[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02163684A - Range finding method - Google Patents

Range finding method

Info

Publication number
JPH02163684A
JPH02163684A JP31917788A JP31917788A JPH02163684A JP H02163684 A JPH02163684 A JP H02163684A JP 31917788 A JP31917788 A JP 31917788A JP 31917788 A JP31917788 A JP 31917788A JP H02163684 A JPH02163684 A JP H02163684A
Authority
JP
Japan
Prior art keywords
wavelength
distance
wave
signal
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31917788A
Other languages
Japanese (ja)
Inventor
Sumihiko Kawashima
川島 純彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP31917788A priority Critical patent/JPH02163684A/en
Publication of JPH02163684A publication Critical patent/JPH02163684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To attain range finding with high accuracy on the wavelength level of an electro-magnetic wave or an acoustic wave by utilizing an intensity change due to interference between the irradiation and reflection of the electro-magnetic wave or acoustic wave, for which a modulation wavelength is continuously changed with amplitude modulation. CONSTITUTION:For a laser beam emitted from a laser oscillator 1, the amplitude modulation is executed by a modulator 12 and the wavelength is controlled and continuously changed by a modulating signal circuit 19. Next, this light is divided into a light toward an object 3 and a light toward a detector 18a for intensity detection by a splitter 13. A reflected light from the object 3 is condensed to the detector 18a and the intensity is detected. Detected signals by detectors 18b and 18b are added by an adder circuit 21 and an interfered waveform is obtained. This interfered waveform is shaped in a signal, smoothed and sent to a CPU 23. A signal from the circuit 19 is also sent to the CPU 23. In the CPU 23, a wavelength lambda is calculated and for this wavelength, an interfered waveform signal obtains an extremal value. After that, this value is substituted to an expression (in the expression, r: integer number, lambdam,lambdam+r: wavelength of extremal value, num,num+r: frequency of extremal value, tau,taum+r: period of extremal value) and a distance (d) can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁波又は超音波の干渉作用を利用して対象
物までの距離を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of measuring the distance to an object using the interference effect of electromagnetic waves or ultrasonic waves.

[従来の技術] 現在、対象物までの距離を測定する技術としては各種原
理を利用したものが開発されている。
[Prior Art] Currently, technologies using various principles have been developed to measure the distance to an object.

例えば超音波を利用して距離を測定する装置として、超
音波レベル計が実用化されている。これは超音波を発信
したときの対象物までの往復時間を測定することによっ
て対象物までの距離を求めるものである。しかしながら
当該技術は精度的に問題があり、±1%程度(フルスケ
ール)の誤差を包含する結果しか得られない。
For example, an ultrasonic level meter has been put into practical use as a device for measuring distance using ultrasonic waves. This method determines the distance to an object by measuring the round trip time to the object when ultrasonic waves are transmitted. However, this technique has a problem with accuracy and can only obtain results that include an error of approximately ±1% (full scale).

一方、距離測定技術に類似した技術として、電磁波を用
いるマイケルソン干渉計の原理を応用して、対象物の移
動距離を測定する技術も開発されている。当該技術は、
光の波長単位という高精度で前記移動即動を測定できる
ものであるが、あくまで対象物の移動した距離を求める
ものであって、対象物との静的距離を求めるといった技
術とは根本的に異なるものである。
On the other hand, as a technology similar to distance measurement technology, a technology has also been developed that applies the principle of a Michelson interferometer that uses electromagnetic waves to measure the distance traveled by an object. The technology is
Although it is possible to measure the above-mentioned immediate movement with high precision in units of wavelengths of light, it only measures the distance the object has moved, and is fundamentally different from the technique of determining the static distance to the object. They are different.

[発明が解決しようとする課題] 本発明はこの様な状況のもとでなされたものであって、
その目的とするところは、対象物との距離をより高度に
測定できる方法を提供することにある。
[Problem to be solved by the invention] The present invention was made under these circumstances, and
The purpose is to provide a method that can more accurately measure the distance to an object.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、電磁波または音波を
対象物に照射して対象物までの距離を測定する方法にお
いて、発信部から未知の距離のところにある対象物に、
振幅変調をかけた電磁波または音波を、変調波長を連続
的に変化させつつ照射してその反射波を受信部に入射さ
せ、照射波と反射波の干渉によって生じる電磁波または
音波の強度変化が極値を示すときの少なくとも2つの変
調波長を測定し、このときの波長、周波数または周期を
下記(4) 、 (7)または(8)式若しくはこれら
の数学的変形式のいずれかに代入することによって上記
未知距離を求める点に要旨を有するものである。
[Means for Solving the Problems] The present invention, which has achieved the above object, is a method for measuring the distance to an object by irradiating the object with electromagnetic waves or sound waves. to an object in
An amplitude-modulated electromagnetic wave or sound wave is irradiated while the modulation wavelength is continuously changed, and the reflected wave is incident on the receiver, and the intensity change of the electromagnetic wave or sound wave caused by interference between the emitted wave and the reflected wave reaches an extreme value. By measuring at least two modulation wavelengths when the value of The gist lies in finding the unknown distance.

但し、d:未知距離 r:整数 λ、、λlI+r:極値をとるときの 波長(λ、〉λ1r ) vm、シイ。r :極値をとるときの 周波数(υ、 <Vm+r ) で。、τ0、−極値をとるときの 周期(τ1〉で1I4r ) 上記の方法は振幅変調をかけた電磁波または音波を、変
調波長を連続的に変化させつつ対象物に照射するもので
あったが、振幅変調をせずに波長そのものを連続的に変
化させた電磁波または音波を照射し、その後同様にして
未知距離を求めることによりても本発明の目的が達成さ
れる[請求項(2)]。
However, d: unknown distance r: integer λ, λlI+r: wavelength when taking the extreme value (λ,>λ1r) vm, shi. r: Frequency when taking the extreme value (υ, <Vm+r). , τ0, - period when taking an extreme value (1I4r in τ1) The above method irradiates the target with amplitude-modulated electromagnetic waves or sound waves while continuously changing the modulation wavelength. The object of the present invention can also be achieved by emitting electromagnetic waves or sound waves whose wavelengths themselves are continuously changed without amplitude modulation, and then determining the unknown distance in the same manner [Claim (2)] .

[作用コ 本発明の前記構成において重要な役割りを果たす電磁波
又は超音波波(以下、電磁波で代表することがある)の
干渉について、その基本的原理を図面に従って説明する
[Function] The basic principle of interference of electromagnetic waves or ultrasonic waves (hereinafter sometimes referred to as electromagnetic waves), which plays an important role in the configuration of the present invention, will be explained with reference to the drawings.

まず第2図において、1は照射装置(発信部A)、2は
受信装置(受信部C)、3は対象物(入射点B+、反射
点B2)、4は照射波の経路、6は対象物3からの反射
波の経路である。内因では説明の便宜上入射点B1と反
射点B2を別々に記載したがこれらは実質的に同一点で
あることを想定している。本説明は照射装置1と受信装
置2の距1i11Dが対象物までの距111dに比べて
無視できる程度に(従って入射角度が対象物3に対して
直角になる程度)に対象物3が十分に離れたものである
ことを仮定しているが、本仮定を設けないときは、下式
により対象物までの距離d°を求めることができる。
First, in Fig. 2, 1 is the irradiation device (transmission section A), 2 is the reception device (reception section C), 3 is the object (incidence point B+, reflection point B2), 4 is the path of the irradiation wave, and 6 is the object. This is the path of the reflected wave from object 3. In the internal cause, the incident point B1 and the reflection point B2 are described separately for convenience of explanation, but it is assumed that these are substantially the same point. In this explanation, the object 3 is sufficiently spaced so that the distance 1i11D between the irradiation device 1 and the receiving device 2 is negligible compared to the distance 111d to the object (therefore, the incident angle is perpendicular to the object 3). Although it is assumed that the object is far away, if this assumption is not made, the distance d° to the object can be calculated using the following formula.

但し、dは(4)式または(7)式、または(8)式よ
り求まる値である。
However, d is a value determined from equation (4), equation (7), or equation (8).

いま照射装置1から出された′FlFTi波が経路4を
通って対象物3の入射点Bl(=82)に入射し)、そ
の後経路6を通って受信装置2に達したとする。また電
磁波が発信部Aから受信部Cに戻ってくるまでの往復距
離を2dとする。
Assume that the 'FlFTi wave emitted from the irradiation device 1 enters the incident point Bl (=82) of the object 3 through a path 4), and then reaches the receiving device 2 through a path 6. Further, the round trip distance for the electromagnetic wave to return from the transmitter A to the receiver C is assumed to be 2d.

このとき発信部Aにおける電磁波と受信部Cにおける電
磁波の位相差δは下記(1)式の様に表わせる。
At this time, the phase difference δ between the electromagnetic waves in the transmitting section A and the electromagnetic waves in the receiving section C can be expressed as in the following equation (1).

ん ここでλは波長、ψは対象物3における波の反射より生
じる位相の変化を夫々示す。
Here, λ is the wavelength, and ψ is the change in phase caused by the reflection of the wave on the object 3, respectively.

いま振幅変調をかけた電磁波を、変調波長を連続的に変
化させて照射した場合に、発信部Aと受信部Cにおけ波
の干渉を測定し、波長がλゆλ11.λ++++2・・
・λ0.・・・(イ旦しλイ〉λ1寡〉λm+2〉・・
・〉λ0.〉・・・とする)のときに干渉強度が極値(
極大値と極小値)をとったとする。この時、波長をλ1
として干渉強度が極大値をとったと仮定すると、(+、
)式から次式の関係が導ける。
Now, when an electromagnetic wave subjected to amplitude modulation is irradiated while changing the modulation wavelength continuously, the interference of the waves at the transmitter A and the receiver C is measured, and the wavelengths are λ to λ11. λ++++2・・
・λ0. ...(I tanshi λi>λ1 small>λm+2>...
・>λ0. 〉...), the interference intensity reaches the extreme value (
Suppose we take the local maximum value and local minimum value. At this time, the wavelength is λ1
Assuming that the interference intensity has reached its maximum value as (+,
), we can derive the following relationship.

(m、n、r:整数) 上記(2) 、 (3)から下記(4)式が求められる
(m, n, r: integers) The following equation (4) is obtained from the above (2) and (3).

波長λ。のときに干渉強度が極小値をとったと仮定して
も、(4)式と同じ結果が導ける。
Wavelength λ. Even if it is assumed that the interference intensity takes a minimum value when , the same result as in equation (4) can be obtained.

従って上記(4)式を適用すれば、干渉強度が極値をと
るとぎの少なくとも2つの波長λ、、λ、+。
Therefore, if the above equation (4) is applied, at least two wavelengths λ,, λ,+ at which the interference intensity takes an extreme value.

を求めることによって、対象物3までの距離dを波長単
位の高精度で求めることができる。尚上記説明では、振
幅変調をかけた電磁波を、変調波長を連続的に変化させ
て照射した場合について述べたけれども、振幅変調をか
けずに電磁波の波長そのものを連続的に変化させた電磁
波または音波を照射装置1から発信する様な構成を採用
しても同様の結論が導ける。但し、光の様に電磁波の周
波数が非常に高い場合は、現在の技術で電磁波の波長単
位の変化を検出することが困難な場合もあり得るので、
振幅変調をかけてから波長を変化させるのは、この様な
場合に有利である。
By determining , the distance d to the object 3 can be determined with high precision in wavelength units. In the above explanation, we have described the case in which electromagnetic waves with amplitude modulation are applied while changing the modulation wavelength continuously, but electromagnetic waves or sound waves in which the wavelength of the electromagnetic wave itself is continuously changed without amplitude modulation are used. A similar conclusion can be drawn even if a configuration is adopted in which the information is transmitted from the irradiation device 1. However, when the frequency of electromagnetic waves is very high, such as light, it may be difficult to detect changes in wavelength units of electromagnetic waves using current technology.
In such cases, it is advantageous to apply amplitude modulation and then change the wavelength.

また上記説明では、波長λと距離dとの関係から未知圧
11dを求める構成を採用したが、周波数や周期と未知
圧1111dとの関係から未知圧1!1dを求める構成
を採用してもよい。この点について次に説明する。
Furthermore, in the above explanation, a configuration is adopted in which the unknown pressure 11d is determined from the relationship between the wavelength λ and the distance d, but a configuration may also be adopted in which the unknown pressure 1!1d is determined from the relationship between the frequency, period, and the unknown pressure 1111d. . This point will be explained next.

電磁波または音波の速度をU1周波数をV。The speed of electromagnetic waves or sound waves is U1, the frequency is V.

周期なτとすると、下記(5) 、 (e)式の関係が
ある。
Assuming that τ is periodic, the following relationships (5) and (e) exist.

U;λ・ν          …(5)τ=−・・・
(6) υ (5) 、 (61式の関係から、前記(4)式は、下
記(71、(8)式の様に変形できる。
U;λ・ν...(5)τ=-...
(6) υ (5) , (From the relationship of Equation 61, the above Equation (4) can be transformed as shown in Equations (71 and (8) below).

従って干渉強度が極値をとる周波数νや周期τを求めて
も、対象物の距離dが求められる。
Therefore, even if the frequency ν and period τ at which the interference intensity takes an extreme value are determined, the distance d to the object can also be determined.

但し、本発明は、距離dを求める為の式を上記(4) 
、 (7)または(8)式に限定するものではなく、こ
れらの式に対して数学的変形を加えた形として利用する
ことも本発明の技術的範囲に含まれるものである。
However, in the present invention, the formula for determining the distance d is
, (7) or (8), and the use of mathematically modified forms of these equations is also within the technical scope of the present invention.

[実施例コ 以下、実施例によって本発明を更に詳細に説明する。尚
下記実施例では電磁波の代表例としてレーザ光をとりあ
げ、これを振幅変調する場合を示したが、その他の1!
磁波或は音波を用いた場合であっても同様に本発明を実
施できることは言う迄もない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In the example below, a laser beam is used as a typical example of electromagnetic waves, and a case where the amplitude is modulated is shown, but other 1!
It goes without saying that the present invention can be carried out in the same manner even when magnetic waves or sound waves are used.

第1図は本発明方法を実施する為に構成される距離測定
装置の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an example of a distance measuring device configured to implement the method of the present invention.

第1図において、11はレーザ光を発生するレーザ発振
器である。このレーザ発振器11からのレーザ光は、変
調器12で振幅変調されると共に、その波長(ここでは
振幅波長)が連続的に変化する様にされる。このとき変
調器12の動作は変調信号発生回路19からの情報によ
って制御されている。
In FIG. 1, 11 is a laser oscillator that generates laser light. The laser beam from this laser oscillator 11 is amplitude-modulated by a modulator 12, and its wavelength (amplitude wavelength here) is made to change continuously. At this time, the operation of the modulator 12 is controlled by information from the modulation signal generation circuit 19.

変調器12から出されたレーザ光はビームスプリッタ1
3で2方向のレーザ光に分割され、一方のレーザ光はプ
リズム14を通って対象物3に向かい、他方のレーザ光
は検出器18aに送られ強度が検出される。
The laser light emitted from the modulator 12 is transmitted to the beam splitter 1
3, the laser beam is split into two directions, one laser beam passing through the prism 14 toward the object 3, and the other laser beam being sent to the detector 18a where its intensity is detected.

対象物3から反射し“できたレーザ光は、反射鏡16.
1.7によって検出器18bに集光され、この検出器1
8bによって強度が検出される。尚前記検出器18a、
18bとしては、例えばフォトダイオード等が挙げられ
る。
The laser beam reflected from the object 3 is reflected by the reflecting mirror 16.
1.7, the light is focused on the detector 18b, and this detector 1
The intensity is detected by 8b. Note that the detector 18a,
Examples of the 18b include a photodiode and the like.

検出器18bからの信号S2は増幅回路20aで増幅さ
れた後加算回路21に送られる。加算回路21には、前
記検出器18aから増幅回路20aを介して増幅された
信号S、も送られ、この加算回路21で前記2つの信号
S+ 、S2が加算され干渉波形が得られる。この干渉
波形の信号S3は平滑回路22に送られて平滑化された
信号S4となる。信号S4は中央処理回路(CPU)2
3に送られる。中央処理回路23では、前記信号S4と
、変調信号発生回路19からの信号S5が順次取り込ま
れる。信号S、は、波長λに変換され、波長λと、その
ときの信号S4の関係が第3図に示す様な形で整理され
る。CPU内部での第3図の実際の処理は、波長λとそ
のとぎの信号S4の値を2次元配列として記憶している
。次にCPUは、第3図の関係から信号S4が極値をと
る波長λ(第3図においてλ1.λ2、λ3・・・)を
求め、前記(4)式より対象物までの距11[dを求め
る。上記説明は、波長λを用いて説明したが、周波数υ
または周期τを用いてもまったく同様で、このとぎは距
111idは(7)式または(8)式より求めることが
できる。
The signal S2 from the detector 18b is amplified by the amplifier circuit 20a and then sent to the adder circuit 21. The signal S amplified from the detector 18a via the amplifier circuit 20a is also sent to the adder circuit 21, and the adder circuit 21 adds the two signals S+ and S2 to obtain an interference waveform. This interference waveform signal S3 is sent to the smoothing circuit 22 and becomes a smoothed signal S4. Signal S4 is central processing circuit (CPU) 2
Sent to 3. The central processing circuit 23 sequentially receives the signal S4 and the signal S5 from the modulation signal generation circuit 19. The signal S is converted to a wavelength λ, and the relationship between the wavelength λ and the signal S4 at that time is arranged as shown in FIG. In the actual processing shown in FIG. 3 within the CPU, the wavelength λ and the subsequent value of the signal S4 are stored as a two-dimensional array. Next, the CPU calculates the wavelength λ (λ1, λ2, λ3, etc. in FIG. 3) at which the signal S4 takes an extreme value from the relationship shown in FIG. 3, and calculates the distance 11 [ Find d. The above explanation was made using the wavelength λ, but the frequency υ
Alternatively, it is exactly the same even if the period τ is used, and the distance 111id can be obtained from equation (7) or equation (8).

[発明の効果] 以上述べた如く本発明によれば、電磁波または音波の波
長レベルといった高精度で、対象物までの距離の測定を
測定することが可能となった。
[Effects of the Invention] As described above, according to the present invention, it has become possible to measure the distance to an object with high precision such as the wavelength level of electromagnetic waves or sound waves.

【図面の簡単な説明】[Brief explanation of the drawing]

′S1図は本発明方法を実施する為に構成される距離測
定装置の一例を示す概略説明図、第2図は本発明の基本
的原理を示す概略説明図、第3図は距l11dを求める
為の波形を示すグラフである。
'S1 is a schematic explanatory diagram showing an example of a distance measuring device configured to carry out the method of the present invention, Fig. 2 is a schematic explanatory diagram showing the basic principle of the present invention, and Fig. 3 is a diagram for determining the distance l11d. It is a graph showing a waveform for.

Claims (2)

【特許請求の範囲】[Claims] (1)電磁波または音波を対象物に照射して対象物まで
の距離を測定する方法において、発信部から未知の距離
のところにある対象物に、振幅変調をかけた電磁波また
は音波を、変調波長を連続的に変化させつつ照射してそ
の反射波を受信部に入射させ、照射波と反射波の干渉に
よって生じる電磁波または音波の強度変化が極値を示す
ときの少なくとも2つの変調波長を測定し、このときの
波長、周波数または周期を下記(4)、(7)または(
8)式若しくはこれらの数学的変形式のいずれかに代入
することによって上記未知距離を求めることを特徴とす
る距離測定方法。 d=(r・λ_m・λ_m_+_r)/4(λ_m−λ
_m_+_r)・・・(4)d=(u・r)/4(ν_
m_+_r−ν_m)・・・(7)d=(u・r・τ_
m・τ_m_+_r)/4(τ_m−τ_m_+_r)
・・・(8)但し、d:未知距離 r:整数 λ_m、λ_m_+_r:極値をとるときの波長(λ_
m>λ_m_+_r) ν_m、ν_m_+_r:極値をとるときの周波数(ν
_m<ν_m_+_r) τ_m、τ_m_+_r:極値をとるときの周期(τ_
m>τ_m_+_r)
(1) In a method of measuring the distance to an object by irradiating it with electromagnetic waves or sound waves, an electromagnetic wave or sound wave with amplitude modulation applied to the object at an unknown distance from the transmitter is sent to the object at a modulated wavelength. irradiate while changing continuously, make the reflected wave enter the receiving section, and measure at least two modulated wavelengths when the intensity change of the electromagnetic wave or sound wave caused by interference between the irradiated wave and the reflected wave shows an extreme value. , the wavelength, frequency or period at this time can be expressed as (4), (7) or (
8) A distance measuring method, characterized in that the unknown distance is determined by substituting it into an equation or a mathematical variation thereof. d=(r・λ_m・λ_m_+_r)/4(λ_m−λ
_m_+_r)...(4) d=(u・r)/4(ν_
m_+_r-ν_m)...(7) d=(u・r・τ_
m・τ_m_+_r)/4(τ_m−τ_m_+_r)
...(8) However, d: unknown distance r: integer λ_m, λ_m_+_r: wavelength (λ_
m>λ_m_+_r) ν_m, ν_m_+_r: Frequency when taking the extreme value (ν
_m<ν_m_+_r) τ_m, τ_m_+_r: Period when taking the extreme value (τ_
m>τ_m_+_r)
(2)電磁波または音波を対象物に照射して対象物まで
の距離を測定する方法において、発信部から未知の距離
のところにある対象物に、波長を連続的に変化させた電
磁波または音波を照射してその反射波を受信部に入射さ
せ、照射波と反射波の干渉によって生じる電磁波または
音波の強度変化が極値を示すときの少なくとも2つの波
長を測定し、このときの波長、周波数または周期を請求
項(1)の(4)、(7)、または(8)式若しくはこ
れらの数学的変形式のいずれかに代入することによって
、上記未知距離を求めることを特徴とする距離測定方法
(2) In a method of measuring the distance to an object by irradiating the object with electromagnetic waves or sound waves, electromagnetic waves or sound waves of continuously changing wavelength are emitted from the transmitter to the object at an unknown distance. irradiate and make the reflected wave enter the receiving section, measure at least two wavelengths at which the intensity change of electromagnetic waves or sound waves caused by interference between the irradiated wave and the reflected wave shows an extreme value, and measure the wavelength, frequency, or A distance measuring method characterized in that the unknown distance is determined by substituting the period into equation (4), (7), or (8) of claim (1) or a mathematical variation thereof. .
JP31917788A 1988-12-16 1988-12-16 Range finding method Pending JPH02163684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31917788A JPH02163684A (en) 1988-12-16 1988-12-16 Range finding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31917788A JPH02163684A (en) 1988-12-16 1988-12-16 Range finding method

Publications (1)

Publication Number Publication Date
JPH02163684A true JPH02163684A (en) 1990-06-22

Family

ID=18107279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31917788A Pending JPH02163684A (en) 1988-12-16 1988-12-16 Range finding method

Country Status (1)

Country Link
JP (1) JPH02163684A (en)

Similar Documents

Publication Publication Date Title
JP6806347B2 (en) Optical distance measuring device and measuring method
JP4199848B2 (en) Interference measurement device
CN108873007B (en) Frequency modulation continuous wave laser ranging device for inhibiting vibration effect
JP6792933B2 (en) Synthetic wave laser ranging sensor and method
JP5421013B2 (en) Positioning device and positioning method
JP2015094760A5 (en)
US11630189B2 (en) Multi-tone continuous wave detection and ranging
Orakzai et al. Fast and highly accurate phase unwrapping algorithm for displacement retrieval using self-mixing interferometry sensor
JP5468836B2 (en) Measuring apparatus and measuring method
IL286820A (en) Method and system for mapping and range detection
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JPH06174844A (en) Laser distance measuring apparatus
JPH06186337A (en) Laser distance measuring equipment
JPH02163684A (en) Range finding method
US20220206145A1 (en) Optical distance measurement device and machining device
JPH0915334A (en) Laser equipment for measuring distance
JPH0694602A (en) Spectral photographing device for detecting absorption of modulated electromagnetic wave based on ultrasonic wave
JPS6371675A (en) Laser distance measuring instrument
JP2923779B1 (en) Optical interference device for ultrasonic detection
JPS639877A (en) Three-dimensional measuring method
JP6554755B2 (en) Vibration measuring apparatus and vibration measuring method
JPS63128218A (en) Distance measuring method
JP2008520998A (en) Detection system for detecting translation of an object
JPS5866881A (en) Surveying equipment by light wave
JPS63255685A (en) Length measuring apparatus by laser