-02-09 1983-08-13 Nippon Tungsten Co Ltd Golden sintered alloy for decoration

Also Published As

Publication number Publication date
JPS60135551A (en) 1985-07-18

Similar Documents

Publication Publication Date Title
JPH0216377B2 (en)
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH01122971A (en) Cubic boron nitride sintered product
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JPS6056782B2 (en) Cermets for cutting tools and hot working tools
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP3458533B2 (en) Manufacturing method of WC-based cemented carbide cutting tool
JPH0256419B2 (en)
JPS6143312B2 (en)
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool
JP3078427B2 (en) Cermet for cutting tools
JPS5953341B2 (en) Sintered hard alloy with excellent heat and wear resistance
JPS644986B2 (en)
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS6134130A (en) Manufacture of high strength cermet having superior chipping resistance
JPS6146542B2 (en)
JPS6117899B2 (en)
JPS60131867A (en) High abrasion resistance superhard material
JPS597777B2 (en) Tough cermet
JPH0319702A (en) Cutting tool made of tungsten carbide-based super alloy excellent in defect resistance
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS644987B2 (en)
JPS621350B2 (en)
JPS59173237A (en) Ultra-heat resistant sintered alloy and preparation thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term